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Abstract

In the emerging area of sensor-based systems, a sig-
nificant challenge is to develop scalable, fault-tolerant
methods to extract useful information from the data the
sensors collect. An approach to this data management
problem is the use of sensor database systems, exempli-
fied by TinyDB and Cougar, which allow users to per-
form aggregation queries such as MIN, COUNT and
AVG on a sensor network. Due to power and range
constraints, centralized approaches are generally im-
practical, so most systems use in-network aggregation
to reduce network traffic. Also, aggregation strategies
must provide fault-tolerance to address the issues of
packet loss and node failures inherent in such a sys-
tem. An unfortunate consequence of standard methods
is that they typically introduce duplicate values, which
must be accounted for to compute aggregates correctly.
Another consequence of loss in the network is that ex-
act aggregation is not possible in general. With this in
mind, we investigate the use of approximate in-network
aggregation using small sketches. QOur contributions
are as follows: 1) we generalize well known duplicate-
insensitive sketches for approrimating COUNT to han-
dle SUM (and by extension, AVG and other aggre-
gates), 2) we present and analyze methods for using
sketches to produce accurate results with low communi-
cation and computation overhead (even on low-powered
CPUs with little storage and no floating point oper-
ations), and 3) we present an extensive erperimental
validation of our methods.

1 Introduction

Recent advances in micro-electronics and wireless
technology are enabling the creation of small, cheap,
and smart sensors. A smart sensor is a device with
measurement, communication and computation capa-
bilities, typically powered by a small battery. Individ-
ually, these sensors have limited capabilities, but there
has been a great deal of research in developing sensor
networks composed of a large numbers of these sensors.
As a whole, sensor networks can be much more pow-

erful and are being applied experimentally in a wide
variety of areas — some sample applications include en-
vironmental monitoring, surveillance, and traffic mon-
itoring. We focus on challenges posed by the limited
capabilities of sensors, in particular, low ranges, lim-
ited bandwidth, and high losses, though at times we
are constrained by other factors such as limited stor-
age.

Motivation. Each sensor can produce a stream of
data about its surroundings. Collectively, the sensors
can produce a large amount of data, of which applica-
tions are usually only interested in aggregates (specific
readings may be noisy or even unavailable). To re-
duce the cost and complexity of programming sensor
networks to extract useful aggregates, a database ap-
proach has been advocated [13, 16]. Within this ap-
proach, special attention has been given to efficient
query processing for aggregate queries [13, 16, 18].

For example, in the TAG system [13], users connect
to the sensor network using a workstation or base sta-
tion directly connected to a sensor designated as the
root node. Aggregate queries over the sensor data are
formulated using a simple SQL-like language, and then
distributed across the network, e.g. by smart flooding.
As the query is distributed across the network, a span-
ning tree is formed for the sensors to return data back
to the root node. At each node in the tree, the sensor
combines its own values with the data received from its
children, and sends the aggregate to its parent. If there
are no failures, this technique works extremely well for
decomposable aggregates, namely distributive and al-
gebraic aggregates [10] such as MIN, MAX, COUNT
and AVG.

However, this technique breaks down when failures
are introduced into the system. In sensor networks,
both node and link failures are common. Node failures
are expected to be relatively frequent, since the sen-
sors are meant to be small, cheap, and mass-produced,
and they will be placed in a variety of uncontrolled
environments. Link failures (and packet losses) are
also expected to be high due to environmental inter-
ference, packet collisions, and low signal-to-noise ra-
tios [18]. Returning to the previous aggregation tech-



nique, if a node fails or its message does not reach
its parent, the values associated with the entire sub-
tree are lost. If the failure occurs close to the root
node, then the effect on the resulting aggregate can be
significant. Some approaches to address this problem
based upon multi-path routing were proposed in [13],
but they were primarily effective for duplicate insensi-
tive aggregates such as MIN and MAX. For duplicate
sensitive aggregates such as COUNT or AVG, the re-
sults are not satisfactory, and degrade rapidly as the
number of sensors increases.

Contributions. In this paper, we propose a robust
and scalable method for computing duplicate sensitive
aggregates. Since exact solutions are generally imprac-
tical to guarantee in the face of losses, we provide an
approximate solution which is robust against both link
and node failures. Our contributions can be summa-
rized as follows:

e We extend well-known duplicate insensitive
sketches [7] to handle SUM aggregates. Through
analysis and experiments, we show that the new
sketch provides accurate approximations.

e We present a method to combine duplicate insen-
sitive sketches with multi-path routing techniques
to produce highly accurate sketches with low com-
munication and computation overhead.

e We provide an analysis of the expected perfor-
mance of previous methods as well as our method.

e Finally, we present an extensive experimental eval-
uation of our proposed system which we compare
with previous approaches.

The remainder of this paper proceeds as follows.
Background material is covered in Section 2. Count-
ing sketches, along with theory and new generaliza-
tions, are discussed in Section 3. A robust aggregation
framework using these sketches are then presented in
Section 4. We validate our methods experimentally in
Section 5 and conclude in Section 6.

2 Background

We now briefly survey the related work of our meth-
ods. Sensors and their limitations are described in
Section 2.1. Previous frameworks for processing aggre-
gates are covered in 2.2. Finally, the sketches which we
use to improve upon these frameworks are introduced
in Section 2.3.

2.1 Smart Sensor Devices

Smart sensors are full fledged computer systems,
with a CPU, main memory, operating system and a suit

of sensors. They are powered by small batteries and
their lifetime is primarily dependent on the extent to
which battery power is conserved. The power consump-
tion tends to be dominated by transmitting and receiv-
ing messages and most systems try to minimize the
number of messages in order to save power. However,
the communication between sensors is wireless and the
packet loss rate between nodes can be high. For ex-
ample, [18] reports on experiments in which more than
10% of the links suffered average loss rate greater than
50%. Another challenge is that links may be asymmet-
ric, both in loss rates and even reachability, making
common ACK-based protocols such as TCP difficult
or impossible. These limitations motivate query evalu-
ation methods in sensor networks that are fundamen-
tally different from the traditional distributed query
evaluation approaches. First, the query execution plan
must be energy efficient and second, the process must
be as robust as possible given the communication lim-
itations in these networks.

2.2 In-network Aggregate Query Processing

A simple approach to evaluate an aggregation query
is to retrieve the values from all sensors in the base sta-
tion and compute the aggregate there. Although this
approach is simple, the number of messages and the
power consumption can be large. A better approach is
to leverage the computational power of the sensor de-
vices and compute aggregates in-network. Aggregates
that can be computed in-network include all decom-
posable functions [18].

Definition 1 A function f is decomposable, if it
can be computed by another function g as follows:

fv1,v2, s vn) = g(f (V1 ey V)5 f(Vkt1y ey Un))-

Using decomposable functions, the value of the ag-
gregate function can be computed for disjoint subsets,
and these values can be used to compute the aggre-
gate of the whole using the merging function g. Our
discussion is based on the Tiny Aggregation (TAG)
framework used in TinyDB [13]. However similar ap-
proaches are used to compute aggregates in other sys-
tems [16, 17, 18, 11].

In TAG, the in-network query evaluation has two
phases, the distribution and the collection phase. Dur-
ing the distribution phase, the query is flooded in the
network and organizes the nodes into an Aggregation
Tree. The base station broadcasts the query using its
sensor which will be the root of the tree. The query
message has a counter that stores the level of each sen-
sor node in the tree. When a sensor receives this mes-
sage, it re-transmits it with the counter increased by
one. In this way, each node is assigned to a specific



level equal to the node’s hop distance from the root.
Also, each sensor chooses one of its neighbors with a
smaller hop distance from the root to be its parent in
the aggregation tree.

During the collection phase, each leaf node produces
a single tuple and forwards this tuple to its parent. The
non-leaf nodes receive the tuples of their children and
combine these values. Then, they submit the new par-
tial results to their own parents. This process runs
continuously and after h steps, where h is the height of
the aggregation tree, the total result will arrive at the
root. In order to conserve energy, sensor nodes sleep
as much as possible during each step where the pro-
cessor and radio are idle. When a timer expires or an
external event occurs, the device wakes and starts the
processing and communication phases. At this point,
it receives the messages from its children and then sub-
mits the new value(s) to its parent. After that, if no
more processing is needed for that step, it enters again
into the sleeping mode [14].

This approach works very well for ideal network con-
ditions. To address packet losses and node failures,
Madden at al. [13] proposed some methods to improve
the performance of their system. One solution is to
cache previous values and reuse them if newer ones are
unavailable. Of course, the previous values may reflect
losses at lower levels of the tree.

Another approach considered in [13] takes advantage
of the fact that a node may select multiple parents
from neighbors at a higher level. Using this approach,
which we refer to as “fractional parents,” the aggregate
value is decomposed into fractions equal to the number
of parents. Each fraction is then sent to a distinct
parent instead of sending the whole value to a single
parent. For example, given an aggregate sum of 15
and 2 parents, each parent would be sent the value
7.5. It is easy to demonstrate analytically that this
approach does not improve the expected value of the
estimate over the single parent approach; it only helps
to reduce the variance of the estimated value at the
root. Therefore, the problem of losing a significant
fraction of the aggregate value due to network failures
remains.

2.3 Counting Sketches

Counting sketches were introduced by Flajolet and
Martin in [7] for the purpose of quickly estimating in
one pass the number of distinct items in a database
(or stream) while using only a small amount of space.
Furthermore, these sketches are easily combined, so the
number of distinct items in the equi-join of a set of
tables can be estimated by sketching each table inde-
pendently, and then combining the sketches to form the

sketch of the equi-join. Since then, there has been much
work developing counting sketches (e.g. [6, 9, 3, 8, 2])
and generalizations (e.g. [1]). Counting sketches are
the first of a class of duplicate insensitive sketches that
remove sensitivity from approximating duplicate sensi-
tivfe aggregates.

It is well known that exact solutions to the dis-
tinct counting problem require Q(n) space. As shown
in [1], ©(logn) space is required to approximate the
number of distinct items in a multi-set with n distinct
items. The original counting sketches of [7] achieve this
bound, though they assume a fixed hash function that
appears random, so they are vulnerable to adversarial
choices of inputs. We use these sketches since they are
very small and accurate in practice, and describe them
in detail in Section 3.

Given the strong assumptions about the hash func-
tion in [7], another sketching scheme was proposed
in [1] which only used a linear hash function (within
an appropriate GF(2P)), but by choosing the hash
function randomly, this scheme is provably robust to
adversarial inputs. This sketching scheme requires
about 50% more space in practice, but the linear hash
functions need to be agreed upon beforehand (allow-
ing adversarial inputs again), or they must be dis-
tributed with the query. Another recent technique [5]
works similarly to [7] but only uses O(loglogn) space.
These “loglog” sketches are also vulnerable to adversar-
ial inputs, but have provably good behavior otherwise
(again, assuming the hash function appears random).
The authors claim that these sketches have comparable
accuracy to those of [7] while using roughly a third of
the space in practice.

We note that both of these sketching techniques can
be adapted to sketching summations (the subject of
Section 3), since they both can reduced to calculating
the maximum of a set of geometrically distributed ran-
dom variables. However, the straight-forward imple-
mentation of this approach involves both logarithms
and exponentiation so it is unsuitable for sensor net-
works as they typically lack floating point hardware.
We also note that this approach loses the theoretical
elegance of [1], both in using only linear hash functions
and maintaining provable robustness against adversar-
ial inputs. However the general approach of Section
3 is applicable using loglog sketches so further space
improvements are possible.

3 Sketch Theory

One of the core ideas behind our work is that dupli-
cate insensitive sketches will allow us to leverage the
robustness typically associated with multi-path rout-
ing. We now present some of the theory behind such



sketches and extend it to handle more interesting ag-
gregates. First, we present in Section 3.1 details of
the counting sketches of [7] (FM sketches) along with
necessary parts of the theory behind them. Then, we
generalize these sketches to handle summations in Sec-
tion 3.2, and show that they have almost exactly the
same accuracy as FM sketches.

3.1 Counting Sketches

We now describe FM sketches for the distinct count-
ing problem.

Definition 2 Given a multi-set of items M =
{x1,22,23,...}, the distinct counting problem is to
compute n = |distinct(M)]| .

Given a multi-set M, the FM sketch of M, denoted
S(M), is a bitmap of length k (the choice of k will
be discussed shortly). The entries of S(M), denoted
S(M)[0,...,k — 1], are initialized to zero and are set
to one using a random binary hash function h applied
to the elements of M. Formally,

S(M)[i]=1iff Jx € M s.t. min{j | h(z,j) =1} =14

By this definition, each item z is capable of setting a
single bit in S(M) to one — the minimum ¢ for which
h(z,i) = 1. This gives a simple serial implementation
which is very fast in practice and requires two invoca-
tions of h per item on average.

Theorem 1 An element x; can be inserted into an FM
sketch in O(1) expected time.

Algorithm 1 COUNTINSERT(S,x)
i=0;
while hash(x,i) = 0 do
i=i4 1
end while
. S[i] = 1;

AR > e

We now describe some interesting properties of the
sketches observed in [7].

Property 1 The FM sketch of the union of two multi-
sets is the bit-wise OR of their FM sketches. That is,

S(My U My)[i] = (S(My)[i] vV S(Mz)[d]).
Property 2 S(M) is entirely determined by the dis-

tinct items of M. Duplication and ordering do not af-

fect S(M).

Property 1 allows each node to compute a sketch of
locally held items and send the small sketch for aggre-
gation elsewhere. Since aggregation (i.e. union oper-
ations) is cheap, it may be performed in the network
without burdening any nodes. Property 2 allows the
use of multi-path routing of the sketches for robust-
ness without affecting the accuracy of the estimates.
We expand upon these ideas further in Section 4. The
next lemma provides key insight into the behavior of
FM sketches and will be the basis of efficient imple-
mentations of summation sketches in the next section.

Lemma 1 For i < logon — 2logy,logn, S(M)[i] = 1
with probability 1 — O(ne~ 18" "), For i > Slogyn+4,

with 6 >0, S(M)[i] = 0 with probability 1 — O (%)

Proof: This lemma is proven in [7] and follows from
basic balls and bins arguments. ]

The lemma implies that given an FM sketch of n dis-
tinct items of unbounded length, one expects an initial
prefix of all ones and a suffix of all zeros, while only the
setting of the bits around S(M)[log, n] exhibit much
variation. This gives a bound on the number of bits k
required for S(M) in general; k = 2log, n bits suffice
to represent S(M) with high probability. It also sug-
gests that just considering the length of the prefix of
all ones in this sketch can produce an estimate of n.
Formally, let

R, =min{s | S(M)[i] = 0}

when S(M) is an FM sketch of n distinct items. That
is, R, is a random variable marking the location of
the first zero in S(M). In [7], a method to use R,
as an estimator for n is developed using the following
theorems.

Theorem 2 The expected value of R, for FM sketches
satisfies

E(Ry) = logy(¢n) + P(logyn) + o(1),

where the constant ¢ is approximately 0.775351 and
P(u) is a periodic and continuous function of u with
period 1 and amplitude bounded by 107°.

Theorem 3 The variance of R, for FM sketches, de-

2 -
noted o, satisfies

05 = 0o + Q(logy n) +o(1),

where constant o2, is approzimately 1.12127 and Q(u)
is a periodic function with mean value 0 and period 1.



Thus, R, can be used for an unbiased estimator of
log, n if the small periodic term P(log, n) is ignored.
A much greater concern is that the variance is slightly
more than one, dwarfing P(log, n), and implying that
estimates of n will often be off by a factor of two in
either direction. To address this, methods for reducing
the variance will be discussed in Section 3.3.

3.2 Summation Sketches

As our first theoretical contribution, we generalize
approximate counting sketches to handle summations.
Given a multi-set of items M = {z1,x2,z3,...} where
x; = (ki,c;) and ¢; is a non-negative integer, the dis-
tinct summation problem is to calculate

n= g Ci.

distinct((k;,c;)eM)

When ¢; is restricted to one, this is exactly the distinct
counting problem.

We note that for small values of ¢;, one might sim-
ply count ¢; different items based upon k; and ¢;, e.g.
(ki,ci, 1), ..., (ki ciy¢i), which we denote sub-items of
(ki,ci)). Since this is merely ¢; invocations of the
counting insertion routine, the analysis for probabilis-
tic counting applies. Thus, this approach is equally
accurate and takes O(c¢;) expected time. While very
practical for small ¢; values (and trivially paralleliz-
able in hardware), this approach does not scale well
for large values of c¢. Therefore, we consider more scal-
able alternatives for handling large ¢; values.

Algorithm 2 SUMMATIONINSERT(S,x,c)

1: d = pick_threshold(c);

2: fori=0,...,d-1do

3 S[i]=1;

4: end for

5: a = pick_binomial(seed=(x, c), c, 1/2%);
6: fori=1,...,ado

7 j=d;

8:  while hash(x,c,i,j) = 0 do
9: =i+ 1L

10:  end while

11: Sl =1;

12: end for

The basic intuition beyond our more scalable ap-
proach is as follows. We intend to set the bits in the
summation sketch as if we had performed c; successive
insertions to an FM sketch, but we will do so much
more efficiently. The method proceeds in two steps:
we first set a prefix of the summation sketch bits to
all ones, and then set the remaining bits by randomly
sampling from the distribution of settings that the FM

sketch would have used to set those bits. Ultimately,
the distribution of the settings of the bits in the sum-
mation sketch will bear a provably close resemblance
to the distribution of the settings of the bits in equiva-
lent FM sketch, and we then use the FM estimator to
retrieve the value of the count.

We now describe the method in more detail. First,
to set the prefix, we observe that it follows from
Lemma 1, that the first

0; = |log, ¢; — 21og, log ¢; |

bits of a counting sketch are set to one with high prob-
ability after ¢; insertions. So our first step in inserting
(k;, ¢;) into the summation sketch is to set the first §;
bits to one. This introduces a minimal amount of bias
in the subsequent estimator — in the proof of Theo-
rem 2 in [7], the authors prove that the case where the
first §; bits are not all set to one only affects the ex-
pectation of R, by O(n=4%). In practice, we could
correct for this small bias, but we disregard it in our
subsequent experiments with sensor databases.

The second step sets the remaining k — §; bits by
drawing a setting at random from the distribution in-
duced by the FM counting sketch setting those same
bits. We achieve this by simulating the insertions of
items that set bits §; and higher in the counting sketch.
First, we say an insertion z; reaches bit z of a counting
sketch if and only if min{j | h(z;,j) = 1} > z. The dis-
tribution of the number of items reaching bit z is well-
known for FM sketches. An item z; reaches bit z if and
only if Yo<;<-(h(x;,7j) = 0), which occurs with prob-
ability 1/2%. So for a set of ¢; insertions, the number
of insertions reaching bit ¢; follows a binomial distri-
bution with parameters ¢; and 1/2%. This leads to
the following process for setting bits d;,0; + 1. ..k (ini-
tialized to zero). First, draw a random sample y from
B(ci, 1/2%), and consider each of these y insertions as
having reached bit d;. Then use the FM coin-flipping
process to explicitly set the remaining bits beyond §;.

The pseudo-code for this approach is shown in Al-
gorithm 2, and the analysis of its running time is pre-
sented next.

Theorem 4 An element x; = (k;,¢;) can be inserted
into a sum sketch in O(log® ¢;) expected time.

Proof Sketch: Let a; denote the number of items
chosen to reach §;. Setting the first J; bits takes O(J;)
time and simulating the «; insertions takes expected
O(a;) time. The total expected time to insert z; is
then O(d; + f(a;) + «;), where f(o;) denotes the time
to pick a;. Thus, the time depends on both a; and the
method used to pick a;. By construction,

E(ai) = * 1/2 [log, ¢;—2log, log c; | :



S0
log?¢; < Elo;) < 21og? ¢;.

Selecting an appropriate method for picking «; re-
quires more care. While there exist many efficient
methods for generating numbers from a binomial dis-
tribution ([12] has a brief survey), these generally re-
quire floating point operations or considerable memory
for pre-computed tables (linear in ¢;). Since existing
sensor motes often have neither, in Section 4.3.1 we
describe a space-efficient method that uses no float-
ing point operations, uses pre-computed tables of size
O(c;/log? ¢;), and runs in time O(log? ¢;). Combining
these results give the stated time bound. |

We note that for small ¢; values, it may be faster to
use a hybrid implementation combining the naive and
scalable insertion functions. Especially for very low ¢;
values, the naive insertion function will be faster. This
is safe as long the threshold for choosing the insertion
function is globally agreed upon.

Theorem 5 The expected wvalue of R, for sum
sketches satisfies

E(Ry) = logy(¢n) + P(logy 1) + o(1),
where @ and P(u) are the same as in Theorem 2.

Proof: The proof of this theorem follows the proof
of Theorem 2 since the sum insertion function approxi-
mates repeated use of the count insertion function. Let

Cmax = maX{Ci | (ki’ci) € M}

and
5max = I_IOgQ Cmax — 10g2 log cmaxJ .

By the insertion method, the bottom d.x bits of
S (M) are guaranteed to be set. By construction (and
Property 1), the remaining bits are distributed identi-
cally to those of an FM sketch with n distinct items
have inserted. Thus, R,, (and its distribution) are the
same except for the cases when the FM sketch had
one of the first dy,ax bits not set. By Lemma 1, these
cases occur with probability O(ne™ log? ™), so the differ-
ence in the expectation is at most (log, n —log, log n) *
O(ne=1°8" ") which is bounded (loosely) by O(1/n).
Therefore, F(R,) for summation sketches is within
o(1) of that of FM sketches. |

Theorem 6 The variance of R, for sum sketches,
also denoted o2, satisfies

75 = 0o + Q(logy n) + (1),
where o2, and Q(u) are the same as in Theorem 3.

Proof: The proof of Theorem 3 is adapted in a similar
fashion. ]

3.3 Improving Accuracy

To improve the variance and confidence of the esti-
mator, FM sketches can use multiple bitmaps. That
is, each item is inserted into each of m bitmaps (using
different independent hash functions) to produce m R
values, R, ..., R(™  The estimate is then calculated
as follows: _

n~ (m/p)2% R fm,

This estimate is more accurate, with standard error
O(1/4/m), but comes at the cost of increased insertion
times (O(m)). To avoid this overhead, an algorithm
called Probabilistic Counting with Stochastic Averag-
ing, or PCSA, was proposed in [7]. Instead of insert-
ing each item into each of the m bitmaps, each item
is hashed to one of them and only inserted into that
one. Thus, each of the bitmaps summarizes approxi-
mately n/m items. While there is some variation in
how many items are assigned to each bitmap, further
analysis showed that the standard error of PCSA is
roughly 0.78/y/m. Using PCSA, insertion takes O(1)
expected time.

PCSA can also be applied to summation sketches,
but greater care must be applied when combining
PCSA to summation sketches. The potential for im-
balance is much larger with summation sketches - a
single item can contribute an arbitrarily large fraction
of n. Thus, unless there is some guarantee about the
distribution of ¢; values, we employ the following strat-
egy. Each ¢; value has the form

Ci = qim + 1

for some integers ¢; and r;, with 0 < 7, < m.
We then add r; distinct items once as in standard
PCSA, and then add g¢; to each bitmap independently.
Thus, we preserve the balance necessary for the im-
proved accuracy and its analysis, but at the cost of
O(mlog?(c;/m)) for each insertion. We employ these
PCSA optimizations in our experiments.

3.4 Time/Space/Accuracy Tradeoffs

In situations where computational resources are
severely constrained, it may be desirable to reduce the
cost of performing insertion operations with summa-
tion sketches. We now briefly mention some tradeoffs
in the computational time at the cost of increased com-
munication and decreased accuracy. While this is un-
likely to be desirable in sensor networks, given the high
power costs of communication relative to computation,
it may be desirable in other settings where there are
large numbers of items per node.

Suppose that the largest value being inserted is
bounded by y®. Insertions with the algorithm de-
scribed already take O (22 log? y) time. We can instead



use z different summation sketches, each correspond-
ing to a different digit of the ¢;’s using radix y. To add
a ¢; value, each digit of ¢; is inserted into the corre-
sponding sketch, taking expected O(z log? y) time, and
estimates are made by summing the counting sketch es-
timates with the appropriate weights. The accuracy of
this approach is essentially the same, and the increase
in space is bounded by a factor of z (the range of val-
ues each sketch is approximating is smaller now). The
insertion time can be further dropped to O(zlog?y)
expected time without affecting space requirements, if
only the z most significant non-zero digits are inserted,
but the expected estimate may be too low by a factor
of (1+(y—1)/(y* — 1))

We note that while it is tempting to try collapsing
the sketches back into one to avoid the space overhead
at this point, this is generally fallacious and breaks our
simulation of multiple counting sketch insertions. We
point out that the distribution from inserting a single
item and then shifting the sketch by z bits (possibly
filling in x bits of ones) is very different from the distri-
bution of inserting 2* bits. The former has one possible
result, while the latter has many different possible re-
sults. Furthermore, the first approach will be biased
towards high estimates since many underestimates are
now ruled out.

4 Approximate Estimation of Dupli-
cate Sensitive Aggregates

In this section, we show how to use duplicate insensi-
tive sketches to build a robust, loss-resilient framework
for aggregation. Section 4.1 describes our algorithm
leveraging the broadcast nature of wireless communi-
cation between sensors and the sketching techniques
discussed in Section 3. Section 4.2 then provides a
simple analytic evaluation of the proposed methods for
a restricted class of regular topologies. Section 4.3 dis-
cusses practical details of implementations on sensor
motes.

4.1 Algorithm

In sensor networks, when a sensor sends a message,
all nodes that reside inside its communication range
can receive this message. Therefore, a node can broad-
cast a packet to all of its neighboring nodes at once.
This fact allows us to cheaply apply the idea of multi-
path routing for fault tolerance while using duplicate
insensitive sketches to avoid complications in aggrega-
tion.

In the rest of this section, we consider continuous
queries, noting that our methods can also handle one-
shot queries as a simple special case. Aggregate query

computation proceeds in two phases. In the first phase,
the continuous query is distributed through the sensor
network using flooding. The goal of this step is to
create a robust topology where each node is assigned a
level and a list of parent nodes. Therefore the created
graph is not a tree but a DAG. This construction will be
reused for continuous computation of the query. In the
second phase, the actual computation of the aggregate
occurs.

Next we show the steps that are used to create the
topology. Each message M is a tuple of two values: a
unique node ID and the Level of the transmitting node.
Each node maintains the set of nodes in its neighbor-
hood, and distinguishes between parent nodes, children
nodes and others. Initially, all nodes set their Level to
infinity (co0). Upon receipt of a message, a node up-
dates the list of parents and its value of Level (if ap-
propriate) and broadcasts a new message if its Level
has been reduced. If acknowledgments are used (as in
TinyOS), then the node can subsequently update its
children list as well.

The root node initiates this phase by sending the
first message with Level zero. The rest of the nodes
run the following algorithm:

Algorithm 3 BuiLDToOPOLOGY

1: if (Message M received) then

2:  if (M.Level < Node.Level) then

3 Node.Level = M.Level;

4 Update ParentList;

5: M.ID = Node.ID, M.Level = M.Level+1;
6

7

8

Broadcast M;
end if
: end if

12 13 14 15 16 17 19 20

Figure 1. A robust routing topology with mul-
tiple paths to the root.

An example of a possible topology created with the
above algorithm is shown in Figure 1. The advantage of
the multiple parents approach is obvious. Most nodes



in the network have multiple paths (of the same length)
that can reach the root node, so an individual link or
node loss has limited effects. For example, node 14
in Figure 1 has a number of different paths that can
reach the root. So, if node 6 fails, the value of node
14 will reach the root via node 7. Another advantage
of the DAG topology is that the topology need not be
repaired every time a small number of nodes fail, unlike
the spanning tree approach.

After the topology is discovered, the second phase
starts. The nodes that participate in the query use
their readings to create sketches and transmit these
sketches to their parents. Parent nodes receive the
sketches from their children and create a partial sketch
that is also sent to their parents. Eventually, the root
node will receive a set of final partial sketches that
it will combine to estimate the aggregate value. This
process is executed in each epoch. An epoch is a fixed
time interval specified in the query and reflects how
often a new aggregation should be produced [13]. We
assume that the same protocol as in TinyDB is used
to synchronize nodes. The epoch is divided in smaller
time intervals and each node transmits only in one of
those intervals. Parent nodes know when their children
transmit; this is agreed during the topology construc-
tion.

A significant advantage of our approach is the fault
tolerance inherent in broadcasting the sketch to mul-
tiple parents, which eliminates the need for packet-
level retransmissions when individual packets are lost.
Instead, in each epoch, each node simply broadcasts
its sketch once. This approach can save considerable
bandwidth and time spent identifying lost packets and
scheduling retransmissions. In practice, if no parent
acknowledges a given transmission, rebroadcast seems
a reasonable option. Algorithm 4 shows the code that
runs at each node.

In this algorithm we consider only two aggregates,
COUNT and SUM (from which AVG can be computed
directly). For the SUM query, the value can be dif-
ferent in each epoch; in that case the summation is
over only the most recent reading. These techniques
can also be extended to other aggregate functions be-
yond summation and counting. For example, the sec-
ond moment can also be computed as an average of the
squares of the items, as can any other non-centralized
moment. The second moment can then be combined
with the average of the items, to compute the variance
and standard deviation too. We note that in computing
the variance and standard deviation, the same count-
ing sketch can be shared for the second moment and
the average. Additionally, we note that the sketches
described are easily generalized to handle other data

Algorithm 4 COMPUTEAGGREGATE

1: while Query is Running do

2:  InitializeSketch(S);

3 if Node is a parent then

4 for each Child i=0, ..., k do
5: Receive(S;);

6 end for

7 S = Merge(S, Sl, SQ, ceey Sk),
8 end if

9 if Node satisfies the query then
10: if aggregate=COUNT then
11: Count_insert(S, NodelID);
12: else if aggregate=SUM then
13: Sum_insert(S, NodelD, Value);
14: end if
15:  end if

16:  Broadcast (S);
17: end while

types such as fixed point and signed numbers, and to
a certain extent, products (summing logarithms) and
floating point.

4.2 Analysis

We now analyze the methods discussed so far for a
restricted class of regular topologies. We consider the
resilience of a single spanning tree in the presence of in-
dependent link failures, and compare the performance
when multiple parents are leveraged. We specifically
examine performance of the COUNT aggregate, count-
ing all of the nodes in the network, but this analysis
can be naturally extended to node and packet failures
and other duplicate insensitive aggregates.

4.2.1 Fault Resilience of the Spanning Tree

First, we consider a baseline routing topology in which
aggregates are computed across a single spanning tree,
i.e. whereby each node transmits its aggregate to a
unique parent. For simplicity, we assume that the de-
gree of the tree is d, although our analysis can be ex-
tended for any other tree. We assume that link losses
occur independently at random with probability p and
that the height of the tree is h. In general, the proba-
bility of a value from a node at level ¢ to reach the root
is proportional to (1 — p)?.

We ignore the correleation between losses for sim-
plicity here; however, more elaborate analysis that
takes that into account is possible. The expected value
of the COUNT aggregate is E(count) = 2?10(1 —
p)'n;, where n; is the number of nodes at level i.
Assuming complete d-ary tree we have: FE(count) =

Z?:o((l —p)d)t = %. For h =10, d = 3 and
p = 0.1 (a 10% link loss rate) the expected fraction of



the nodes that will be counted is poor, only 0.369. We
also note that when the underlying routing topology is
a spanning tree, node and link losses are equivalent, as
there is a bijection between edges and nodes (loss of
an edge is tantamount to loss of the node beneath that
edge).

4.2.2 Fault Resilience of Multiple Paths

In order to analyze the use of multiple paths we now
make a stronger assumption about the routing topol-
ogy. Starting with the leaves at level 0, we assume that
each node at level ¢ has exactly d neighbors within its
broadcast radius at level i 4+ 1, for all 0 < i < h — 1.
From these neighbors, each node selects k < d of these
nodes as its parents, where k is a fault-resilience pa-
rameter, and it transmits its aggregate value to all k
of these nodes. The benefit follows from the key obser-
vation that only one copy of the message initiated at
a leaf must reach the root; alternatively, in order for a
node not to be counted, all of the routes taken by its
messages must traverse lossy links. While somewhat
tighter bounds can be obtained, we will be satisfied
with the following simple analysis, which suffices to
provide close agreement with our experimental results.
Let &; denote the event that a copy of the leaf’s value
reached level ¢ conditioned on the value having reached
level i —1. With leaves at level 0, these events are well-
defined for levels 1,2...h. Clearly Pr[&] > (1 — p¥)
(this is a lower bound since only one copy is assumed
to have reached level ¢ — 1), and thus the overall prob-
ability of a message successfully reaching the root is
I0; Pr[&] > (1 — p¥)". Using the same argument for
the other levels of the tree we can get the following:

E(count) > Z?:o(l —pM)in; = % For
k=2 p=0.1and h =10 we get E(count) = 0.9N,
where N is the total number of nodes. For k = 3 the
bound is close to 0.99N, thus we have only a 1% degra-

dation in the set of reporting sensors.
4.3 Practical Details

Since our protocols are being developed for use in
sensor networks, it is important to ensure that they
do not exceed the capabilities of individual sensors.
Section 4.3.1 considers the computational costs of gen-
erating random numbers for the summation sketches
of 3.2. Section 4.3.2 considers the bandwidth overhead
of sending sketches.

4.3.1 Binomial Random Number Generation

Existing sensor motes have a small word size (8 or 16
bits), lack floating point hardware and have little avail-

able memory for pre-computed tables. For these rea-
sons, standard methods for drawing from the binomial
distribution are unsuitable. Here, we outline a ran-
domized algorithm which draws from B(n,p) in O(np)
expected running time using O(1/p) space in a pre-
computed table and without use of floating point oper-
ations. We first note the following relationship between
drawing from the binomial distribution and drawing
from the geometric distribution, also used in [4].

Fact 1 Suppose we have a method to repeatedly draw
at random from the geometric distribution G(1 — p).
Let d be the random variable that records the number of
draws from G(1 —p) until the sum of the draws exceeds
n. The value d—1 is then equivalent to a random draw
from B(n,p).

The expected number of draws d from the geometric
distribution using this method is np, so to bound the
expected running time to draw from B(n, p), we simply
need to bound the running time to draw from G(1—p).
We will make use of the elegant alias method of [15] to
do so in O(1) expected time. In [15] Walker demon-
strates the following (which has a simple and beautiful
implementation):

Theorem 7 (Walker) For any discrete probability
density function D over a sample space of size k, a
table of size O(k) can be constructed in O(k) time that
enables random variables to be drawn from D using two
table lookups.

We can apply this method directly to construct a
table of size n 4+ 1 in which the first n elements of the
pdf D respectively correspond to the probabilities p;
of drawing 1 < ¢ < n from the geometric distribution
G(1 —p), and the final element corresponds to the tail
probability of drawing any value strictly larger than n
from G(1 — p). Note that for simulating a draw from
B(n, p) using the method implicitly defined by Fact 1,
we never care about the exact value of a draw from
G(1 — p) that is larger than n. This direct applica-
tion enables O(1) draws from G(1 — p) in O(n) space,
thus yields O(np) expected running time to draw from
B(n, p).

To achieve O(1/p) space, we make use of the mem-
oryless property of the geometric distribution (which
the binomial distribution does not have). Instead of
storing the first n probabilities p; for the geometric
distribution, we store only the first [1/p] such proba-
bilities, and a final element corresponding to the tail
probability of drawing any value strictly larger than
[1/p] from G(1 —p). By the memorylessness property,
if we select the event corresponding to the tail prob-
ability, we can recursively draw again from the table,



setting our outcome to [1/p]| + x, where z is the re-
sult of the recursive draw. The recursion terminates
whenever one of the first [1/p] events in the table is
selected, or whenever the accumulated result exceeds
n. Since 1/p is the expectation of G(1 — p), this re-
cursion terminates with constant probability at each
round, and thus the expected number of table lookups
is O(1). Further reduction in space is possible, but at
the cost of incurring a commensurate increase in the
expected number of recursive calls.

Using table sizes of [1/p] and assuming a maximum
sensor value of ¢; < 216 (from a 16 bit word size), the
lowest value of p used in summation sketches will be
162/2'¢ = 1/28. Therefore, we will have tables for
p=1/2 ... ,1/28 with 2,...,28 entries each, respec-
tively. Walker’s method utilizes two values for each
entry - the first is an index into the table and the
second is a real value used for comparison. The in-
dex value only requires one byte since the largest table
size is 2%, and a 64 bit fixed-point real value (8 bytes)
should more than suffice. This gives a total table size of
Zle(Qi) (1 +8) = 4590 bytes. This can be improved
further by reducing the number of entries in each ta-
ble as mentioned before. The smaller tables (e.g. for
p = 1/2 and p = 1/4) can also be removed in favor
of directly simulating the “coin flips” of the geometric
distribution, but the space savings is negligible.

4.3.2 Sketch Sizes and Compression

The other main limitation of sensor networks is limited
bandwidth. Meanwhile, the main disadvantage of our
approach is the increased size of sketches over the sim-
ple aggregates of TAG. Later in our experiments, we
will be using sketches with 20 bitmaps of 16 bits each.
This consumes 40 bytes, whereas 2 bytes sufficed for
TAG earlier.

However, as follows from Lemma 1, the sketches
are easily compressible since they begin and end with
long repeating sequences of the same value. We found
that the following simple compression scheme achieved
a factor of three compression on average. First, we
find the lengths of the prefix of all ones common to
each bitmap and the suffix of all zeroes common to
each bitmap. Both of these lengths are sent explicitly
(consuming 2log, log, n + O(1) bits) and then the re-
mainders of the bitmaps are sent verbatim. We note
that this compression method also makes the trans-
mitted size nearly invariant to the actual bitmap sizes
(assuming they are long enough). That is, the bitmaps
could have used 32 or 64 bits each, basically just ex-
tending the suffixes of zero bits which are already being
compressed. Note that the average compression factor
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Figure 2. The spanning tree for N = 49 nodes
on a grid.

of three allows two sketches to easily fit in a TinyDB
packet along with headers and extra room to handle
variation in compression ratios (TinyDB uses 48 byte
packets). This suffices for responding to AVG queries
in one packet. Compression for the TAG methods is
also possible, but unlikely to derive substantial benefit
since they already use 2 bytes or fewer.

5 Experimental Evaluation

We evaluate our methods using the TAG simula-
tor of [13, 14], with modifications to support sketches.
Section 5.1 describes the various strategies employed
for aggregation and transmission of data. Section 5.2
describes the scenarios we simulated and our results.

5.1 StrategiesEmployed

Within each scenario, various strategies for aggre-
gation and transmission were evaluated. Under each
of these strategies, each node combines aggregates re-
ceived from its children with its own reading, and then
sends an aggregate to one or more of its parents. Any
node within broadcast range which was at a lower level
(closer to the root) was considered a candidate parent.
The specific strategies considered were

TAG1: The main strategy of [13, 14] (each sensor
sends its aggregate to a single parent).

TAG2: The “fractional parents” strategy of [13, 14]
described in Section 2.2.

LIST: The aggregate consists of an explicit list of all
the items in the aggregate with any duplicates removed.
These lists are sent to all parents.

SKETCH: The strategy advocated in Section 4 us-
ing duplicate insensitive sketches.
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Figure 3. Performance varying link loss rates.

5.2 Experimental Results

Our basic experimental scenario is as follows. The
network topology is a 30 x 30 grid with 900 sensors, one
placed at each grid point. The communication radius
is V2 (allowing the nearest eight grid neighbors to be
reached) and the default link loss rate is set at 5%. The
root node is always at the center of the grid. Figure 2
illustrates a 7 x 7 grid as an example.

Each experiment performs a count query (counting
the sensors) and the aggregate results of 500 runs are
taken. The sketches used for count queries use PCSA
with 20 bitmaps and 16 bits in each bitmap.

Figure 3 shows the effects of link losses on each strat-
egy’s performance. Each curve shows the average count
returned with error bars showing the standard devia-
tion. TAG1, TAG2, and LIST all correctly return the
answer 900. SKETCH is randomized, but still returns
an answer close to 900. However, as the link loss rate
increases, both TAG strategies degrade quickly and re-
port counts ultimately averaging fewer than 10% of the
total when the loss rate reaches 30%. Meanwhile, both
LIST and SKETCH degrade much more gracefully and
still report counts of about 66% of the total.

Figure 3(b) shows the relative error of this scenario.
Here, given sample value x and correct value z, the
relative error is |””_5” } The correct value is defined
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Figure 4. Performance varying node
rates.

to be the result of the LIST strategy, since subject to
using the same topology (including spanning tree and
parents) with the same losses, the LIST strategy has
optimal accuracy. When the loss rate is zero, each
strategy has an average relative error of zero, except
for SKETCH, which still averages close to 10%. When
the loss rate is 15%, the TAG strategies already have
more than 70% relative error, while SKETCH has only
increased to about 15%. When the loss rate reaches
30%, the TAG strategies have reached an average rela-
tive error of 90%, while the multiple parents strategies
still have an average relative error of less than 20%.
We omit plots of the relative error for all but one of
the remaining scenarios since they have similar per-
formance trends and are easily extrapolated from the
average counts returned.

We note that the performance of the TAG strate-
gies are essentially identical when examining the aver-
age count returned and the average relative error. The
main difference in performance between the two strate-
gies is that TAG1 has a larger variance than TAG2, so
we omit TAGI in subsequent plots. Similarly, the per-
formance of LIST and SKETCH are similar, with LIST
having a smaller variance, but we omit LIST since it is
infeasible in practice, except for very small sets.

Figure 4 shows the effect of node losses. The gen-
eral trends here look similar to link loss plots in Fig-
ure 3, but the average counts reported drop off faster,
while the average relative error grows more slowly. In-
tuitively, a major difference here for the LIST and
SKETCH strategies is that a value can be “lost” if just
the node fails, while all of the links to parents must fail
to achieve the same loss.

Figures 5 and 6 show the results of using the ran-
dom grid placements and sum sketches, respectively.
The communication range was increased to 2v/2 for
the random grid placements, to improve connectivity
in areas which randomly received fewer sensors, but
it also increases the average number of parents and
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the performance of our scheme. Using sum sketches,
each node chose an integer value uniformly at ran-
dom from the range [0, 100], so the expected sum was
50 % 900 = 45,000. The basic trends in both figures
were essentially the same as when just loss rates were
varied. Results for AVG aggregates, combining sum-
mation and count sketches, were essentially the same
as for SUM and were omitted due to space limitations.

Figure 7 shows the results of our final experiments
adjusting the size of the network. Here, the diameter of
the network is varied while preserving the grid shape,
so a network of diameter d has d? nodes laid out on a
d x d grid. Despite the loss rate being held constant,
the TAG strategies perform increasingly poorly as the
network size increases. Meanwhile, the SKETCH strat-
egy maintains an almost constant average relative error
around 13 percent, though it seems slightly higher for
the larger network sizes (14 percent).

6 Conclusions and Future Work

In this work, we presented a new framework for ef-
ficient and robust aggregation of data in sensor net-
works using duplicate insensitive sketches. This frame-
work handles not only the many well known count-
ing sketches, but also our new summation sketches and
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their derivatives, and any other duplicate insensitive
sketches which may arise. We then experimentally
demonstrated the dramatically improved robustness of
this approach over previous ones, and quantified the
moderate overheads involved.

We note that the implications of these results reach
beyond just sensor networks. For example, these tech-
niques are just as applicable to peer-to-peer networks.
In such a setting, nodes tend to have more resources
and network behavior may be more predictable, but
there is still a significant element of “node failures”
from the frequent arrivals and departures seen in such
networks. Our results can be applied to any unreliable
system with a distributed data set over which best ef-
fort aggregate queries are posed.
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