Internet Path-Quality Monitoring in the Presence of Adversaries

Sharon Goldberg

David Xiao, Eran Tromer, Boaz Barak, Jennifer Rexford

Princeton University

Excerpts of talks that have been presented in seminars at Penn State University, IBM Research, Cisco, Ben Gurion University, and the Weizmann Institute.

Internet 101

Packets routed from Alice to Bob via a path of intermediate routers

- Congestion (random packet dropping) and reordering

Applications of path-quality monitoring

Routers need tools to detect unacceptably high packet loss rates.

Performance Routing

- Balancing loads between multiple paths (e.g. multihomed company sites)
- Quick response for avoiding blackholed routes and brownouts
- Avoiding "suspicious" paths (e.g. that drop Skype pkts, or corrupt traffic)

SLA compliance monitoring

• e.g. Cisco IP SLA's – detects end-to-end performance degradation 3/19

The presence of adversaries

This talk

- 1. Overview $\sqrt{}$
- 2. Defining secure PQM
- 3. Secure Sketch PQM
- 4. PQM and the adversarial sketch model
- 5. Public-Key / Client-Server PQM protocols
- 6. Conclusion

Formal Definition of PQM (1)

Formal Definition of PQM (2)

Overview of (some of) our results

Secure path quality monitoring (PQM)

With probability $1 - \delta = 99\%$,

- Alice **alarms** if packet loss rate exceeds **β** regardless of Eve's actions
- Alice will not alarm if packet loss rate is less than α in benign case

T > some function of α, β

Main result: For every α <β <1 and courity parameter k there exists a PQM protocol with O(k+log(T)) communication and storage, one hash computation / packet and no packet marking.

Simulations

$$\alpha = 0.5\% \beta = 1\%$$

 \downarrow
storage = 170 bytes
T = 10⁶ packets

This talk

- 1. Overview $\sqrt{}$
- 2. Defining secure PQM $\sqrt{}$
- 3. Secure Sketch PQM
- 4. PQM and the adversarial sketch model
- 5. Public-Key / Client-Server PQM protocols
- 6. Conclusion

Background: Secure PQM

Secure Sketch PQM: The Protocol

Hash each packet $f_k(d) = index$, bit Update sketch A[index] += bit Hash each packet $f_k(d) = index$, bit Update sketch B[index] += bit

Secure Sketch PQM: The Protocol

Secure Sketch PQM: The Protocol

Secure Sketch PQM: Analysis

I'll show the proof for PQM using classic *l*₂-norm sketches [AMS96] [Ach01]

Secure Sketch PQM: The "Classic" Version

Analysis with "classic" sketching (1)

Analysis with "classic" sketching (2)

If we used a good ℓ_1 norm estimation sketch, we'd be done. But we use (more efficient) ℓ_2 norm estimation

Analysis with "classic" sketching (3)

Benign case:

- no adds → v_B subset v_A
- **v_A v_B** is {0, 1} vector
- $\ell_1 = \ell_2^2$ for {0, 1} vectors
- ℓ_{2^2} sketch estimates #drops

Malicious case:

- can have duplicate adds
- **v_A v_B** is {0, 1, -1,-2,...} vector
- $\ell_1 \leq \ell_{2^2}$ (= unique adds)
- *ℓ*₂² sketch (overestimates) #drops
- duplicates increase Pr[alarm]

Analysis with "classic" sketching (4)

"JL-Theorem" [Ach01]: For any (long) vector v and random {-1,1}-matrix mapping v to N dimensions, then w.p. exp(-O(Nε²))

(1- ϵ) $||v||_2^2 < ||Rv||_2^2 / N < (1+\epsilon) ||v||_2^2$

Corollary: For error δ take a sketch of size N=O(log(1/ δ)1/ ϵ^2)

PQM Decision Rule: To decide between drop rate < α and > β =2 α with confidence 1- δ alarm iff

 $||\mathbf{R}(\mathbf{v}_{\mathsf{A}}-\mathbf{v}_{\mathsf{B}})||_{2}^{2} / \mathbf{N} > 2\alpha\beta/(\alpha+\beta) \mathbf{T}$

and use sketch length N = O(log(1/ δ) (β + α)²/(β - α)²)

Secure Sketch PQM: Analysis with CCF

Analysis
 Simulations

$$\alpha = 0.5\%$$
 $\delta = 1\%$
 \downarrow
 \downarrow

 N = 300 T = 10⁹
 N = 150 T ≥ 10⁶

Simulations with CCF (1)

Recall that $||\mathbf{R}(\mathbf{v}_{A}-\mathbf{v}_{B})||_{2} = ||\mathbf{A}-\mathbf{B}||_{2} \ge \text{drops} + \text{adds}$

Simulations with CCF (2)

Secure Sketch PQM Summary

- Low storage overhead
 - Low communication overhead
 - **1** report packet / **T** regular packets
 - Report contains sketch and authenticator

Sketch Size Т 170 bytes 106 200 bytes 107 10⁸ 235 bytes 270 bytes 10⁹

- No packet marking
 - Protocol is backward compatible.
 - Can be implemented off the fast path of the router
- One cryptographic hash computation per packet
 - Online setting so we can use fast hash functions
 - Even universal hash functions work!
 - High-throughput
 - Do not modify packets, so can compute hash after packet sent
- Shared keys at Alice and Bob
 - Can be derived from public key infrastructure via key exchange

Secure Sketch PQM Summary

- Low storage overhead
 - Low communication overhead
 - **1** report packet / **T** regular packets
 - Report contains sketch and authenticator
- **Sketch Size** 170 bytes 106 107 200 bytes 10⁸ 235 bytes 10⁹ 270 bytes

- No packet marking
 - Protocol is backward compatible.
 - Can be implemented off the fast path

No information leaked until the report released, and by then the key is refreshed

- One cryptographic hash computation per pack
 - Online setting so we can use fast hash fv/ ations
 - Even universal hash functions work
 - High-throughput
 - Do not modify packets, so can compute hash after packet sent
 - Shared keys at Alice and Bob

Thm [GXTBR08]: Any secure PQM protocol robust to adversarial nodes on the path that can **add/drop** packets, needs a key infrastructure and crypto.

This talk

- 1. Overview $\sqrt{}$
- 2. Secure Sketch PQM $\sqrt{}$

3. Public-Key / Client-Server PQM protocol

- 4. PQM and the adversarial sketch model
- 5. Conclusion

A Public-Key / Client-Server PQM Protocol (1)

Solution: Bob uses a temporary key (**salt**) that is revealed after use Run a **secure sampling** protocol using the salt

A Public-Key / Client-Server PQM Protocol (2a)

Receiver can respond to many senders with same salt and PK

A Public-Key / Client-Server PQM Protocol (2b)

Receiver can respond to many senders with same salt and PK

Client-Server Secure Sampling

Sampling rate is pq

This talk

- 1. Overview $\sqrt{}$
- 2. Secure Sketch PQM $\sqrt{}$
- 3. Public-Key / Client-Server PQM protocol $\sqrt{}$
- 4. PQM and the adversarial sketch model
- 5. Conclusion

The Adversarial Sketch Model [MNS08]

| Alice Sketch | x | Bob Sketch | = O(|size of sets|)

Via reduction to equality testing in simultaneous communication model [BK97]

Symmetric-key PQM in Adversarial Sketch Model

Public-key PQM in Adversarial Sketch Model

Lower bound for norm of symmetric difference

| Alice Sketch | x | Bob Sketch | = O(|size of sets|) =O(T)

Via reduction to equality testing in simultaneous communication model [BK97]

Conclusions

Sometimes we don't have to give up security for the sake of efficiency

- 1. .Efficient and secure path-quality monitoring is possible
 - Combining cryptography and sketching
 - □ Can monitor billions of packets using ~200 bytes of storage
 - No packet marking
 - □ Can use faster (and weaker) hash functions
- 2. PQM can be seen as an application of adversarial sketch model
 - □ And, sadly, sometimes subject to same lower bounds

[Goldberg, Xiao, Tromer, Barak, Rexford, "Path-Quality Monitoring in the Presence of Adversaries", to appear at SIGMETRICS 2008.]

www.princeton.edu/~goldbe

Secure PQM needs keys

Our protocol requires a key infrastructure between Alice and Bob.

Thm: Any secure PQM protocol that is robust adversaries on the path that can add and drop packets requires a key infrastructure.

<u>Proof:</u> (In the contrapositive)

Assume Alice and Bob **do not** have a shared key

- All the packets that Alice sends to Bob pass thru Eve
- Then Eve knows everything Bob knows
- Eve drops all packets
- Eve impersonates Bob's reverse path messages (e.g. report)
- Alice won't detect packet loss, so Eve breaks security.

Secure PQM needs crypto (1)

Our protocol requires a key infrastructure between Alice and Bob.

Thm: Any secure PQM protocol that is robust adversaries on the path that can add/drop packets must invoke cryptographic operations.

Proof: (By **reduction** to keyed identification schemes (KIS))

Secure PQM needs crypto (2)

Our protocol requires a key infrastructure between Alice and Bob.

Thm: Any secure PQM protocol that is robust adversaries on the path that can add/drop packets must invoke cryptographic operations.

Proof: (By **reduction** to keyed identification schemes (KIS))

Secure PQM needs crypto (3)

Our protocol requires a key infrastructure between Alice and Bob.

Thm: Any secure PQM protocol that is robust adversaries on the path that can add/drop packets must invoke cryptographic operations.

Proof: (By **reduction** to keyed identification schemes (KIS))

Challenge: Traffic that Alice sends on the forward path

Response: Reverse path messages, *i.e.* report.

Alarm if report is invalid.

Secure PQM needs crypto (4)

Our protocol requires a key infrastructure between Alice and Bob.

Thm: Any secure PQM protocol that is robust adversaries on the path that can add/drop packets must invoke cryptographic operations.

Proof: (By **reduction** to keyed identification schemes (KIS))

KIS are at least as computationally complex as symmetric cryptographic primitives (e.g. encryption, MAC)
→ Secure PQM needs crypto