Encryption at the Speed of Light?

Towards a cryptanalysis of an optical CDMA encryption scheme

Sharon Goldberg* Ron Menendez**, Paul R. Prucnal*
*Princeton University, "Telcordia Technologies

IPAM Workshop on Special purpose hardware for cryptography
Los Angeles, December 5, 2006

Optical Encryption?

Optical signals are analog signals at frequencies in the THz

Not feasible to measure all high frequency parts of optical signal
Key ideas behind optical encryption:

- Assume a realistic adversary that cannot measure all the high frequency portion of an optical signal.
- Hide information in the optical signal using secret key and noise

much interest in the optics community
- The hope: extremely fast encryption

Today we begin to cryptanalyse a variant of the promising optical encryption system of [Menendez, et.al., Oct. 2005]
...and we show situations where we learn key with 2 known plaintexts

Why use optical encryption? (1)

Electronic stream ciphers
rate of keystream = rate of data stream

Why use optical encryption? (2)

The holy grail:

Encryption with data rates FASTER than crypto operation rates rate of keystream << rate of data stream

Use properties of optical signals to do more than an electronic one-time-pad

Encryption with optical CDMA

Over 10 years of research by the optics community:
[Tancevski and Andonovic, Elec. Lett., 1994]
"... suitable for truly asynchronous highly secure LAN applications..."

DARPA Optical CDMA program (2002-Today):

"The benefits of the program will be optical communications systems with enhanced multi-level security, low probability of intercept, detection and jamming, traits which enhance the reliability and the survivability of military networks."

Some recent (independent) publications:

[TH Shake, J. Lightwave Technology, April 2005]
[R. Menendez et al., J. Lightwave Technology, Oct. 2005]
[F Xue, Y Du, B Yoo, and Z Ding, Optical Fiber Communication Conference, 2006]
[DE Leaird, Z Jiang, AM Weiner, Optical Fiber Communication Conference, 2006]
[BB Wu, EE Narimanov, Optics Express, 2006] \& EE Times \& ScienceDaily \&\&\&\&

Encryption with optical CDMA

Over 10 years of research by the optics community:
[Tancevski and Andonovic, Elec. Lett., 1994]
"... suitable for truly asynchronous highly secure LAN applications..."

[R. Menendez et al., J. Lightwave Technology, Oct. 2005]
[F Xue, Y Du, B Yoo, and Z Ding, Optical Fiber Communication Conference, 2006]
[DE Leaird, Z Jiang, AM Weiner, Optical Fiber Communication Conference, 2006]
[BB Wu, EE Narimanov, Optics Express, 2006] \& EE Times \& ScienceDaily \&\&\&\&

Optics 101

System overview: $1^{\text {st }}$ (bad) attempt

Alice and Bob get a pair of unique codewords
To send a 0 bit: Alice transmits codeword C_{0}
To send a 1 bit: Alice transmits codeword C_{1}
Abstraction
Real World
Amplitude
$C_{0}=\left(\begin{array}{c}1 \\ 1 \\ -1 \\ -1\end{array}\right)$

System overview: $1^{\text {st }}$ (bad) attempt

Bob's (simplified) bit recovery algorithm

Check for a 0 bit:

1. Take dot product with C_{0}
2. Check for pulse of height 4

$$
\text { [1 } \left.1 \begin{array}{ll}
-1 & -1
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
1 \\
-1 \\
-1
\end{array}\right]=4
$$

Check for a 1 bit:

1. Take dot product with C_{1}
2. Check for pulse of height 4

$$
\left[\begin{array}{llll}
1-1 & -1 & 1 & 1
\end{array}\right] \cdot\left[\begin{array}{c}
1 \\
1 \\
-1 \\
-1
\end{array}\right]=0 \quad \text { No Pulse! }
$$

System overview: $1^{\text {st }}$ (bad) attempt

Bob's (simplified) bit recovery algorithm

Check for a 0 bit:

1. Take dot product with C_{0}
2. Check for pulse of height 4

Check for a 1 bit:

1. Take dot product with C_{1}
2. Check for pulse of height 4

System overview: $\mathbf{2}^{\text {nd }}$ (still bad) attempt

Suppose key bits don't change
[TH Shake, April 2005] [DE Leaird, Z Jiang, AM Weiner, 2006]

To secure this system:
Refresh key for each new bit of plaintext

Now it's a one-time pad BUT it's not particularly interesting

Overview of [Menendez2005]'s system

Encoding proceeds in three steps

Overview of [Menendez2005]'s system

Encoding proceeds in three steps
Mapping: Each Alice maps an electronic bit to a unique optical codeword
Combining: Combine the optical signals from each Alice
Scrambling: Phase scrambling according to key is applied

[Menendez2005]'s system: Mapping

Encoder

Decoder

Each Alice-Bob get a pair of unique codewords
To send a 0 bit: Alice1 transmits codeword C_{10} To send a 1 bit: Alice1 transmits codeword C_{11}

[Menendez2005]'s system: Combining

Bob1's bit recovery algorithm

Check for a 0 bit:

1. Take dot product with C_{10}
2. Check for pulse of height 4

Check for a 1 bit:

1. Take dot product with C_{11}
2. Check for pulse of height 4

$$
\left.\left[\begin{array}{lllll}
1 & 1 & 1 & 1
\end{array}\right] \cdot\left(\left[\begin{array}{r}
1 \\
1 \\
-1 \\
-1
\end{array}\right) \cdot+\begin{array}{r}
1 \\
-1 \\
1 \\
-1
\end{array}\right]\right)=0 \quad \begin{aligned}
& \text { No Pulse }
\end{aligned}
$$

This works because we use orthogonal codes (e.g. Hadamard codes)

[Menendez2005]'s system: Combining

Bob1's bit recovery algorithm

This works because we use orthogonal codes (e.g. Hadamard codes)

But the cardinality of orthogonal codes is small (e.g. an orthogonal code of length w has only w codewords)

So Eve can learn plaintext by building her own Bobs

Optics 101

[Menendez2005]'s system: Scrambling

With orthogonal codes we had $\mathrm{O}(\mathrm{w})$ possible codewords (ciphertexts) Adding scrambling gives $\mathbf{O}\left(2^{w}\right)$ possible ciphertexts !

[Menendez2005]'s system: A One-Time-Pad?

It is not trivial! We get extra entropy (in addition to key) from:

- Eve's inability to exactly measure the optical ciphertext
- Continuous random phase noise during the combining '+’ operation

Overview of our results

Folklore: $2^{\text {requencies }}$ brute force operations to tearn key Our result: Need $\mathbf{2}^{\text {Alices }}$ brute force operations to learn the key

Folklore: Only known way to learn is via brute force search Our result: Can learn the key (w.h.p) using only 2 known plaintexts

Our attack: Step 1 - Abstract the encoder

Optics 101

Eve's measurement
$y \in[N,-N]$ Frequencies
Real-valued measure of ciphertext

Our attack: Step 2 - Brute force search space

	$=\underbrace{}_{\text {w Frequencies }} \operatorname{diag}(k)$	$\left(\Theta_{\text {NAlices }}\right.$	
measurement real valued	key discrete from $\{1,-1\}$	$\begin{gathered} \text { plaintext } \\ \text { discrete from }\{1,-1\} \end{gathered}$	phase noise real valued
\checkmark known	? secret	\checkmark known	?unknown

1. Eve (optically) obtains a measurement y and a plaintext Θ
2. Eve has \mathbf{W} equations in $\mathbf{W}+\mathbf{N}$ unknowns

Offline, guess \mathbf{N} key bits
then solve for phase noise vector x then solve for \mathbf{W}-N remaining key elements
3. Repeat step 2 (offline) until learning key

Folklore: $2^{\text {frequencies }}$ brute force operations to learn key Our result: Need $\mathbf{2}^{\text {Alices }}$ brute force operations to learn key

Our attack: Learning the key with 2 known plaintexts

	$(\operatorname{diag}(k))$ W Frequencies	$\underset{\mathrm{N} \text { Alices }}{\left(\Theta^{\top}\right)}$	
measurement real-valued	key discrete from $\{1,-1\}$	plaintext discrete from $\{1,-1\}$	phase noise real-valued
known changes	Secret 'fixed	, known changes	Junknown changes

1. Eve (optically) obtains a 2 measurement-plaintext pairs $\left(y_{1}, \Theta_{1}\right)\left(y_{2}, \Theta_{2}\right)$
2. Eve has $2 \mathbf{W}$ equations in $\mathbf{W}+2 \mathbf{N}$ unknowns where $\mathbf{2 N} \leq \mathbf{W}$ Offline solve the equations for the key \mathbf{k}.

What is dimension of solution space for this system of equations?

If dimension N , there are 2^{N} solutions and Eve learns nothing. If there is a unique solution, Eve has learned the key

Our attack: Learning the key with 2 known plaintexts

What is dimension of solution space for this system of equations?

If there is a unique solution, Eve has learned the key

For a system using Hadamard codes (e.g. [Menendez2005]) with 2N=W

gets 2 plaintexts Θ_{1}, Θ_{2} chosen at random and 2 noise-free measurements

Theorem: If either known plaintext represents an odd number of ' 0 ' bits then there is a unique solution.
\Rightarrow at least 75% of plaintext pairs give a unique solution

Folklore: Only known way to learn key is via brute force search Our result: Can learn the key (w.h.p.) using only 2 known plaintexts

Conclusion and Open Problems

The promise of optical encryption

- Limited measurement capabilities of adversary
- Extra entropy from noise
- Encryption faster than data rates

Known plaintext attacks on [Menendez 2005]

- If Eve can make noise-free measurements then:

Security depends on parallelism, not coding complexity
2 known plaintexts break system when Alices' codewords known

- Future: Attacks with noisy measurements

Some Open Problems:

- Cryptanalysis of Wu and Narimanov's scheme
- Extending bounded storage model to this setting
- Positive results for optical encryption!

Thanks:

Ron Menendez
Paul Prucnal

Boaz Barak

Jennifer Rexford
Moses Charikar
Eugene Brevdo

Parts of this work were supported by DARPA

