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APPENDIX A
INTERVAL SYNCHRONIZATION

In our secure sketch PQM protocol (Section III-B), the
‘Interval End’ and ‘Report’ control messages can be used
to synchronize the interval number between Alice and Bob,
even if the path between them is subject to variable latency.
However, even in the benign case, out-of-order packet delivery
at the network layer can cause packets in an interval u to arrive
after the ‘Interval End’ message u (and thus be interpreted by
Bob as part of interval u + 1). Note that out-of-order packet
delivery could also occur if Eve deliberately delays packets.
To avoid false alarms due to more than αT packets arriving
out-of-order before the ‘Interval End’ control message, we can
tune parameter α.

To ensure natural packet reordering does not cause a loss
of interval synchronization between the sender and receiver, a
good rule of thumb is to ensure that αT ≥ 99th percentile of
packet lag. Define the packet lag as the number of packets
that were sent by the sender after a reordered packet, but
were received at the receiver earlier than the reordered packet
itself (e.g., if a sender sends the stream 1,2,3,4,5,6,7,8 but
the received stream is 1,2,4,5,6,7,3,8, then packet 3 is the
reordered packet and packet lag is 4). The value of the packet
lag depends on the the class of packets monitored by the PQM
protocol. If the packets belong to the same network flow, we
can safely assume that packet lag is less than 128 packets,
because this is the assumption made in IPSec. Thus, it suffices
to take αT > 1280. In cases when multiple network flows are
monitored with the same PQM instance, then packet lag can
be very high (due to load balancing, ECMP, etc.); however, we
conjecture that even if there is a 10ms difference between the
“fast path” used by one group of flows and the “slow path”
used by another group of flows, for 1 Gbps flow of traffic,
packet lag should be on the order of 109 bps/64 bytes/packet
×0.01 sec = 1.6×105 packets, so we can use αT > 1.6×106.

APPENDIX B
FAST PACKET HASHING

Section III-F indicated that the computational cost of packet
hashing can be reduced by (1) first mapping packets from from
U to a short n1-bit string using an efficient εg-almost universal
hash function, and (2) then using a PRF or 4-wise independent
hash to map from this n1-bit string to the sketch. We show
this is possible via approaches based on [47].
Preliminaries. Return to the notation of Section III-C, and
recall that U is the universe of all possible packets, v is the
characteristic vector of the stream of packets, and w is the
sketch vector of length N . Let g : U → {0, 1}n1 be an εg-
almost universal hash function, as defined in Section III-F. The
hash function g maps the packet stream containing elements
in U to a new ‘intermediate’ stream where each element is an
n1-bit string. Let u be an ‘intermediate vector’ which is the
characteristic vector of this new stream of n1-bit strings.

Our approach amounts to using the εg-almost universal
hash g to hash v the ‘intermediate vector’ u, and then using
a a second-moment estimation scheme to hash u down to
the sketch w. Thus, the second-moment estimation scheme

estimates the second moment of u, rather than the real
characteristic vector v! We now show that, if εg is sufficiently
small, this does very little damage, since ‖u‖

2
≈ ‖v‖

2
.

Theorem B.1. Given a vector v ∈ 2|U | and u ∈ R2n1 . Then
if g : U → {0, 1}n is an εg-almost 2-wise independent hash
function per equation (14), is used to map v to u according to
the algorithm ug(x)+ = vx (i.e., ∀ x ∈ v the g(x)th counter
in u is incremented with value vx) then

Pr [| ‖u‖2 − ‖v‖2 | > δ1‖v‖2 ] < δ2 (18)

as long as |v|1 > δ1δ2
εg

.

To apply this theorem, recall from Section III-C that |v|
1

=
A+D. Thus, for (α, β, δ)-secure PQM we would like (18) to
hold when D = αT and D = βT , with δ1 � ε = β−α

α+β . We
will conservatively take |v|

1
= T , and δ1 = ε

10 and set δ2 =
δ

100 . Then (α, β, δ)-secure PQM require the hash function g

to have εg as in (15) because εg < εδ
103T = δ

103T
β−α
α+β .

Proof of Theorem B.1. Let va be the ath entry of characteris-
tic vector v. Now, start with the observation that

‖u‖2
2

=
∑

g(a)=g(b)

vavb

=
∑
a

v2a +
∑

a6=b,g(a)=g(b)

vavb

= ‖v‖2
2

+
∑
a6=b

vavbYa,b (19)

where we define the random variable Ya,b as

Ya,b =

{
1 if g(a) = g(b), a 6= b,
0 else.

and from (19) we take the expectation over the randomness in
g and find that

E[ | ‖u‖2
2
− ‖v‖2

2
| ] ≤

∑
a,b

|vavb|E[|Ya,b|]

≤
∑
a,b

|vavb| · εg

= (|v|2
1
− ‖v‖2

2
) · εg (20)

where the first inequality follows from (19), the second
inequality follows because per equation (14) the collision
probability of g is εg .

Now, we would like to ensure that ‖u‖
2

provides a good
estimate of ‖v‖

2
. That is, we would like to satisfy (18). Using

Markov’s inequality, we have

Pr
[∣∣‖u‖2

2
− ‖v‖2

2

∣∣ > δ1‖v‖22
]
≤

E[ | ‖u‖2
2
− ‖v‖2

2
| ]

δ‖v2‖
2

≤
(|v|2

1
− ‖v‖2

2
)

‖v‖2
2

εg
δ1

(From (20))

≤ |v|1
εg
δ1

And rearranging the last inequality we know that (18) holds
as long as |v|1 > δ1δ2

εg
which completes the proof.
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APPENDIX C
PROOF OF THEOREM V.1

First, the probability that any efficient adversary Eve suc-
cessfully forges the interval end message or onion report of
an honest node (by forging the MAC) is negligible. We argue
that Eve does not tamper with the control messages:

Claim C.1. If Eve tampers with the ‘Interval End’ message or
any θi in the ‘Onion Report’ message, then Alice will localize
a node adjacent to Eve.

Proof. Let RE be the upstream-most node where Eve tam-
pered with either the ‘Interval End’ message or the ‘Onion
Report’. Let Rj be the first honest node that is downstream
of node RE (we know such a node exists because Eve
cannot occupy Bob’s node). Since all the R1, ..., RE−1 behave
honestly, their all reports θ1, ..., θE−1 will be present and valid.
Also, conditioned on Eve not forging Rj’s MAC, θj will either
be invalid (e.g., if Eve tampered with some θ` for ` > j,
since θ` is nested inside θj) or missing (e.g., if Eve dropped
the ‘Interval End’ message). It follows that the upstream-most
invalid report θx occurs on some link between RE−1 and Rj ,
so that Alice will output a link adjacent to Eve.

We may now suppose that Alice receives correct reports
from all honest nodes. We next present some notation.

Notation. Let Di be a count of the number of failures that
occurred on the path between Alice and Ri. Let vA be the
characteristic vector of the stream of packets that Alice sends
and let vi for i ∈ [K + 1] be the characteristic vector of the
stream of data packets that Ri receives. Let xi = vA − vi.
As in equation (3), we can decompose xi into two vectors
xi = di + ai, where di is the characteristic vector of packets
dropped on the path from Alice to Ri, and contains the non-
negative components of xi. The vector a is the characteristic
vector of packets added on the path from Alice to Ri, and
contains the non-positive components of xi.

The following lemma, proved in Appendix C-A of [25],
proves the “few false positives” and “secure localization”
conditions of Definition IV.1:

Lemma C.2. Let Γ = T
K+1

β(2α+β)
α+2β and εi = 1

2i
β−α
2β+α . For

every i ∈ [K], assume that Ri computes an estimate Vi that
(εi, δ

′)-estimates ‖xi‖22 . Suppose also that ‖xi‖22 ≤
βi
K+1 .

Then with probability at least 1− 2δ′ it follows that:

1) If “link (i, i + 1) is good” so that ‖xi+1‖22 − ‖xi‖
2
2
≤

α
K+1T then Vi+1 − Vi ≤ Γ.

2) If “link (i, i + 1) is bad” so that ‖xi+1‖22 − ‖xi‖
2
2
≥

β
K+1T then Vi+1 − Vi ≥ Γ.

Few false positives: To prove this, we consider an interval
where all the nodes on the path behave honestly. During this
interval, we know that no packets were added anywhere on
the path (so that ‖ai‖22 = 0 for each i ∈ [K + 1]) and less
than α

K+1 packets were dropped at each link. We can apply
equation (3) to find that for each link (i, i+ 1) we have

‖xi+1‖22 − ‖xi‖
2
2

= (Di+1 + 0)− (Di + 0) ≤ α
K+1 (21)

and the telescoping nature of (21) gives us that

‖xi‖22 = (‖xi‖22−‖xi−1‖
2
2
)+...+(‖x2‖22−‖x1‖22)+‖x1‖22 ≤

αi
K+1

(22)
We can now apply Lemma C.2 to show that, with probability
at least 1 − 2δ′ we have that Vi+1 − Vi ≤ Γ so that Alice
will not output link (i, i+ 1). A union bound over the K + 1
links gives us that Alice will output

√
during this interval

with probability at least 1− 2(K + 1)δ′.

Secure localization: We now show that if Eve causes
more than a β fraction of failures in the interval, then with
probability at least 1−δ, Alice will either catch Eve or output
a link with more than α

K+1 failures. Recall that Alice outputs
the upstream-most link ` = (i, i + 1) for which there is an
“alarm”, i.e., where Vi+1 − Vi ≥ Γ. We need the following
simple observation:

Lemma C.3. Define event Ei as the event that ‖xi‖22 ≤
βi
K+1

.For each i ∈ [K+1], if Alice does not raise an alarm for any
link upstream of link i, then Ei holds with probability 1−2iδ′.

Proof. Suppose that Alice does not raise an alarm for all links
upstream of node Ri. Lemma C.2 implies that ‖xj+1‖22 −
‖xj‖22 ≤

β
K+1 with probability 1−2δ′, for each link (j, j+1)

where j ∈ [i − 1]. The lemma follows from a union bound
over these links and a telescoping sum as in (22).

First we show that the with high probability Alice will not
output an honest link. Let link (i, i+1) be “honest”, i.e., have
a fewer than α

K+1 failures, and assume that Alice does not
raise alarm for any links upstream of Ri. Now, Lemma C.2
shows that, conditioned on Ei, Alice will not raise an alarm
for link (i, i+ 1) with probability at least 1−2δ′. Since Alice
does not alarm for any links upstream of Ri, we can apply
Lemma C.3 to remove the conditioning on Ei. It follows that
Alice will not output honest link (i, i + 1) with probability
at least 1− 2(i+ 1)δ′. Taking a union bound over all honest
links gives that Alice will not alarm for any honest link with
probability at least 1 − 2(K + 1)2δ′. Next, we need to show
that Alice either will raise an alarm for a link adjacent to Eve
or link with more than α

K+1 failures. The proof hinges on the
following technical lemma, proved in Appendix C-B of our
technical report [25]:

Lemma C.4. If Eve occupies M ≤
√

(K + 1)(1− ρ
βK

2)

links and causes a β-fraction of failures in the interval, then
there must be a link (i, i+ 1) that is adjacent to Eve with

‖xi+1‖22 − ‖xi‖
2
2
≥ β

K+1T (23)

Now let link (i, i + 1) be the upstream-most link that is
adjacent to Eve such that (23) holds. (Lemma C.4 guarantees
the existence of such a link.) We have two cases:

1. Suppose Alice did not raise an alarm for a link upstream
of Ri. Combining Lemma C.3 and Lemma C.2 it follows
that Alice will alarm for link (i, i + 1) adjacent to Eve with
probability 1− 2(i+ 1)δ′.

2. Suppose Alice did raise an alarm for a link upstream of Ri.
It follows from Lemma C.2 that there is some link (j, j + 1)
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for j ≤ [i− 1] where, with probability 1− 2δ′,

α
K+1 ≤ ‖xj+1‖22 − ‖xj‖

2
2

= Dj+1 −Dj + ‖aj+1‖22 − ‖aj‖
2
2

where the equality comes from applying equation (3). Now if
link (j, j + 1) is adjacent to Eve, it follows that Alice alarms
for a link adjacent to Eve, and we are done. Thus, suppose
that link (j, j+1) is not adjacent to Eve. Then, it follows that
no new packets could have been added to this link, and so
we have that ‖aj+1‖22 = ‖aj‖22 . Thus, if link (j, j + 1) is not
adjacent to Eve, then Alice must have raised an alarm for a
link with Dj+1 −Dj ≥ α

K+1 failures, as required.
Combining these cases, we see that with probability at least

1 − 2(K + 1)δ′, Alice will either raise an alarm for a link
that is either (a) adjacent to Eve, or (b) has more than α

K+1
failures, as required.

Sizing the sketches. To ensure that (α, β, δ)-statistical security
holds, we take δ′ = δ/4(K+1)2. Next, recall that Lemma C.2
requires sketches that (εi, δ

′)-estimate the pth moment with
εi = 1

2i
β−α
2β+α . For simplicity, we now suppose that the sketches

are constructed using 4-wise independent hashing functions, so
we plug εi, δ in Theorem III.1 to find that for i ∈ [K + 1]
it suffices to take sketches wi, wA

i of with Ni > 2
ε2i δ

, where
the number of bits per counter is as in (6). Substituting in the
values for εi, δ′ gives us (17) as required.

A. Proof of Lemma C.2

From the statement of the lemma, we have that Ri computes
an estimate Vi that (εi, δ

′)-estimates ‖xi‖22 for every i ∈ [K].
That is:

Pr
[∣∣Vi − ‖xi‖22 ∣∣ ≤ εi‖xi‖22] < 1− δ′ (24)

We now prove each item separately.

Link (i, i+ 1) is good. Since Vi (εi, δi)-approximates ‖xi‖22 ,
we can apply (24) to find, that with probability 1− 2δ′,

Vi+1 − Vi ≤ (1 + εi+1)‖xi+1‖22 + (1− εi)‖xi‖22
≤ (1 + εi+1)(‖xi+1‖22 − ‖xi‖

2
2
) + (εi+1 + εi)‖xi‖22

≤ (1 + εi+1) α
K+1T + (εi+1 + εi)

iβ
K+1T

= α
K+1T

(
1 + εi+1(1 + β

α i) + εii
β
α

)
≤ α

K+1T
(

1 + (i+ 1)εi+1(1 + β
α ) + iεi(1 + β

α )
)

= T
K+1

β(2α+β)
α+2β = Γ (25)

where we get the required inequality by putting εi = 1
2i

β−α
2β+α .

Link (i, i+ 1) is bad. Again, we apply (24) to find, that with
probability 1− 2δ′,

Vi+1 − Vi ≥ (1− εi+1)(‖xi+1‖22 − ‖xi‖
2
2
)− (εi+1 + εi)‖xi‖22

≥ (1− εi+1) β
K+1T − (εi+1 + εi)

iβ
K+1T

= T
K+1

β(2α+β)
α+2β = Γ (26)

where we again get the required inequality by putting εi =
1
2i

β−α
2β+α .

B. Proof of Lemma C.4

Since Eve occupies M links and causes at least a β-fraction
failures, it immediately follows that there exists a link (i, i+1)
adjacent to Eve where at least β

M -fraction of failures, i.e.,
Di+1 −Di ≥ β

M . Now if the following holds

‖xi+1‖22 − ‖xi‖
2
2
> β

K+1T (27)

we are done, since link (i, i + 1) is adjacent to Eve. Thus,
suppose (27) do not hold. Then, applying identity (3), we have
that

β
K+1T ≥ ‖xi+1‖22 − ‖xi‖

2
2

= Di+1 −Di + ‖ai+1‖22 − ‖ai‖
2
2

rearranging and then using that fact that Di+1 −Di ≥ β
M we

get

‖ai‖22 ≥= βT ( 1
M −

1
K+1 ) (28)

Next, consider the next link (j, j+1) that is occupied by Eve
and is upstream of link (i, i+ 1). Now again, if the following
holds

‖xj+1‖22 − ‖xj‖
2
2
> β

K+1T (29)

then we are done, since link (j, j + 1) is adjacent to Eve.
So, we again suppose (29) does not hold. Since Eve does not
occupy any links between Rj+1 and Ri, and only congestion-
related loss could have occurred on the links between Rj+1

and Ri. It follows that ‖xj+1‖22 ≥ ‖xi‖
2
2

+ρ(i− j−1). Since
(29) does not hold, we can apply identity (3) and the fact that
‖xj+1‖22 ≥ ‖xi‖

2
2

+ ρ(i− j − 1) ≥ ‖ai‖22 + ρ(i− j − 1) and
the bound on ‖ai‖22 in (28) to get

‖xj‖22 > βT
(

1
M −

2
K+1 −

ρ
β (i− j − 1)

)
We continue this argument for all m ≤ M − 1 links that

are adjacent to Eve and upstream of link (i, i + 1). Finally,
arriving at the last such link, which we call link (e, e+ 1), we
have

‖xe+1‖22 > βT
(

1
M −

m
K+1 −

ρ
β (i− e− 1)

)
> βT

(
1
M −

M−1
K+1 −

ρ
βK
)

where the last inequality follows by putting m ≤M − 1 and
i− e ≤ K. Now since by definition Eve does not occupy any
links downstream of link (e, e+ 1), we immediately have that
‖xe‖22 = 0. It follows that link (e, e+ 1) has

‖xe+1‖22 − ‖xe‖
2
2
> βT ( 1

M −
M−1
K+1 −

ρ
βK) > β

K+1

where the last inequality follows because we put M ≤√
(K + 1)(1− ρ

βK
2). This concludes the proof of this

lemma, since link (e, e+ 1) is adjacent to Eve.
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APPENDIX D
SKETCHING WITH PRFS

We now prove Theorem III.2. To do this, we first prove Theorem D.1, and then show how to derive Theorem III.2 from
Theorem D.1. Recall from Section III-D that S is the set of N × |U | matrices where each column contains a single ±1 entry
in one row, and zeros in all other rows.

Theorem D.1. For any vector v ∈ ZU , choosing the N × U matrix S uniformly from S and setting w = Sv, we have that
for all ε ∈ [0, 1) and all q, r > N

1) If v ∈ {−1, 0, 1}U , and ‖v‖2
2
≤ q, then for η ∈ [0, 12

√
ε2 + 10ε+ 9− 1

2 (ε+ 3)) and y .
= (1+ε)(1−η)

(1+η)2 − 1 :

Pr
[
‖w‖2

2
> (1 + ε)q

]
≤ 2Ne−

η2q
3N + e−

N
2 (y2/2−y3/3) (30)

2) If the number of non-zero entries in v is r, then for η ∈
(

0, 1
2−ε (3− 2ε−

√
5ε2 − 14ε+ 9)

)
and y .

= (1−η)2
1+η (1− ε

2 )−
(1− ε) it follows that

Pr
[
‖w‖2

2
< (1− ε)r

]
≤ 2Ne−

η2r
3N + e

−N ε
3(1+η)y (31)

Proof of Theorem D.1. Our main observation is that, with high probability, the ±1 entries of v are distributed evenly among
the coordinates of w. Conditioned on this happening, we can then apply the analysis of [1].
Definitions. We need the following definitions.
• We write vx for the xth element in v.
• Define for i ∈ [N ] the set Qi = {x ∈ U | h(x) = i} where h is the pseudorandom hash function.
• Define Di as the number of non-zero entries in v that hash to the ith bin the sketch w. That is Di = |{vx|vx 6= 0, x ∈ Qi}|.
• Define Yx as an unbiased ±1 random variable for each x ∈ U .

Our proof proceeds as follows. We first obtain a bound on Di for each i. (Note: This bound on Di gives rise to the awkward
bound on T in Theorem III.2 of Section III-D.) When then use the bounds on Di to prove the first item (30), and then use
them to prove the second item (31).
Bounding Di. Let Ei denote the event that ∃i ∈ [N ] such that Di > (1 + η)q/N or Di < (1− η)q/N . Then, for η ∈ [0, 1),
we have that

Pr[E1] ≤ N
(
Pr[Di > (1 + η) qN ] + Pr[Di < (1− η) qN ]

)
≤ N

(
e−

η2

3
q
N + e−

η2

2
q
N

)
(32)

which is a straightforward application of a union bound followed by the Chernoff bound.6

Bounding the first item. Now we condition on ¬E1. Let γ = 1+ε
(1+η)2 and write:

Pr[‖w‖2
2
> (1 + ε)q | ¬E1] = Pr[

N∑
i=1

D2
i

 1
Di

∑
x∈Qi

Yxvx

2

> (1 + ε)q | ¬E1]

= Pr[

N∑
i=1

 1
Di

∑
x∈Qi

Yxvx

2

> γN
2

q | ¬E1]

where first equality comes from expanding w as Sv and then multiplying by Di

Di
, and the second equality follows from the fact

that conditioning on ¬Ei implies that Di ≤ (1+η)q/N . Next, set Yi to be the vector of all Yx for each vx ∈ {−1, 1}, x ∈ Qi.
Set ui the vector with entries vx√

Di
for each vx ∈ {−1, 1}, x ∈ Qi. Notice that both Yi and ui have length Di, and ‖ui‖22 = 1

so ui is a unit vector. Now we write

= Pr[e
t
∑N

i=1〈
Yi√
Di

,ui〉2
> e

tγ
N2

q | ¬E1]

≤ e−tγ
N2

q

N∏
i=1

E[e
t〈 Yi√

Di
,ui〉2 | ¬E1]

6We use the following Chernoff bounds. Let Xi be i.i.d indicator variables with mean µ, and let

Pr

[
n∑
i=1

Xi ≤ (1− γ)Nµ

]
≤ e−γ

2Nµ/C1

Pr

[
n∑
i=1

Xi ≥ (1 + γ)Nµ

]
≤ e−γ

2Nµ/C2

If 0 < γ < 1 then [5, Fact 4] gives C1 = 2 and C2 = 3. If 0 < γ < 1
2

then [2, Thm. 19] gives C1 = C2 = 2 ln 2.
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where the inequality follows from the Markov bound. Now we are ready to apply the result of [1]. We restate equation (2)
and Lemma 5.2 of [1] here, using our own terminology.

Lemma D.2 (From [1]). For t ∈ [0, Di/2], unit vector ui (i.e., ‖ui‖22 = 1) and Yi chosen uniformly from {1,−1}Di we have
that

E[e
t〈 Yi√

Di
,ui〉2

] ≤ 1√
1− 2t/Di

(33)

E[〈 Yi√
Di
,ui〉2] =

1

Di
(34)

E[〈 Yi√
Di
,ui〉4] =

3

D2
i

(35)

Now, using [1]’s result in (33) we write

Pr[‖w‖2
2
> (1 + ε)q | ¬E1] ≤ e−tγ

N2

q

N∏
i=1

E[e
t〈 Yi√

Di
,ui〉2 | ¬E1]

≤ e−tγ
N2

q

N∏
i=1

1√
1− 2t/Di

≤ e−tγ
N2

q (1− 2t
(1−η)q/N )−

N
2
.
= v(t) (36)

where the last inequality (36) follows from conditioning on ¬Ei which implies that (1 − η)q/N < Di for all i ∈ [N ]. Note
that for the result of [1] in (33) to hold, we must have 0 ≤ t < Di/2 ≤ (1+η)q

2N where the last inequality here follows from
the fact that ¬Ei implies that Di < (1 + η)q/N .

Optimizing and bounding t. Next, we optimize v(t) in (36), by finding t such that dv(t)
dt = 0.

dv(t)
dt = −γN

2

q v(t) + (−N2 )(− 2
(1−η)q/N )(1− 2t

(1−η)q/N )−1v(t) = 0

γN2

q (1− 2t
(1−η)q/N ) = N2

(1−η)q

t = q
2N

(
(1− η)− (1+η)2

1+ε

)
(37)

where the last equality uses the fact that γ .
= 1+ε

(1+η)2 . Now recall that for [1]’s result in (33) to hold, we need to ensure that

0 ≤ t < (1+η)q
2N . Using (37), we write

0 ≤ t

0 ≤ q
2N

(
(1− η)− (1+η)2

1+ε

)
(η2+3η)

1−η ≤ ε (38)

and we also need

t < (1+η)q
2N

q
2N

(
(1− η)− (1+η)2

1+ε

)
< (1+η)q

2N

−
(

1 + (1+η)2

2η

)
< ε (39)

Now, (39) holds for any η ∈ [0, 1). But, we will need to ensure that our choice of η ∈ [0, 1) satisfies (38).
Returning now to (36), plug (37) into (36) to get

Pr[‖w‖2
2
> (1 + ε)q | ¬E1] ≤

(
e−y(1 + y)

)N
2 (40)

where we define

y
.
=

(1 + ε)(1− η)

(1 + η)2
− 1 (41)

and solving inequality (38), we find that (40) holds as long as η ∈ [0, 1) satisfies

0 < η < 1
2

(√
ε2 + 10ε+ 9− (ε+ 3)

)
(42)
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Notice from (41) that the bound in (42) this implies that (40) holds for the region y ∈ [0, ε). Now, [1] observes that e−y(1+y) ≤
e(−y

2/2+y3/3) for any y ∈ (0, 1). Since for us y ∈ (0, ε), and ε < 1 we finally have

Pr[‖w‖2
2
> (1 + ε)q | ¬E1] ≤ e−

N
2 (y2/2−y3/3) (43)

which decays exponentially in N .
Bounding the second item. Let r be the number of non-zero entries in v. We will bound Pr[‖w‖2

2
< (1− ε)r]. Define E1 as

before, only this time use r instead of q. Again we condition on ¬E1.

Pr[‖w‖2
2
< (1− ε)r | ¬E1] = Pr[

N∑
i=1

D2
i

 1
Di

∑
x∈Qi

Yxvx

2

< (1− ε)r | ¬E1]

= Pr[

N∑
i=1

 1
Di

∑
x∈Qi

Yxvx

2

< (1−ε)
(1−η)2

N2

r | ¬E1]

where first equality comes from the expanding ‖w‖2
2
and then multiplying by Di

Di
, and the second equality follows from the fact

that conditioning on ¬Ei implies that (1−η)r/N < Di. Next, we let c2i =
∑
x∈Qi

v2x
Di

. Now observe that c2i = 1
Di

∑
x∈Qi

v2x ≥
1
Di
Di = 1 since the entries of v are integers ( and Di is the number of non-zero entries in v that are in Qi). We now multiply

by ci
ci

:

= Pr[

N∑
i=1

c2i

∑
x∈Qi

Yx
vx
Dici

2

< (1−ε)
(1−η)2

N2

r | ¬E1]

≤ Pr[

N∑
i=1

∑
x∈Qi

Yx
vx
Dici

2

< (1−ε)
(1−η)2

N2

r | ¬E1]

where the inequality follows from the fact that c2i ≥ 1. We now set Yi to be the vector of all Yx for each vx 6= 0, x ∈ Qi. Set
ui the vector with entries vx√

Dici
for each vx 6= 0, x ∈ Qi. Notice that both Yi and ui have length Di, and that ui is a unit

vector, since ‖ui‖22 = 1
Dic2i

∑
x∈Qi

vx =
c2i
c2i

= 1. We write

= Pr[

N∑
i=1

〈 Yi√
Di
,ui〉2 < (1−ε)

(1−η)2
N2

r | ¬E1]

≤ et
(1−ε)
(1−η)2

N2

r

N∏
i=1

E[e
−t〈 Yi√

Di
,ui〉2 | ¬E1]

where the first inequality follows from the Markov bound, and we require that t > 0. We now follow that analysis in Achiloptas,
and expand out the quantity inside the expectation to obtain:

≤ et
(1−ε)
(1−η)2

N2

r

N∏
i=1

E[1− t〈 Yi√
Di
,ui〉2 + t2

2 〈
Yi√
Di
,ui〉4 | ¬E1]

Now we can apply Achiloptas’s results from (34) and (35) to obtain:

≤ et
(1−ε)
(1−η)2

N2

r

N∏
i=1

(
1− t

Di
+ t2

2
3
D2

i

)
and conditioning on ¬E1 gives us:

≤ et
(1−ε)
(1−η)2

N2

r
(

1− 1
1+η

tN
r + 3

2(1−η)2 ( tNr )2
)N

For convience, we’ll now let τ = tN
r , and rewrite this as

=

(
e

(1−ε)
(1−η)2 τ

(
1− 1

1+η τ + 3
2(1−η)2 τ

2
))N

.
= ν(τ)N (44)
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Bounding equation (44). We now need to find a choice of τ > 0 that causes (44) to decay with N . It will suffice to find τ
that causes ν(τ) to decay exponentially, i.e., we want ν(τ) ∼ e−χ for some χ > 0. To do this, we start by rewriting ν(τ) in
the following way:

ν(τ) =e
(1−ε)
(1−η)2 τ

(
1− 1

1+η τ ·
(

1− 3
2

(1+η)
(1−η)2 · τ

))
Notice that ν(τ) is the product of a polynomial and exponential with postive argument (that grows). Notice that the only way
we can hope to make ν(τ) decay, is if we require the polynomial to decay. To do this, we need to ensure that the expression
(1− 3

2
(1+η)
(1−η)2 · τ) is positive. Thus, we shall choose τ = ε

2 ( 3
2

(1+η)
(1−η)2 )−1. Subsituting in the value for τ gives us:

= e
1−ε
1+η

ε
3
(

1− ( 1−η
1+η )2 ε3 · (1−

ε
2 )
)

The series expansion of an exponential tell us that for any non-negative x we have the identity 1−x ≤ e−x. Since the quantity
( 1−η
1+η )2 ε3 · (1−

ε
2 ) is non-negative for every ε ∈ (0, 1), we can apply this identity here:

≤ exp
(

1−ε
1+η

ε
3 − ( 1−η

1+η )2 ε3 · (1−
ε
2 )
)

= e
− ε

3(1+η) exp
(

(1−η)2
1+η (1− ε

2 )− (1− ε)
)

(45)

It follows from (45) that proving that ν(τ) decays exponentially amounts to ensuring that

y(η, ε)
.
=

(1− η)2

1 + η
(1− ε

2 )− (1− ε) ≥ 0 (46)

and, recalling that η, ε ∈ (0, 1) some algebraic manipulation finds that (46) holds as long as η ∈ (0, c(ε)), where

c(ε) = 1
2−ε (3− 2ε−

√
5ε2 − 14ε+ 9) (47)

This bound on η, despite being ugly, makes sense. Notice that when ε = 0, we have that η = 0, and when ε = 1, we
have c(ε) = 1 so that η ∈ (0, 1). Also, we observe that y monotonically decreases in η, ranging from y(0, ε) = ε to
y((c(ε), ε) = 0.7 We also observe that y monotonically increase in ε, ranging from y(η, 0) = y(0, 0) = 0 (since η = 0 when
ε = 0), and y(η, 1) = 1

2
(1−η)2
1+η (and η ∈ (0, 1) when ε = 1). 8

Putting everything together, we finally have that as long as η ∈ (0, c(ε)) where c(ε) is given in (47), then y as given in (46)
is such that y > 0. Re-writing (44) using (45) and (46) as

Pr[‖w‖2
2
< (1− ε)r | ¬E1] ≤ e−N

ε
3(1+η)y (48)

we can see that the error decays exponentially in N , as required.

A simpler statement of the theorem. We now prove Theorem III.2 from Theorem D.1.

Proof of Theorem III.2. We show how to obtain the Theorem III.2 from Theorem D.1. To ensure that the error probability is
at most δ in (30) it suffices to set

2Ne−
η2q
3N ≤ δ

2 (49)

e−
N
2 (y21/2−y

3
1/3) ≤ δ

2 (50)

And to ensure that the error probability is at most δ in (31) we need to set

2Ne−
η2r
3N ≤ δ

2 (51)

e
−N ε

3(1+η)y ≤ δ
2 (52)

Bounding N . Referring to (50), we need to choose N > Nmin,1 where:

Nmin,1 =
4

y21(1− y1/6)
ln 2

δ (53)

7One can see that when η = 0, then y(0, ε) = ε, and a simple check in MATHEMATICA shows that when η = c(ε) as in (47), then y(c(ε), ε) = 0. By
inspection, it follows that y decreases in η.

8First consider the case where ε = 0. Now when ε = 0, c(ε) = 0, and the requirement that η ∈ (0, c(ε)) implies that η = 0. It follows that y = 0. Next
consider the case where ε = 1, which means that for η ∈ (0, 1), we have that y(η, 0) = 1

2
(1−η)2
1+η

. Now, since the derivative dy
dε

=
1+η(4−η)

1+η
> 0 for any

η ∈ (0, 1), we know that y grow monotonically in ε.
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Where recall that y1
.
= (1+ε)(1−η)

(1+η)2 − 1. One can verify that y1 ∈ (0, ε) for any η, ε ∈ (0, 1). To simplify (53), we will now
require that y1 ≥ ε/2, which means we can write:

≤ 4

y21(1− ε/6)
ln 2

δ

≤ 4

(ε/2)2(1− ε/6)
ln 2

δ

≤ 19.2

ε2
ln 2

δ

where the first inequality follows because y ≤ ε, the second follows from y ≥ ε/2, and the third follows from ε ≤ 1. Now,
instead of using the “ugly” expression for N > Nmin,1 in (53) to bound N , we have “nicer” bound on N that shows the
dependence of N on ε, δ as:

N ≥ 19.2

ε2
ln 2

δ (54)

Next, refer to (52), we need to choose N > Nmin,2 where:

Nmin,2 = 3(1+η)
εy2

ln 2
δ (55)

Where recall that y2 = (1−η)2
1+η (1 − ε

2 ) − (1 − ε). One can see that y2 ∈ (0, ε2 ) for any η ∈ (0, 1). To simplify (53), we will
now require that y2 ≥ ε/4 which means we can write:

≤ 12(1+η)
ε2 ln 2

δ

≤ 24
ε2 ln 2

δ

where the first inequality follows from our choice of y2 ≥ ε/4 and the second from η ≤ 1. Now we again have “nicer” bound
on N (showing it’s dependence of N on ε, δ) as:

N ≥ 24
ε2 ln 2

δ (56)

Comparing equations (54) and (56) we find that it suffices to choose N satisfying (56).
Bounding η. These nice bounds on N does not come free. To obtain (54), we need to ensure that y1 > ε/2. We write

ε
2 ≤ y1

.
= (1+ε)(1−η)

(1+η)2 − 1

1+
ε
2

1+ε ≤
1−η

(1+η)2 (57)

Now since
1+

ε
2

1+ε ≤
(

1−η
1+η

)2
≤ 1−η

(1+η)2 it follows that (57) holds if

1+
ε
2

1+ε ≤
(

1−η
1+η

)2
(58)

Next, to obtain (56) we need ensure that y2 > ε/4, so we write

ε
4 ≤ y2

.
= (1−η)2

1+η (1− ε
2 )− (1− ε) (59)

and a similar argument show that (59) holds as long as

1− 3ε
4

1− ε2
≤
(

1−η
1+η

)2
(60)

Bounding q, r. Referring to (49) and (51), we observe that is suffices to choose

q, r ≥ 3N
η2 ln 4N

δ (61)

Notice that this bound relies on both N , and η. We bounded N in (56). To minimize q, r, we want to chose η as large as
possible, subject to the constraints in (58) and (60). Thus, it suffices to chose η such that(

1−η
1+η

)2
= max

(
1+

ε
2

1+ε ,
1− 3ε

4
1− ε2

)
(62)

and this completes our proof of Theorem III.2.


