
From the Consent of the Routed:
Improving the Transparency of the RPKI

Ethan Heilman Danny Cooper Leonid Reyzin Sharon Goldberg
Dept. of Computer Science, Boston University, Boston, MA, USA

{heilman,dannyc}@bu.edu, {reyzin, goldbe}@cs.bu.edu

ABSTRACT
The Resource Public Key Infrastructure (RPKI) is a new
infrastructure that prevents some of the most devastating
attacks on interdomain routing. However, the security ben-
efits provided by the RPKI are accomplished via an archi-
tecture that empowers centralized authorities to unilater-
ally revoke any IP prefixes under their control. We propose
mechanisms to improve the transparency of the RPKI, in
order to mitigate the risk that it will be used for IP address
takedowns. First, we present tools that detect and visualize
changes to the RPKI that can potentially take down an IP
prefix. We use our tools to identify errors and revocations
in the production RPKI. Next, we propose modifications to
the RPKI’s architecture to (1) require any revocation of IP
address space to receive consent from all impacted parties,
and (2) detect when misbehaving authorities fail to obtain
consent. We present a security analysis of our architecture,
and estimate its overhead using data-driven analysis.

1. INTRODUCTION
The RPKI [38] is a new infrastructure for securing interdo-

main routing with BGP. BGP has traditionally operated as a
“default-accept” architecture: any autonomous system (AS)
can originate a BGP routing announcement (i.e., claim to
be the destination for) for any IP prefix, and other ASes will
accept the BGP announcement by default. This has made
BGP vulnerable to a number of routing attacks, the most
common [19,21,41,50,51, 56] and devastating [10, 14, 26, 31]
of which are prefix- and subprefix hijacks. In a prefix hi-
jack, a hijacking AS originates BGP routes for IP prefixes
that were not allocated to it, causing the traffic for those
prefixes to be intercepted by the hijacker’s AS.

The RPKI prevents these attacks by providing a trusted
mapping from allocated IP prefixes to ASes authorized to
originate them in BGP. To do this, the RPKI establishes
a top-down hierarchy of authorities, rooted at the Regional
Internet Registries (RIRs), that allocate and suballocate IP
address space, as well as authorize its use in BGP by in-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCOMM’14, August 17–22, 2014, Chicago, IL, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2836-4/14/08 ...$15.00. http://dx.doi.org/10.1145/2619239.2626293.

dividual origin ASes; routers use the RPKI to distinguish
between hijacked BGP routes and routes originated by a le-
gitimate AS. The RPKI also turns out to be surprisingly
effective against attacks it was not designed to prevent [26];
there is evidence [39] that more advanced secure routing so-
lutions [32,37] provide limited benefits over what is already
provided by the RPKI. The RPKI requires neither changes
to BGP nor online cryptographic computations during rout-
ing. It is currently being rolled out by RIRs and adopted by
individual network operators, and authorizes about 20,000
BGP routes as of January 2014 (Section 2.1).

From default-accept to default-deny. However, the
security benefits of the RPKI are accompanied by a dras-
tic shift from BGP’s traditional “default accept” policies, to
a new “default deny” mode: to prevent (sub)prefix hijacks,
routers should only accept routes authorized by the RPKI,
and discard all other routes by default (Section 3). Mean-
while, the RPKI’s hierarchical architecture empowers cen-
tralized authorities to unilaterally revoke authorization (or
take down) IP prefixes under their control. This shift has
lead to concerns [7,17,43,44,61] that the RPKI creates pow-
erful authorities with the technical means for taking down
IP prefixes, and could be exploited by abusive authorities
or governments to settle disputes or block undesirable con-
tent. This is a stark departure from the status quo, where
these authorities (RIRs, National/Local Internet Registries,
etc.) had the power to allocate IP address space, but not to
impact routing to space that has been allocated [27,54].

Transparency. In light of the risk of takedowns, it would
be useful to have mechanisms that can detect when RPKI
authorities misbehave; this could create social (and possibly
legal) pressure to motivate misbehaving authorities to fall
in line. However, the architecture of the RPKI also makes it
difficult to distinguish between revocations due to disputes
or censorship, and those due to business arrangements that
were agreed upon by all impacted parties (Section 3).

Our contributions. As RPKI deployment continues to
gain traction, we present an investigation of the risk of RPKI
takedowns, and propose technical solutions that mitigate
this risk by improving the transparency of the RPKI. Our
contributions are:

1. Security audit (Section 3). We untangle the often-
unintuitive interactions between the RPKI and BGP, and
explain why it is not always the case that a revocation in
the RPKI can take down an IP prefix in BGP.

2. Tools, measurement & modeling (Section 4). We
start by working within the current RPKI specifications, and

http://dx.doi.org/10.1145/2619239.2626293

build two tools that can increase its transparency by detect-
ing and reacting to RPKI problems. Our detector, that iden-
tifies changes to the RPKI that can takedown IP prefixes,
and a visualizer, that visualizes the results. We test our
tools on the production RPKI and identify real-life errors
and revocations (Sections 3,4.1). Since RPKI deployment is
still in its infancy, we also develop models of a future full-
deployment of the RPKI, based on routing data and RIR
information (Section 5.7).

3. Changes to the specifications (Section 5). The
current RPKI specifications still place power squarely in the
hands of authorities. To remedy this, we propose mod-
est modifications to the architecture of the RPKI. Our de-
sign ensures that once a route is authorized by the RPKI,
it switches from “default-deny” to “default-accept”; that is,
authorities that revoke IP address space must first obtain
consent from all entities holding allocations (and suballoca-
tions) of that space. Our design also allow parties viewing
RPKI information from different vantage points to detect
when (1) their views are not consistent, and (2) authorities
fail to properly obtain consent. We prove the security prop-
erties of our design. Because our design sometimes requires
many entities to provide consent, we also estimate its extra
overhead using data-driven analysis (Section 5.7).

2. RPKI PRIMER
We overview the RPKI’s certificate hierarchy, explain how

RPKI information determines route validity, and explain
how the RPKI can limit threats to BGP.

2.1 The hierarchical structure of the RPKI.
The RPKI arranges authorities in a strict hierarchy that

mirrors the IP address allocation hierarchy.1 An author-
ity may issue cryptographic objects for IP addresses that
are covered by its own IP addresses. (An IP prefix P covers
prefix π if π is a proper subset of the address space in P (e.g.,
63.160.0.0/12 covers 63.160.1.0/24) or if P = π. Also, prefix
63.160.0.0/12 has length 12.) Each authority has a resource
certificate (RC), a certificate that contains its cryptographic
public key and its set of allocated IP addresses [40]. An
authority may issue signed objects for IP addresses covered
by its allocation, specifically: (1) an RC that suballocates a
subset of its addresses to another authority, or (2) a route
origin authorization (ROA), that authorizes a specified AS
to originate a set of prefixes, and its subprefixes up to a spec-
ified length called maxLength, in BGP [38]. ROAs protect
BGP from routing attacks (Section 2.2).

Model (Figure 1). We show how an RIR (ARIN) uses
its RC to suballocate a prefix to another authority (Sprint),
which then issues RCs suballocating this prefix to other au-
thorities (ETB S.A. ESP., Continental Broadband). (This is
an excerpt of one of our models of the fully-deployed RPKI;
see Section 5.7.) We say Sprint is the parent of Continen-
tal Broadband, and extend this to child, ancestor, etc., in
the obvious way. Sprint issues two ROAs that authorize a
specified prefix and its subprefixes up to maxLength 24; the
remaining ROAs shown authorize only a single prefix.

Status of the RPKI (Table 2). As of January 13,
2014, the production RPKI contains ROAs for about 20K

1The roots of the RPKI are the five RIRs (Table 2); in the
future, IANA could be a single root [38, Section 2.4].

Figure 1: Excerpt of a model RPKI

prefix-to-origin-AS pairs. (About 488K prefixes were an-
nounced in BGP that day.) The RPKI’s structure (Table 2)
is slightly different than our models. At depth 0, there are
trust anchors for each RIR (e.g., ARIN). The trust anchors
are long-lived certificates, who issue a handful of shorter-
lived intermediate RCs to the RIRs (depth 1); our models
and Figure 1 omit intermediate RCs. Intermediate RCs is-
sue leaf RCs to organizations (e.g., Sprint) who then issue
ROAs. ARIN has an extra layer of intermediate RCs. RCs
for suballocations like Continental Broadband and ETB in
Figure 1 are absent; their ROAs could just be issued by
Sprint. ROAs usually contain one AS and many prefixes
(e.g., all prefixes for AS 7341 could be issued in one ROA).

Publication points. The RPKI was designed to require
minimal changes to BGP, and therefore operates entirely
out-of-band. RPKI objects are stored in public repositories.
Each RC has its own publication point (i.e., directory in a
file system) where it publishes every object it issued. Each
RC also signs a manifest that logs the hash of every object
present in its publication point. Relying parties download
RPKI objects from publication points to their local caches,
validate the objects, push information to their routers, and
use it to inform routing decisions in BGP.

2.2 How the RPKI prevents threats to BGP.
BGP is especially vulnerable to subprefix hijacks because

of longest-prefix-match routing: when a router learns BGP
routes for a prefix and its subprefix, it always prefers the
subprefix route. Subprefix hijackers exploit this by originat-
ing routes for subprefixes of a victim’s prefix. This leads to
a natural desideratum for the RPKI: a subprefix hijacker’s
route should be always be invalid when the legitimate route
has a matching valid ROA.

Origin authentication. To achieve this desideratum,
a relying party uses the RPKI for origin authentication as
follows. For our purposes, a BGP route is an IP prefix π and
an origin AS a. Once a relying party has “access to a local
cache of the complete set of valid ROAs” [29, Sec. 2], these
valid ROAs are used to classify each route (π, a) learned in
BGP into one of three route validation states [29, 42]:

– Valid: There is a valid matching ROA. A matching
ROA has (1) a matching origin AS a, and (2) a prefix
P that covers prefix π, and (3) the specified maxLength
no shorter than the length of π.

– Unknown: There is no valid covering ROA. A covering
ROA is any ROA for a prefix that covers π.

– Invalid: The route is neither unknown or valid.

The rules above elegantly achieve the desideratum: if a le-

Depth 1 2 3 4
RIPE 4 RC 1909 RC 1512 ROA
LACNIC 4 RC 282 RC 282 ROA
ARIN 1 RC 1 RC 99 RC 151 ROA
APNIC from IANA 1 RC 450 RC 58 ROA
AfriNIC 1 RC 27 RC 48 ROA

Table 2: Valid ROAs and RCs at each depth of the
production RPKI on January 13, 2014.

gitimate route in BGP has a matching valid ROA in the
RPKI, a subprefix hijacker’s route will always be “invalid”
(because it is “covered”by the valid ROA). To stop subprefix
hijacks, relying parties should drop invalid routes, i.e., not
select routes in BGP that are “invalid” per the RPKI.

3. AUDIT: THE RISK OF RPKI TAKEDOWNS
We explore RPKI threats that take down IP prefixes by
causing legitimate BGP routes to be misclassified as “in-
valid”.

A trace of the production RPKI. To aid our expo-
sition, this section discusses real-life events that our tools
detected in the production RPKI (described in Section 4).
Events were observed in a trace we collected from 2013/10/23–
2014/01/13. Each day, we used rcynic [2] to pull the state of
the production RPKI to an empty local folder, and to cryp-
tographically validate the result. The trace excludes a few
days where our collector went down, and a few days where
rcynic failed to properly sync to the repository (reporting
<rsync_transfer_failed kind="bad">).

3.1 Tradeoff: BGP threats vs RPKI threats.
Now that we have understood how threats to BGP influ-

enced the design of the RPKI, we look at how threats to the
RPKI can impact routing with BGP. Specifically, to prevent
subprefix hijacks on BGP, every route covered by ROA in
the RPKI is classified as “invalid” by default, unless it has
a matching valid ROA of its own. The RPKI is therefore a
“default-deny”architecture,2 and this comes with some risks;
if a legitimate BGP route is wrongly classified as “invalid”
by the RPKI, a relying party that drops invalid routes will
lose connectivity to that route in BGP. As such, there have
been concerns [7,17,43,44,61] that the RPKI creates a new
technical means for IP-prefix takedowns.

Because moving to a default-deny regime is a drastic change
for the routing infrastructure, relying parties are explicitly
entitled to use their own “local policies” to decide what to do
with“invalid” routes [29]. Drop invalid routes is the strictest
local policy, and comes with the risk that threats to the
RPKI can take down legitimate BGP routes. An more le-
nient policy suggested in RFC6483 [29] is to depref “invalid”
routes: for a given prefix, a router should prefer “valid”
routes over“invalid”routes. This policy implies that a router
still selects an “invalid” route when there is no “valid” route
for the exact same IP prefix. Thus, the router may still be
able to reach routes that are wrongly classified as “invalid”
as a result of problems with the RPKI. (However, availabil-
ity of a route at one router can depend strongly on local
policy used at other routers. For example, a router that
uses the lenient depref invalid policy can lose connectivity
to an “invalid” route if all its neighboring routers use the

2The idea that the RPKI is a default-deny architecture is un-
intuitive, given the“unknown”route validity state. However,
a BGP route without a matching valid ROA is “unknown”
only when there is no covering ROA; see Section 2.2.

policy routing attack RPKI manipulation

drop invalid stops (sub)prefix hijacks prefix goes offline
depref invalid subprefix hijacks possible prefix may stay online

Table 3: Impact of different local policies.

strict drop invalid policy.) On the other hand, this policy
does not prevent subprefix hijacks [12, Section 5].

Table 3 summarizes this difficult tradeoff; the local policy
that is best at protecting against attacks on BGP is worst
at protecting against problems with RPKI. While it is too
early to tell what local policies will be adopted in the long
run, better assurances about the trustworthiness of RPKI
information are needed before relying parties can start en-
joying the RPKI’s full potential for protecting BGP from
attack. Sections 4-5 focus on improving these assurances.

A note on granularity. While ROAs can have ar-
bitrary prefix lengths, the longest IPv4 prefix length that
is universally accepted by BGP routers is a /24. (Routers
usually ignore longer prefixes to avoid bloating their routing
tables.) Thus, our discussion on the RPKI’s impact on IP
prefix reachability should be thought of as having the granu-
larity of a /24 (or shorter) IPv4 prefix, i.e., no fewer than 256
IPv4 addresses; the RPKI, therefore, can be used for signif-
icantly coarser level of blocking than e.g., the DNS [52,53].

3.2 New threats created by the RPKI.
What threats to the RPKI can cause a legitimate BGP

route to be classified as “invalid”? We consider two threat
models: threats created by RPKI authorities themselves,
and threats to the communication path between relying par-
ties and the public RPKI repositories.

3.2.1 Threats created by RPKI authorities.
Because relying parties download RPKI objects from pub-

lication points that are controlled by their issuer [38, Section
8], the issuer can manipulate the contents of its publication
points in any way it likes. There are two ways an issuer can
cause a legitimate BGP route to be classified as “invalid”:

1. Adding a ROA. If a new ROA added to the RPKI
covers a legitimate BGP route without its own matching
ROA, the legitimate BGP route will be wrongly classified as
“invalid”. Consider, for example, this incident:

� Case Study 1: ROA misconfiguration. On
December 13, a new ROA was added to the production
RPKI rooted at ARIN, authorizing prefix 173.251.0.0/17
with maxlength 24 to AS 6128. This caused a large portion
of the address space to downgrade from “unknown” to “in-
valid”, including several legitimate /24 routes announced in
BGP that did not have matching ROAs (AS 53725 originat-
ing 173.251.91.0/24, AS 13599 originating 173.251.54.0/24).

2. Whacking a ROA. Alternatively, missing information
can cause the RPKI to misclassify a legitimate BGP route
as “invalid”. To see how, we first distinguish between route
validity and RPKI object validity. An RPKI object (i.e.,
an RC, ROA, etc.) is valid if it has a valid signature, is
not malformed or corrupted, etc. Meanwhile, the validity of
a route depends exclusively on the set of valid ROAs in a
relying party’s local cache. Thus, any action that prevents
the delivery of a ROA object to a relying party has exactly
the same effect — the corresponding BGP route becomes (a)
“invalid” if the local cache contains some other valid covering
ROA, or (b) “unknown” if there is no valid covering ROA.
We therefore just say that a ROA is whacked whenever a

relying party fails to receive the valid ROA object. There
are many ways an authority can whack a descendant ROA:3

a. Revoking. An issuer can always revoke any object it
issues using its certificate revocation list (CRL).

b. Deleting or corrupting. An authority can also delete
or corrupt any object in its publication point. If the author-
ity logs appropriate change in its manifest, relying parties
will accept the change without complaint. For example:

� Case Study 2: Deleted ROA. On December 19,
2013, a ROA for (79.139.96.0/24, AS 51813), for a network in
Russia, was deleted from the production RPKI. Meanwhile,
since at least November 21, the RPKI also had a covering
ROA mapping 79.139.96.0/19-20 to another Russian ISP,
AS 43782. (This is a covering ROA because the /19 prefix
covers the /24 prefix.) The covering ROA caused the route
corresponding to the whacked ROA to downgrade from valid
to invalid (per Section 2.2). Both the whacked ROA and
covering ROA were issued by the same RC.

c. Overwriting. Each RPKI object is identified by a uni-
form resource identifier (URI), and an authority may over-
write any RC it issued, so that modified objects can have
persistent URIs (thus simplifying operations like certificate
renewal and key rollover [30]). An authority can thus over-
write an RPKI object with one for a different set of IP ad-
dresses (or a different key, etc.); children of the overwritten
RC can be whacked as a result, because they are no longer
covered by the RC (or signed by the wrong key, etc.):

� Case Study 3: Overwritten parent RC. On January
5, 2014, a ROA for (196.6.174.0/23, AS 37688) for a back-
bone connectivity network in Nigeria was whacked because
its parent RC was overwritten. The incident occurred as
follows: On January 4, the ROA’s parent RC was allocated
prefix 196.6.174.0/23. On January 5, the RC was overwrit-
ten with an RC with the same key but for an IPv6 prefix
2c0f:f668::/32. The ROA in question (which remained in the
publication point) became invalid, because it was no longer
covered by its parent. Interestingly, the RC had no valid de-
scendants until January 6, when it issued ROAs covered by
the IPv6 prefix to a different AS (AS 37600, in Mauritius).

Moreover, if an RC gets whacked, all its descendent objects
also get whacked. Our earlier work [18] showed how an au-
thority can whack distant descendant ROAs in a targeted
manner that causes no collateral damage to other ROAs.

3.2.2 Threats that disrupt RPKI object delivery.
A third party, who disrupts the communication path from

an RPKI repository to a relying party, can whack a ROA
just by corrupting a single bit in the ROA. (This is be-
cause the ROA would fail cryptographic validation.) Fortu-
nately, however, the RPKI has a mechanism for detecting
lost/corrupted information:

Manifests. To provide assurance that no objects have
been deleted from a publication point, a collision-resistant
hash of the contents of every file issued by an RC is listed in
a single file called a manifest [28, Section 2.1], which is dig-
itally signed by the RC and stored at its publication point.
The manifest must be updated whenever an RC issues, mod-
ifies, or revokes an object it issued. To prevent replay at-

3To be sure that the BGP route corresponding to the
whacked ROA becomes “invalid”, an authority can just issue
a covering ROA, as in Case Study 2.

tacks and the propagation of stale information, manifests
are short-lived; they usually expire and are renewed daily.

Of course, a third party can always corrupt or disrupt the
delivery of the manifest itself. Consider the following:

� Case Study 4: Stale LACNIC manifests. On De-
cember 20, 2013, an error at LACNIC whacked 4217 prefix-
to-origin-AS pairs. The day before the incident, the RPKI
rooted at LACNIC looked very similar to what is shown in
Table 2. On December 20, the manifests and CRLs issued
by all four of LACNIC’s intermediate RCs (at depth 2) in
our local cache all expired. The relying party software [2]
raised an alarm and rejected all four of the intermediate
RCs as invalid. All objects in subtree rooted at LACNIC be-
came invalid; thus, there were no valid ROAs for any address
space allocated by LACNIC, and BGP routes corresponding
to LACNIC ROAs downgraded from “valid” to “unknown”.

3.3 Transparency is (sometimes) difficult.
To mitigate risks created by the RPKI, a relying party

should be able to detect when a problem with the RPKI
has caused BGP route to be wrongly classified as “invalid”.
Fortunately, third-party attacks that disrupt object deliv-
ery are completely transparent – a relying party can always
check that it received all the objects in a manifest, and that
the manifest was valid and current. If not, relying parties
should raise a missing-information alarm; RFC6486 [9, Sect
6.5] states that relying parties should react to such alarms
at their own discretion.4 Meanwhile, incidents where mis-
configured or compromised RPKI authorities wrongly add
or whack ROA are much less transparent; if the authority
ensures that its manifest is consistent with the objects in its
publication point, relying parties will not raise alarms.

Alarms. While the RPKI specifications do not focus on
alarms, we think that they are crucial. While alarms alone
cannot resolve problems, they do indicate that problems are
present, and can trigger mitigation mechanisms. During a
missing-information alarm, a relying party might try to re-
connect the repository, search for missing objects in its local
cache or at other relying parties, or search for unusual rout-
ing activity in the IP address space covered in the RC whose
manifest triggered the alarm. Today, BGP misconfigura-
tions are resolved by humans picking up the phone; RPKI
alarms similarly provide guidance on when picking up the
phone may be necessary. Indeed, in Section 5, alarms will
be our primary tool for increasing transparency.

There is another important threat to transparency:

Mirror world attacks. In a mirror world attack, an (ad-
versarial) RPKI authority presents one view of the RPKI to
some relying parties, and a different view to others. (For ex-
ample, the subject of an RC is shown a view containing the
RC, but other relying parties are shown a view that omits
the RC.) The current RPKI standard contains no mecha-
nisms to prevent this attack. Our proposal in Section 5
builds in protections against mirror-world attacks.

4. TOOLS TO IMPROVE TRANSPARENCY
We now develop tools that can improve the trustworthi-

ness of RPKI data, without requiring any modifications to
the RPKI itself. Our detector tool detects when a change

4The relying party software we used [2] in Case Study 4
rejected the stale manifest. Other policies are possible.

to the RPKI causes a route to downgrade from “valid” to
“invalid/unknown”, (or from “unknown” to “invalid”), and
our visualizer visualizes these downgrades. We released the
source for all our tools,5 so they can be incorporated into
professionally-maintained systems like [35,46,57].

4.1 A tool for detecting downgrades.
One way to detect inconsistencies between BGP and the

RPKI is to take a BGP feed [3,5], run the RPKI validation
algorithm in Section 2.2 on each BGP route, and identify
BGP routes that the RPKI classifies as“invalid”; indeed, this
is done in [35,46,57]. Our goal, however, is to detect when a
change to the RPKI (i.e., an added or whacked ROA) causes
a change in the validity status of a route; it can therefore act
as alert system for potentially-harmful changes to the RPKI.
Moreover, we do not want our tool to be limited to a view of
BGP provided by a specific BGP feed; instead, our detector
considers the space of all possible routes (π, a), where π is
a prefix and a is an origin AS, regardless of whether or not
a particular route is visible to a particular BGP collector.

Challenges. The relationship between a single ROA and
the validity of BGP routes is complex and dependent on
the presence of other ROAs in the system. For example, a
ROA giving an AS a prefix π of length 17 up to maxlength
22 actually makes 2(23−17) − 1 = 63 possible prefixes orig-
inated by AS a in BGP become “valid”. If the ROA gets
whacked, BGP routes for these prefixes do not necessarily
become “invalid”: some may become “unknown” (if there is
no covering ROA), while others may remain valid (if there
is another ROA for AS a and a super- or subprefix of π).
Moreover, when such a ROA appears, it may downgrade
“unknown” routes to “invalid” for any subprefix of π of any
length, depending on the other ROAs already in the RPKI.

Data structures. Naturally, representing the space of
all possible routes (π, a) requires an efficient data structure.
Ours is based on the following observations. Consider the
complete binary tree of all IP prefixes, with one IP address
per leaf, and all possible prefixes as internal nodes. A ROA
for prefix π, maxLength m, and origin AS a makes a subtree
of this tree “valid” for AS a only; this subtree is rooted at π
and goes down to depth m. This ROA also makes “known”
(i.e., the complement of “unknown”), for other ASes, the
subtree rooted at π and going down to the bottom.

We call these subtrees triangles and we represent them
using interval trees. A triangle has one interval per pre-
fix length. The granularity of each interval depends on the
prefix length; intervals at length i have endpoints that are
integer multiples of 232−i. For each prefix length, the to-
tal number of intervals kept is bounded by the number of
prefixes in ROAs in the RPKI. We can use interval trees to
efficiently perform unions, intersections, and complements of
sets of triangles. This gives us a “prefix-validity” data struc-
ture that stores the validity states for all possible routes,
based on the ROAs in the RPKI; it can be created in time
O(n logn) given ROAs for n (prefix, AS, maxlength)-tuples.

Our tool uses this data structure to compare a current
RPKI state Scur and a previous state Sprev. It processes
each state once and creates its prefix-validity data struc-
ture. It then evaluates the impact of every single change
from Sprev to Scur in the context of other changes that oc-
curred, by going through each (prefix, AS, maxlength)-tuple

5https://github.com/BUSEC/RPKI_Downgrade_Detector

Figure 4: # of invalid IP addresses over time.

Figure 5: Downgrades due to whacked ROAs.

that appears or disappears from the RPKI (in the transition
fromSprev to Scur), by extracting relevant information from
the prefix-validity data structures.

Utilities for RPKI browsing. Our detector identified
all the events in our case studies, and we analyzed each using
custom-built python utilities (available upon request) that
parse RPKI objects and search RPKI trees based on URI,
public key, prefix, and AS number fields.

We also used our detector to check for downgrades between
consecutive entries in our trace of the production RPKI:

Downgrades due to added ROAs (Figure 4). Two
things happen whenever a ROA is added to the RPKI: (1)
routes for the AS authorized in the ROA become“valid”, and
(2) the IP address space covered by the ROA transitions
to the default-deny state, i.e., all the “unknown” address
space it covers downgrades to “invalid”, as in Case Study 1.
Figure 4 shows the latter transition over the course of our
trace. We show the number of IP addresses that are“invalid”
for at least one AS over time, marking each entry in our
trace with a diamond. The drop in the number of “invalid”
addresses on December 20 was due to the the stale LACNIC
manifests described in Case Study 4.

Downgrades due to whacked ROAs (Figure 5). We
show the number of (π, a) pairs that downgraded from“valid”
to “invalid”, and from “valid” to “unknown”, for each consec-
utive entry in our trace that contained a successful pull of
the RPKI. We show a value of zero if no downgrades oc-
curred at some date, and a gap if our trace was missing an
entry. To put these results in perspective, in January 2014,
there were about 20,000 prefix-origin AS pairs authorized by
ROAs in the RPKI. Most of the incidents in Figure 5 corre-
spond to the whacking of a single ROA containing multiple
prefixes; in many incidents, a new ROA appeared authoriz-
ing the prefix(es) in the whacked ROA to some other AS.
Case Study 4 explains the dramatic event on December 20.

4.2 A tool for visualizing downgrades.
We present a new visualization of the effects of a single

ROA on the validity states of multiple BGP routes, based
on a modification of the Sierpiński triangle [59]. Our visu-
alization takes in information from our detector and from a
specific BGP feed [3, 5], and presents a binary tree that vi-

https://github.com/BUSEC/RPKI_Downgrade_Detector

Figure 6: (l) Visualization of downgrades in Case Study 1. (r) Downgrades when the ROA (63.174.16.0/20,
AS 17054) is added to the RPKI in Figure 1.

sualizes the triangles described above, as well as the validity
state of specific routes announced in BGP.

Figure 6(l) We visualize Case Study 1. The tool outputs
the prefix tree rooted at 173.251.0.0/16, and shows how the
triangle rooted at 173.251.0.0/17 transitions from unknown
to invalid. The valid route for prefix 173.251.0.0/17 is shown
with a grey circle. The added ROA also caused a number
of /24 routes in the BGP feed to transition to the “invalid”
state; we show these with black circles.

Figure 6(r). Consider the prefixes covered by Continental
Broadband in Figure 1, and suppose Sprev has the all ROAs
issued by Continental Broadband except the covering ROA
for 63.174.16.0/20, and that the covering ROA is added in
Scur. We visualize downgrades from “unknown” to “invalid”
in the transition from Sprev to Scur. Routes uncovered by
the four ROAs in Sprev are impacted during the transition;
routes covered by the four ROAs in Sprev were already “in-
valid” in Sprev, and do not appear as downgrades.

5. CHANGES TO RPKI SPECIFICATIONS
While our detector can alarm when changes to the RPKI

cause routes in BGP to downgrade to “invalid”, the RPKI
still lacks mechanisms that can detect when such changes
are legitimate, or when they result from abuse. Because
the purpose of the RPKI is to secure routing, not to pro-
vide a new technical means for RPKI authorities to take-
down IP address space, we now propose modifications to
the RPKI specifications to restore the balance of power be-
tween RPKI authorities and the subjects of the RCs they
issue. We start with our design goals (Section 5.1), overview
our design (Section 5.2), and then discuss its details (Sec-
tions 5.3-5.4). We then justify our design by presenting its
exact security guarantees (Section 5.5), explain why alter-
native designs would not suffice to provide these guaran-
tees (Section 5.6), and estimate its overhead via data-driven
analysis (Section 5.7). This paper overviews our proposal;
details and security proofs are in our technical report.

5.1 Design goals.
The following goals have guided our design.

Transparency through alarms. Our overarching goal
is to detect RPKI abuse. We want provable guarantees that
relying parties will raise alarms when something goes wrong;
as discussed in Section 3.3, alarms act as a trigger for relying
parties to investigate and react to problems with the RPKI.
As in the current RPKI specifications, we suppose that re-
lying parties use their own local policies to decide how to
resolve alarms [9, Section 6]; alarms could indicate that cer-

tain IP prefixes should be monitored for routing anomalies,
or that a relying party should revert to an older (“stale”) set
of RPKI objects that did not raise alarms.

The problem of how relying parties should propagate and
react to alarms is outside the scope of this paper. First,
technical means alone will not able to resolve a business dis-
pute that results a unilateral revocation of IP address space
in the RPKI; was the issuer of the space at fault, or was it
the holder of the address space? Moreover, even requiring
different relying parties to agree on a consistent (let alone,
correct) course of action to resolve an alarm requires solv-
ing the famously-difficult Byzantine agreement problem. We
therefore assume that alarms will be resolved by out-of-band
mechanisms (phone calls between network operators, social
or even legal pressure), just like BGP misconfigurations are
resolved today. Nevertheless, to discourage relying parties
from raising false alarms, and to facilitate dispute resolution,
our secondary goal is accountability ; allowing relying parties
to provably demonstrate, in as many situations as possible,
(a) why they raised an alarm and (b) who is to blame.

Consent from subjects of RCs. Traditionally, routing
has lacked a technical means for revoking IP address space;
the RPKI changes this by allowing authorities to unilater-
ally revoke IP address space issued to their descendants.
Our goal is to correct this power imbalance, so we require
subjects of RCs to consent to RPKI modifications that can
affect their address space. If consent is refused, this indi-
cates that there is a dispute between the subject of the RC
and its issuer, and relying parties should raise an alarm.
During emergencies (disputes, lost/stolen keys) when it is
impossible to obtain consent from the subject of the RC,
the issuer can just unilaterally revoke the RC; these actions
will be visible to relying parties, who will raise alarms and
investigate the situation out-of-band. Theorem 5.1 formally
states how we achieve this goal, and Section 5.7 analyzes the
overhead of our consent mechanism.

Consistency for relying parties. We want different
relying parties to see consistent views of the RPKI. Our goal
is to prevent mirror-world attacks (Section 3.3) by allowing
relying parties to compare their local views of the RPKI,
and to raise an alarm whenever their views are inconsistent.
Theorem 5.2 and 5.3 formally state this goal.

Practicality. Today, the RPKI specifications are still
evolving [24,33], since only a few authorities operate repos-
itories (the five RIRs), and relying parties validate objects
using a few evolving software packages like [2]. If our design
is to be incorporated in the RPKI specifications, we need
to achieve our goals with minimal changes to the current
RPKI specifications. Thus, we cannot require synchroniza-

tion between RPKI repositories or relying parties, and must
retain most of the structure of the RPKI. Section 5.7 is a
data-driven analysis of the practicality of our design.

5.2 Design overview.
To achieve our goals, we propose adding the following new

elements to the RPKI. Some seem intuitively necessary; oth-
ers may be less obvious, but we justify them in Section 5.6.

Consent through .dead objects (Section 5.3.1). Any
action that removes resources (IP prefixes) or invalidates an
RC requires the consent of the RC and all its impacted de-
scendant RCs. To indicate its consent to having some/all
of its resources taken away, an RC will sign a .dead object.
The authority can then revoke (or remove resources from)
the child by publishing the .dead object in its publication
point and deleting (or overwriting) the child RC.6 To sim-
plify the exposition, we will not discuss consent from ROAs;
instead we just suppose than any ROA that wishes to be
entitled to consent is issued its own covering RC.7

Consistency through manifests (Section 5.3.2). In
a default-deny architecture like the RPKI, a relying party
must know that it has all the objects issued by an author-
ity; otherwise, it might misclassify a legitimate BGP route
as invalid because its ROA was missing. Fortunately, the
RPKI’s manifests contains the hash of every object the au-
thority issues, and thus provide positive attestation to the
authority’s issued objects [9]. We therefore make manifests
central to our design. Relying parties use them to check the
consistency of their local caches, because if the manifests are
equal, then (by the collision-resistance of the cryptographic
hash) so are all the objects the authority issued. Because
we cannot require relying parties to synchronize their in-
teractions with the RPKI, we need to make sure they can
still check consistency even if they are out of sync. To do
this, we enable relying parties to be able to reconstruct all
intermediate state of each publication point; to do this, we
(1) maintain some extra state at each publication point, and
(2) hash-chain manifests, so that each manifest contains the
hash of the previous manifest.

Strict checks to raise alarms (Section 5.4). We design
validation procedures that, in addition to validating RPKI
objects, is also responsible for raising alarms. The procedure
has two parts: a local consistency check (done by a single re-
lying party to check consent) and a global consistency check
(done by a pair of relying parties to check consistency). In
a departure from current RPKI practice, where manifests
play a secondary role, our local consistency check treats the
manifest as the main cryptographic object, and validates
one publication point and one manifest update at a time.
Meanwhile, our global consistency check has relying parties
compare hashes of the manifests in their local caches.

6Per Section 3.2, adding a ROA can also cause routes to
downgrade from “unknown” to “invalid”. However, we do
not handle this because there is no way to obtain consent
from entities originating“unknown”routes, since they do not
participate in the RPKI. (If they did, they would already
have ROAs, and their routes would not be “unknown”.)
7 Actually, each ROA’s parent issues an X.509 end-entity
(EE) certificate for an ephemeral one-time-use key, which
is used to sign the ROA message [38, Section 2.3]. The
ROA and EE cert are stored in a single .roa file, so we
have treated them as one object. But a ROA could instead
consent via its EE cert, instead of asking for its own RC.

5.3 Procedures for RPKI authorities.
We now detail our new .dead objects, and our modifica-

tions to the RPKI’s specification of manifests [9].

5.3.1 Consent via .dead objects
Suppose an RC A wants to revoke or modify a valid child

RC B. (RC B is “modified” if it is overwritten by a new
RC B′ at the same URI.) A needs the consent of B and
all the RCs that descend from B that are whacked by the
revocation/modification. Consent comes in the form of a
.dead object, signed each consenting RC.

Revoking B requires a .dead object from all the descen-
dants of B. Modifications that remove IP address space
from B need .dead objects from each descendant of B that
overlap with the removed space. No .dead objects are re-
quired when a modification has no impact on descendants of
B (e.g., modifying the parent pointer of B, or increasing the
set of IP prefixes or AS numbers it certifies). All other mod-
ifications to B must be accomplished by issuing a fresh RC
at a different URI. We estimate the number of entities that
must be involved in issuing .dead objects in Section 5.7.

Constructing a .dead. .dead objects are constructed
recursively as follows: LetD be a descendant of B that needs
to consent. Before D can sign its own .dead object, D first
collects .dead objects from each of its own descendants. D
then signs its own .dead object, that includes (1) the hash
of the .dead object issued by each child of D, (2) the hash
of mD, the manifest issued by D at the time D signs its
own .dead object, and (3) the hash of the RC of D. D then
provides its own .dead object and the .dead objects for all
its descendants to its issuer C. At this point, D should no
longer issue new objects or update its manifest. At the end
of this process, A has received the .dead objects from B and
all relevant descendants of B. (This recursive collection of
.dead objects protects A, and its descendants, from being
falsely accused of revoking a descendant without consent.)

RC A then simultaneously (a) deletes RC B, (b) puts all
the .dead objects in the publication point of A, and (c) logs
all the .dead objects in the updated manifest of A.

Key rollover. Any PKI needs a mechanism for refresh-
ing cryptographic keys. Adapting the RPKI’s key rollover
mechanism to our design, while still preserving transparency
and consistency, requires some care. Details are in our tech
report. Importantly, key rollover only requires consent from
the RC whose key was rolled.

5.3.2 Manifests as positive attestations
We modify manifests [9] by (a) adding information, and

(b) changing the semantics by which they are interpreted.

Normative manifests. We make manifests normative:
any objects not logged in the issuer’s current manifest are
treated as nonexistent by relying parties. Once manifests be-
come normative, we can simplify other aspects of the RPKI:

1. Only manifests may expire. In the current RPKI,
manifest are “updated” when their issuer overwrites them
with a fresh manifest with a higher “manifestNumber” [9];
manifests are therefore short-lived objects — most expire
and updated with fresh versions within 24 hours. In our
design, if a manifest expires before it is updated, then all
objects logged in the manifest become “stale”, rather than
“invalid”; “stale” indicates that up-to-date information is un-
available, but does not indicate that the objects logged in the

expired manifest have explicitly been revoked. A stale man-
ifest (or any object logged in a current manifest but not ob-
tained by a relying party) raises a missing-information alarm
at the relying party (Section 5.4). Thus, we no longer re-
quire expiration dates on ROAs and RCs: any RC/ROA not
logged in the current manifest is automatically invalid. This
also prevents an authority from issuing short-lived ROAs/RCs
so it can circumvent the need to obtain consent.

2. Manifests must log only valid objects. Any
issuer that logs an invalid object in its manifest (e.g., an
object pointing to the wrong parent, has a prefix that not
covered by the issuer’s RC, etc.) risks the ire of relying par-
ties, who raise alarms per Section 5.4. (This is necessary
for our consistency mechanisms to work properly; see Coun-
terexample 2.) By ensuring that manifests only attest to
what is valid, we no longer need CRLs to attest to what is
invalid. In fact, RCs/ROAs need not even be signed: sig-
nature on a manifest suffices, because the manifest contains
the collision-resistant hash of every valid object (as in [25]).

These changes may seem unorthodox, but we note that the
RPKI is different from the usual PKI where relying parties
obtain and validate objects one-by-one; instead, all objects
in a publication point are downloaded en masse, so it suf-
fices just to validate the manifest. All these changes can be
implemented without any modification to the RPKI object
formats by having relying parties ignore CRLs, expiration
times/signatures on RCs and ROAs.

Hash chaining. Manifests are hash-chained: each new
manifest includes the hash of the contents (excluding the
signature) of the manifest it supersedes. A horizontal chain
is a sequence of consecutively issued manifests, each super-
seding the next. For each manifest m, hash chaining defines
successor and predecessor manifests of manifest m in the
obvious way. We also require every manifest to include the
hash of the manifest containing its issuer’s RC (“parent man-
ifest”), so that we can definitively determine the resources
allocated to an RC at the time it signed its manifest. Thus,
a vertical chain is a sequence of manifests, each containing
the hash of the manifest above it and the hash of an RC
that signed the manifest below it.

Reconstructing intermediate states. To prevent mir-
ror world and other attacks (e.g., Counterexample 1 in Sec-
tion 5.6), relying parties must be able to reconstruct states
that could have been seen by other relying parties. Thus, is-
suers must also provide relying parties with“hints” to enable
reconstruction, between two syncs to a publication point, of
every intermediate manifest along the horizontal hash chain
along with its corresponding publication point state. Our
technical report details the small amount of extra informa-
tion maintained at each publication point for this purpose.

5.4 Validation procedures for relying parties.
The validation procedures for relying parties have three

purposes: (1) to determine the set of valid RPKI objects,
(2) to raise alarms when something goes wrong, and (3)
whenever possible, to hold authorities accountable for caus-
ing alarms by proving that they violated procedures in Sec-
tion 5.3. Since manifests are central to these procedures, we
say that a manifest has been obtained if the relying party
can (a) download a manifest that is validly signed by its
issuer, OR (b) reconstruct the manifest as element in the
horizontal hash chain that terminates in a manifest that is

alarm description
missing-information manifest is stale/missing OR

object logged in manifest is missing
bad key rollover incorrect key rollover procedure
invalid syntax RC issued malformed object
child too broad RC issued object it does not cover
unilateral revocation RC deleted/modified object without .dead

global inconsistency manifest failed global consistency check

Table 7: Alarms

validly signed by its issuer, per Section 5.3.2.

Initial sync. The initial connection to the repository is as
in the current RPKI: objects are downloaded and validated.
If a relying party cannot obtain the valid current manifest
of an RC R, or any object logged in the manifest, it raises
a missing information alarm.

Local consistency check. In the current design of the
RPKI, updates to a relying party’s local cache are performed
all at once. We, instead, require incremental processing of
updates: a relying party updates its local cache one publica-
tion point and one consecutive manifest along the horizontal
hash chain at a time. Updates are only performed for man-
ifests issued by valid RCs. Incremental updates allow us to
avoid race conditions that can occur when authorities up-
date their manifests in parallel; see Counterexample 2. New
RCs are an exception to this rule: the entire subtree rooted
at a new RC should be downloaded and validated immedi-
ately to allow new RCs to quickly issue new objects.

Relying parties can sync to publication points in any order
and parallelize updates of publication points that are not in
an ancestor-descendant relationship. When a relying party
Alice obtains an updated state of a publication point, she
reconstructs all the intermediate states of the publication
point along the horizontal hash-chain. Alice then compares
pairs of consecutive states to check that (a) all new or mod-
ified objects are valid, and (b) all deletions and overwrites
received proper consent. If not, she issues one of the middle
alarms in Table 7. In some cases, the alarm is accountable,
which means that Alice can specifically identify the RPKI
authority that misbehaved, and can provide objects that will
convince others of the authority’s misbehavior (Section 5.5).
Details are in our tech report.

Global consistency check. To defeat mirror-world at-
tacks, relying parties can confirm that other relying parties
see the same RPKI objects. A trivial, but unwieldy, solu-
tion has relying parties check consistency by synchronizing
and exchanging their entire local caches. Our solution dis-
penses with synchronization and requires the exchange of
much less information. We ask only that one party (Alice)
is no more than time tg (“global consistency window”) ahead
of the other (Bob).

Bob sends Alice the hash h of the contents (excluding
the signature) of latest manifest that he obtained for each
publication point in his local cache. For every hash value h
received from Bob, Alice checks that h ∈ HA, where HA is
the set that contains the hash of each manifest that Alice
obtained, going back for time tg. The check fails if h 6∈ HA,
and Alice raises a global-inconsistency alarm implicating the
manifest corresponding to h.

A pairwise interactive protocol is not actually required
here; Bob can just post his hash values in a public location
for any other relying party to use.

5.5 Security analysis.
We now discuss the security properties of our design. We

only state theorems here; proofs are in our tech report.

Threat model. We suppose that the relying parties
named in Theorems 5.1-5.3 are honest; everyone else can be
arbitrarily malicious, but cannot break cryptography (e.g.,
forge digital signatures, find hash collisions, steal keys, etc.).
We therefore operate in the standard threat model used in
e.g., [20, 36], where trusted auditors (relying parties) audit
the behavior of a centralized authority (the RPKI).

We use the following definition: for an RC R and relying
party Alice, let the immediate successor of R be an RC that
(a) overwrites R, or (b) supersedes R after a key rollover,
whichever happens first from Alice’s point of view. Define
the set of successors of R inductively as the set containing
R and immediate successors for each of its elements.

Valid remains valid. The following theorem tells us that
once an honest relying party Alice sees a valid object, the
object will remain valid for Alice until the object consents
to revocation (or Alice raises an alarm):

Theorem 5.1. Suppose an RC R was valid for a relying
party Alice at time t1. Consider some time t2 > t1. Then
at time t2, at least one of the following is true:

1. a successor of R is valid in the local cache of Alice and
has all the resources of R;

2. a successor of R is valid in the local cache of Alice, is
missing some resources that R had, and Alice observed
.dead object(s) signed successors of R consenting to the
revocation(s) of those resources;

3. at or before time t2, Alice saw a .dead object signed by a
successor of R, consenting to its revocation;

4. at or before time t2, Alice raised a unilateral revocation
alarm in response to a deleted or overwritten object; the
alarm included a successor of R as a victim, and blamed
an ancestor (or a successor of the ancestor) of the deleted
or overwritten certificate as the perpetrator.

No mirror worlds. We prove robustness to mirror world
attacks. Relying parties can be sure that if they see a valid
RC in a manifest, and use this manifest in the global con-
sistency check, others who successfully check against them
also saw the same valid object:

Theorem 5.2. Suppose the local cache of a relying party
Bob contains a valid RC R and a manifest m that was issued
by the parent of R. Suppose that R is not marked as stale;
thus, the version of R in Bob’s local cache is same as the one
logged in m. Suppose another relying party Alice performs
a global consistency check against Bob; Bob sends the hash
of m to Alice, and Alice looks for it in her set HA of hashed
manifests. Suppose the global consistency check does not
raise the global-inconsistency alarm for m. Then either

1. Alice raised an alarm with R as the victim when perform-
ing the local consistency check on a manifest in HA, or

2. at any time t2 after the global consistency check, at least
one condition in Theorem 5.1 holds for R and Alice.

No mirror worlds in the past. Because manifests are
hash-chained, a successful global consistency check also im-
plies that parties were consistent in the past. We state the
theorem only informally here:

Theorem 5.3 (Informal). Suppose neither Alice nor
Bob raised alarms for k manifest updates in a row. Then if

Alice passes a global consistency check against Bob, then for
every RC R seen as valid by Bob in any of the past k mani-
fests, at least one of the conditions specified in Theorem 5.1
holds for R and Alice.

Alarms & accountability. Our theorems assume that
relying parties Alice and/or Bob are honest, and ensure that
honest relying parties raise alarms when their local caches
are missing/contain objects that violate our specifications.
But we cannot, in general, prevent dishonest relying parties
from raising false alarms, because it is impossible to prevent
someone from falsely claiming they are missing information.
As such, our alarms come in two categories: accountable and
unaccountable.

If Alice raises an accountable alarm, then she is certain
that some RPKI authority misbehaved, she can identify this
authority (the “perpetrator”), and she can prove her knowl-
edge to others (even those who do not trust Alice) by pub-
lishing the relevant objects from her local cache. Assuming
that cryptography is not broken, even a malicious Alice can-
not create an accountable alarm that is false.

Alice raises an unaccountable alarm when she is missing
information — when, from Alice’s point of view, there is
not enough information to distinguish between an attack
by an RPKI authority, and a disruption to the delivery of
RPKI objects (e.g., by a third-party that tampers with the
communication path). While Alice will still raise an alarm
in these cases, the alarm will not be provable to others, and
even Alice herself cannot tell who perpetrated the alarm. If
the missing information is found, then the alarm will either
be resolved or become accountable.

To ensure that as many alarms as possible are account-
able, we require authorities to commit (by means of hash
values) to the context that is necessary to determine the
validity of objects. For example, the validity of a .dead de-
pends on its signer’s manifest; thus, a .dead includes the
hash of its signer’s manifest (Section 5.3.1). Similarly, the
validity of manifest m depends on the validity of the man-
ifest that logs the RC that issued m; thus, m includes the
hash of its parent’s manifest (Section 5.3.2). An alarm is ac-
countable if these objects are present in Alice’s local cache,
and unaccountable if they are missing. A missing informa-
tion alarm is always unaccountable. Our tech report details
when other alarms are accountable.

5.6 On the necessity of our modifications.
We give intuition for our design via two examples.

Counterexample 1: Not checking intermediate state.
Suppose relying parties did not verify every consecutive man-
ifest update. An authority X could then launch a mirror
world attack violating Theorems 5.2 and 5.3:

At time t1, X issues an RC Y ; at time t2, X replaces Y
with a new valid RC Y ′ that contains an additional IP pre-
fix; and continues swapping between Y (at odd-numbered
times), and Y ′ (at even-number times). Alice syncs to X’s
publication point at odd-numbered times, and sees only Y ;
Bob syncs at even-numbered times and sees RC Y ′. But,
since Alice does not check full intermediate states (only man-
ifest chains), she does not notice the transition from Y ′ to
Y , and does not realize that X needs to get a .dead object
from Y ′. Thus, Alice and Bob live in mirror worlds.

Counterexample 2: Race conditions. A major chal-
lenge we faced was that relying parties can sync to different

publication points at different times. This creates race con-
ditions that complicate global consistency:

Suppose authority X has small address block. At time t1,
X issues a child RC Y that is invalid because Y contains
more addresses than its parent X. At time t2, parent X is
overwritten by an RC for those addresses, and its child Y
becomes valid. At time t3, parent X overwrites Y with an
RC that is invalid because it contains even more addresses.
This process continues as above. Notice that from time t1
to t2, and from t3 to t4, the manifest of X logs an invalid
object. Suppose Alice syncs just after t1 and just after t3;
she decides that Y is invalid. Bob syncs just after t2 and just
after t4; he decides that Y is valid. Hence, mirror worlds!

This problem cannot be caught by checking for .dead ob-
jects for Y , since in Alice’s view Y is always invalid, and in
Bob’s view Y just keeps getting more resources. Nor can
it be caught by the global consistency check, because Al-
ice and Bob see the same manifests. Our design eliminates
this problem by requiring relying parties to alarm if invalid
objects are logged in the manifest; in this example, Alice
would raise an alarm. Theorems 5.2 and 5.3 would be false
without this requirement.

5.7 Data-driven analysis of our design.
We discuss the impact of our changes on the RPKI.

Less crypto. One immediate improvement is that a single
digital signature on the manifest needs to be issued and ver-
ified, rather than individual signatures on each RC, ROA,
CRL, and manifest (Section 5.3.2). To put this perspective,
on January 13, 2014 there were ≈ 10, 400 validly-signed ob-
jects in the RPKI; our changes require the validation of only
≈ 2, 800 manifests.

No renewals. RCs/ROAs do not expire in our design
(Section 5.3.2); hence recipients of resources are no longer
dependent on their issuers for routine renewals.

Mandated interaction for obtaining consent. How-
ever, issuers are dependent on recipients to provide consent
(via .dead objects) for revocations and certain modifications
(Section 5.3.1). To find out how often those events happen,
we use our trace of the production RPKI for 2013/10/23–
2014/01/21 (Section 3). The largest event we observed was
in mid-November 2013, when RIPE removed 3,336 RCs/ROAs
and issued new ones with new parent/child pointers and
public keys, as part of repository restructuring. Our de-
sign would require RIPE to obtain .dead objects from all of
them, which seems to impose a large burden on RIPE. How-
ever, unless RIPE holds the secret keys of its descendants
(in which case it can just issue .dead objects by itself), in-
teraction is needed even if .dead objects were not required,
because RIPE’s descendant RCs would need to reissue their
objects in new publication points.

Besides this event, we saw 4,443 instances of modified/revoked
RCs/ROAs. Of these, 3,569 (80%) were renewals, that are
not needed in our design. Meanwhile, at most 230 (5%)
would need a .dead object.

How many parties need to consent? Next, we con-

ASes 1 2 3 4 5 6-10 10-30 98
RIPE 678 122 51 13 12 30 8 1
LACNIC 123 20 9 2 1 2 0 0
APNIC 26 8 2 0 2 0 0 0
ARIN 30 5 4 4 3 0 0 0
AfriNIC 9 2 1 1 0 0 0 0

Table 8: # of leaf RCs issuing ROAs for X ASes on
January 13, 2014; X is in the top row.

ASes 1-10 11-30 31-100 100-200 200 − 1073
115,605 594 132 15 11

Table 9: Similar to the distribution in Table 8, ex-
cept for direct-allocation RCs in our model.

sider how many parties need to be involved in signing a
.dead when an RC is revoked. Our estimates, made from
the production RPKI and a model of the RPKI, suggest that
we do not require many .dead objects on average:

1. Production RPKI. Table 2 shows the structure of the
production RPKI on January 13, 2014. Suppose that ROAs
were able to sign off on .dead objects (e.g., because they had
requested their own covering RCs, or via the mechanism in
footnote 7). How many entities would need to sign a .dead

object if we wanted to revoke a leaf RC in Table 2? We use
ASes as a proxy for entities, and estimate this by counting
the number of ASes in ROAs issued by each leaf RC; the
results for the production RPKI are in Table 8, which shows
that on average, only 1.6 ASes need to consent to revoking
a leaf RC, and that 93% of leaf RCs can be revoked with
the consent of no more than 3 ASes.

2. Model. Because the RPKI is far from fully deployed, we
also created a model for a full deployment of the RPKI using
routing data for the week starting 2012/05/06. Our model
has the RIRs sit at the highest layer of the hierarchy; they
issues RCs to “direct allocations,” i.e., IP prefixes directly
allocated by the RIRs (e.g., Sprint in Figure 1). We obtained
these top two layers of the hierarchy from files retrieved from
the FTP site of each RIR. Our model omits intermediate
RCs (since they are also held by RIRs). To model ROAs
descended from each direct allocation, we extracted (prefix,
origin AS)-tuples from BGP feeds [3,5] for the week starting
2012/05/06. (Any tuple not covered by a directly-allocated
prefix was discarded as a bogon.)8We grouped tuples by AS
and found that, on average, each direct allocation issues
ROAs for only 1.5 ASes; the distribution is in Table 9.

With great power comes great responsibility. Ta-
bles 8, 9 indicate that there are a small percentage of outlier
RCs that issue ROAs for many (even hundreds!) of ASes.
(In our model, out of 116,357 total direct-allocation RCs,
26 (0.02%) have more than 100 ASes and 221 (0.18%) have
more than 25 ASes.) Revoking these outliers requires a large
number of .dead objects. However, we consider this to be
a feature, not a bug: these RCs can impact routing to a
large number of ASes, so revoking them should not be easy.
Moveover, outright revocation may not be necessary if the
goal is simply to change the resources given to them slightly,
because we provide mechanisms for removing resources from
RC that only require .dead objects from descendants that
become invalid as a result (Section 5.3.1).

8Figure 1 is derived from this model. We built a subtree of
RCs below each direct allocation RC, with one RC for every
prefix with (prefix, AS)-tuple in the BGP feeds. The an-
cestor relationship corresponds to the cover relationship for
prefixes, and we collapsed parent-child pairs of RCs gener-
ated for the same AS, ASes in the same organization per [16]
or when if child was a “stub AS” per [63].

6. RELATED WORK
Routing security. The RPKI is a realization of a series
of routing security proposals [6,32,48,64] for origin authen-
tication (Section 2.2). A number of works [10, 26, 39] argue
that origin authentication can significantly improve routing
security. The RPKI is also the first step towards a com-
prehensive solution for securing the current routing system
with BGPSEC [37] or other proposals surveyed in [14, 31].
See also [65] for clean-slate architectures.

Censorship. Censorship is known to occur at all layers
of the Internet’s architecture; see e.g., [45] for an overview.
There is already evidence [8,56] of routing-based censorship
with BGP; we explored the risk that the RPKI could also
be used for this purpose.

PKI design. Our modified RPKI architecture (Section 5)
is related to an long line of work on public key infrastruc-
ture (PKI) design, culminating in recent efforts to harden
the web PKI [47]. The idea of validating the state of the
RPKI over time is related to certificate pinning [23], and
the idea of hash-chaining manifests is related to append-
only-logs [58] (or see [20] and references therein) and ideas
related to certificate transparency [22, 34, 36]. While these
works suppose that a single logger tracks a stream of ordered
events, we have to deal with the race conditions (Counterex-
ample 2) that result from allowing individual RPKI author-
ities to maintain their own logs (i.e., manifests). The idea
of correcting power imbalances in a hierarchical system also
appeared in work on distributing certificate authorities [66]
and centralized systems like the DNS [1,15,55]; these works
distribute the issuance of objects, but we only distribute re-
vocation (since revocation can harm IP prefix reachability).

The RPKI. Research on the RPKI covers measurement [49,
62] and policy questions [17,43,44,61]. Our earlier HotNets
paper [18] discusses the threat of misbehaving RPKI au-
thorities, but does not provide solutions to any the threats
it discusses; part of Section 3 overlap with [18], but the re-
mainder of this paper presents new results.

Concurrently to our work, there have been efforts within
the IETF to harden the RPKI against authorities that abuse
their power [11,13,33]. Kent et al. [33] considers the threat
of whacked ROAs and of “competing ROAs”. A new ROA
“competes” with an existing ROA if it contains prefixes cov-
ered by the older ROA; a competing ROA is a threat if BGP
is attacked, since the AS in the competing ROA can perform
a (sub)prefix hijack on the AS in the older ROA. Our ar-
chitecture (Section 5) ignores this threat because we focus
on the risk that the RPKI can take IP prefixes offline in the
absence of an attack on BGP. Moreover, any authority that
issues a competing ROA and then attacks BGP can be held
accountable; the competing ROA itself is non-repudiable ev-
idence of the attack. Both [33] and our design defend against
whacked ROAs by comparing the state of the RPKI over
time, but we also detect mirror world attacks and have a
consent mechanism and exact security guarantees.

Systems have also been developed to monitor the RPKI [4,
35,46,57,60]; most use a snapshot of ROAs from the RPKI
to determine the validity state of routes in publicly-available
BGP route collectors [3, 5]. Our detector (Section 4.1) is
complementary because we detect when any change to the
RPKI alters the validity state of all possible routes, not just
the ones visible from a particular BGP vantage point at a
specific time; it can therefore be used as an alert system

(especially when RPKI deployment reaches steady state),
even if a particular vantage point does not obtain a complete
view of all routes announced in BGP. Our tools also provide
a new way of visualizing downgrade events (Section 4.2).

7. CONCLUSION
We have explored a number of techniques to harden the

RPKI against the risk of IP prefix takedowns. We have
built tools for detecting takedowns within the existing RPKI
specifications. We have also proposed changes to the spec-
ifications that (1) entitle parties to consent to revocations
of their IP address space, and guarantee that relying par-
ties can (2) detect misbehavior by RPKI authorities and (3)
obtain a consistent view of information in the RPKI. Given
the security improvements promised by the RPKI [10,26,39],
we hope our work will catalyze further efforts to harden the
RPKI against abusive authorities.

Acknowledgements. We thank Kyle Brogle for help with
early stages of this work, Steve Kent for suggesting the term
“ROA whacking”, FCC CSRIC Working Group 6 - Secure BGP
Deployment for inspiring this project, Tony Tauber, Ed Felten
and various members of the IAB and the IETF SIDR working
group for useful discussions, CAIDA for early access to their AS
to organization mapping [16], and John Byers, Davide Proser-
pio, Ben Fuller, Phillipa Gill, Aanchal Malhotra, our shepherd
Adrian Perrig, and the anonymous SIGCOMM reviewers for in-
sightful comments on this draft. This work was supported by NSF
awards 1017907, 1012798, and 1012910 and a gift from Cisco.

8. REFERENCES
[1] Github: namecoin repository.

https://github.com/namecoin/namecoin.

[2] rcynic software. http://trac.rpki.net.

[3] RIPE RIS raw data.
http://www.ripe.net/data-tools/stats/ris/ris-raw-data.

[4] Rpki spider. http://rpkispider.verisignlabs.com/.

[5] University of oregon route views project.
http://www.routeviews.org/.

[6] W. Aiello, J. Ioannidis, and P. McDaniel. Origin authentication
in interdomain routing. In Proceedings of the 10th ACM
conference on Computer and communications security, pages
165–178. ACM, 2003.

[7] S. Amante. Risks associated with resource certification systems
for internet numbers, 2012.

[8] D. Anderson. Splinternet behind the great firewall of china.
Queue, 10(11):40, 2012.

[9] R. Austein, G. Huston, S. Kent, and M. Lepinski. RFC 6486:
Manifests for the Resource Public Key Infrastructure
(RPKI). Internet Engineering Task Force (IETF), 2012.
http://tools.ietf.org/html/rfc6486.

[10] H. Ballani, P. Francis, and X. Zhang. A study of prefix
hijacking and interception in the Internet. In SIGCOMM’07,
2007.

[11] R. Bush. Responsible Grandparenting in the RPKI. Internet
Engineering Task Force Network Working Group, 2012. http:
//tools.ietf.org/html/draft-ymbk-rpki-grandparenting-02.

[12] R. Bush. RPKI-Based Origin Validation Operation. Internet
Engineering Task Force Network Working Group, 2012.
http://tools.ietf.org/html/draft-ietf-sidr-origin-ops-19.

[13] R. Bush. RPKI Local Trust Anchor Use Cases. Internet
Engineering Task Force (IETF), 2013.
http://www.ietf.org/id/draft-ymbk-lta-use-cases-00.txt.

[14] K. Butler, T. Farley, P. McDaniel, and J. Rexford. A survey of
BGP security issues and solutions. Proceedings of the IEEE,
2010.

[15] C. Cachin and A. Samar. Secure distributed dns. In
Dependable Systems and Networks, 2004 International
Conference on, pages 423–432. IEEE, 2004.

[16] CAIDA. AS to organization mapping.
http://as-rank.caida.org/?mode0=as-intro#as-org.

https://github.com/namecoin/namecoin
http://trac.rpki.net
http://www.ripe.net/data-tools/stats/ris/ris-raw-data
http://rpkispider.verisignlabs.com/
http://www.routeviews.org/
http://tools.ietf.org/html/rfc6486
http://tools.ietf.org/html/draft-ymbk-rpki-grandparenting-02
http://tools.ietf.org/html/draft-ymbk-rpki-grandparenting-02
http://tools.ietf.org/html/draft-ietf-sidr-origin-ops-19
http://www.ietf.org/id/draft-ymbk-lta-use-cases-00.txt
http://as-rank.caida.org/?mode0=as-intro#as-org

[17] Communications Security, Reliability and Interoperability
Council III (CSRIC). Secure bgp deployment. Communications
and Strategies.

[18] D. Cooper, E. Heilman, K. Brogle, L. Reyzin, and S. Goldberg.
On the risk of misbehaving RPKI authorities. HotNets XII,
2013.

[19] J. Cowie. Rensys blog: China’s 18-minute mystery. http://www.
renesys.com/blog/2010/11/chinas-18-minute-mystery.shtml.

[20] S. A. Crosby and D. S. Wallach. Efficient data structures for
tamper-evident logging. In USENIX Security Symposium,
pages 317–334, 2009.

[21] A. de Beaupre. ISC Diary: Multiple Banking Addresses
Hijacked, 2013. http://isc.sans.edu/diary/BGP+multiple+
banking+addresses+hijacked/16249.

[22] P. Eckersley. Sovereign key cryptography for internet domains.
Technical report, EFF, 2011.

[23] C. Evans, C. Palmer, and R. Sleevi, editors. Public Key
Pinning Extension for HTTP. IETF Web Security,
Internet-Draft, November 27 2013. http:
//tools.ietf.org/html/draft-ietf-websec-key-pinning-09.

[24] R. Gagliano, T. Manderson, and C. M. Cagnazzo. Multiple
Repository Publication Points support in the Resource Public
Key Infrastructure (RPKI). Internet Engineering Task Force
(IETF), 2013. http://tools.ietf.org/html/
draft-ietf-sidr-multiple-publication-points-00.

[25] I. Gassko, P. Gemmell, and P. D. MacKenzie. Efficient and
fresh cerification. In H. Imai and Y. Zheng, editors, Public Key
Cryptography, volume 1751 of Lecture Notes in Computer
Science, pages 342–353. Springer, 2000.

[26] S. Goldberg, M. Schapira, P. Hummon, and J. Rexford. How
secure are secure interdomain routing protocols? In
SIGCOMM’10, 2010.

[27] E. Goldman. Sex.com: An update. http:
//blog.ericgoldman.org/archives/2006/10/sexcom_an_updat.htm,
2006.

[28] G. Huston, R. Loomans, and G. Michaelson. RFC 6481: A
Profile for Resource Certificate Repository Structure. Internet
Engineering Task Force (IETF), 2012.
http://tools.ietf.org/html/rfc6481.

[29] G. Huston and G. Michaelson. RFC 6483: Validation of Route
Origination Using the Resource Certificate Public Key
Infrastructure (PKI) and Route Origin Authorizations
(ROAs). Internet Engineering Task Force (IETF), 2012.
http://tools.ietf.org/html/rfc6483.

[30] G. Huston, G. Michaelson, and S. Kent. RFC 6489:
Certification Authority (CA) Key Rollover in the Resource
Public Key Infrastructure (RPKI). Internet Engineering Task
Force (IETF), 2012. http://tools.ietf.org/html/rfc6489.

[31] G. Huston, M. Rossi, and G. Armitage. Securing BGP: A
literature survey. Communications Surveys & Tutorials,
IEEE, 13(2):199–222, 2011.

[32] S. Kent, C. Lynn, and K. Seo. Secure border gateway protocol
(S-BGP). J. Selected Areas in Communications,
18(4):582–592, April 2000.

[33] S. Kent and D. Mandelberg. Suspenders: A Fail-safe
Mechanism for the RPKI. Internet Engineering Task Force
(IETF), 2013.
http://tools.ietf.org/html/draft-kent-sidr-suspenders-00.

[34] T. H.-J. Kim, L.-S. Huang, A. Perrig, C. Jackson, and
V. Gligor. Accountable Key Infrastructure (AKI): A Proposal
for a Public-Key Validation Infrastructure. In Proceedings of
the International World Wide Web Conference (WWW), May
2013.

[35] LACNIC. RPKI looking glass.
www.labs.lacnic.net/rpkitools/looking_glass/.

[36] B. Laurie, A. Langley, and E. Kasper. Certificate transparency.
Network Working Group Internet-Draft, v12, work in
progress. http://tools. ietf.
org/html/draft-laurie-pki-sunlight-12, 2013.

[37] M. Lepinski, editor. BGPSEC Protocol Specification. IETF
Network Working Group, Internet-Draft, July 2012. Available
from http:
//tools.ietf.org/html/draft-ietf-sidr-bgpsec-protocol-04.

[38] M. Lepinski and S. Kent. RFC 6480: An Infrastructure to
Support Secure Internet Routing. Internet Engineering Task
Force (IETF), 2012. http://tools.ietf.org/html/rfc6480.

[39] R. Lychev, S. Goldberg, and M. Schapira. Is the juice worth
the squeeze? BGP security in partial deployment. In
SIGCOMM’13, 2013.

[40] T. Manderson, L. Vegoda, and S. Kent. RFC 6491: Resource

Public Key Infrastructure (RPKI) Objects Issued by IANA”.
Internet Engineering Task Force (IETF), 1973.
http://tools.ietf.org/html/rfc6491.

[41] S. Misel. “Wow, AS7007!”. Merit NANOG Archive, apr 1997.
www.merit.edu/mail.archives/nanog/1997-04/msg00340.html.

[42] P. Mohapatra, J. Scudder, D. Ward, R. Bush, and R. Austein.
RFC 6811: BGP prefix origin validation. Internet Engineering
Task Force (IETF), 2013. http://tools.ietf.org/html/rfc6811.

[43] M. Mueller and B. Kuerbis. Negotiating a new governance
hierarchy: An analysis of the conflicting incentives to secure
internet routing. Communications and Strategies,
(81):125–142, 2011.

[44] M. Mueller, A. Schmidt, and B. Kuerbis. Internet security and
networked governance in international relations. International
Studies Review, 15(1):86–104, 2013.

[45] S. J. Murdoch and R. Anderson. Access Denied: The Practice
and Policy of Global Internet Filtering, chapter Tools and
technology of Internet filtering, pages 57–72. MIT Press, 2008.

[46] NIST. RPKI deployment monitor.
http://www-x.antd.nist.gov/rpki-monitor/.

[47] NIST. Workshop on Improving Trust in the Online
Marketplace, 2013.
http://www.nist.gov/itl/csd/ct/ca-workshop-agenda2013.cfm.

[48] E. Osterweil, S. Amante, D. Massey, and D. McPherson. The
great ipv4 land grab: resource certification for the ipv4 grey
market. In Proceedings of the 10th ACM Workshop on Hot
Topics in Networks, page 12. ACM, 2011.

[49] E. Osterweil, T. Manderson, R. White, and D. McPherson.
Sizing estimates for a fully deployed rpki. Technical report,
Verisign Labs Technical Report, 2012.

[50] A. Peterson. Researchers say u.s. internet traffic was re-routed
through belarus. that’s a problem. Washington Post,
November 20 2013.

[51] A. Pilosov and T. Kapela. Stealing the internet, 2009.

[52] D. Piscitello. Guidance for preparing domain name orders,
seizures & takedowns. Technical report, ICANN, March 2012.

[53] D. Piscitello. The value of assessing collateral damage before
requesting a domain seizure. Technical report, ICANN, 2013.

[54] I. G. Project. In important case, RIPE-NCC seeks legal clarity
on how it responds to foreign court orders, 2011.
http://www.internetgovernance.org/2011/11/23/in-important-
case-ripe-ncc-seeks-legal-clarity-on-how-it-responds-to-foreign-
court-orders/.

[55] V. Ramasubramanian and E. G. Sirer. The design and
implementation of a next generation name service for the
internet. ACM SIGCOMM Computer Communication
Review, 34(4):331–342, 2004.

[56] Rensys Blog. Pakistan hijacks YouTube. http://www.renesys.
com/blog/2008/02/pakistan_hijacks_youtube_1.shtml.

[57] RIPE. RPKI validator.
http://localcert.ripe.net:8088/trust-anchors.

[58] B. Schneier and J. Kelsey. Automatic event-stream notarization
using digital signatures. In Security Protocols, pages 155–169.
Springer, 1997.

[59] W. Sierpiński. Sur une courbe dont tout point est un point de
ramification. Comptes Rendus de l’Acadamie des Sciences,
160:302–305, 1915.

[60] Surfnet. RPKI dashboard.
http://rpki.surfnet.nl/validitytables.html.

[61] The President’s National Security Telecommunications
Advisory Committee. Nstac report to the president on
communications resiliency, 2011.

[62] M. Wählisch, O. Maennel, and T. Schmidt. Towards detecting
BGP route hijacking using the RPKI. In Poster:
SIGCOMM’12, pages 103–104. ACM, 2012.

[63] L. Wang, J. Park, R. Oliveira, and B. Zhang. Internet topology
collection. http://irl.cs.ucla.edu/topology/.

[64] R. White. Deployment considerations for secure origin BGP
(soBGP). draft-white-sobgp-bgp-deployment-01.txt, June 2003,
expired.

[65] X. Zhang, H.-C. Hsiao, G. Hasker, H. Chan, A. Perrig, and
D. G. Andersen. SCION: scalability, control, and isolation on
next-generation networks. In IEEE Security and Privacy (SP),
2011.

[66] L. Zhou, F. B. Schneider, and R. Van Renesse. COCA: A secure
distributed online certification authority. ACM Transactions
on Computer Systems (TOCS), 20(4):329–368, 2002.

http://www.renesys.com/blog/2010/11/chinas-18-minute-mystery.shtml
http://www.renesys.com/blog/2010/11/chinas-18-minute-mystery.shtml
http://isc.sans.edu/diary/BGP+multiple+banking+addresses+hijacked/16249
http://isc.sans.edu/diary/BGP+multiple+banking+addresses+hijacked/16249
http://tools.ietf.org/html/draft-ietf-websec-key-pinning-09
http://tools.ietf.org/html/draft-ietf-websec-key-pinning-09
http://tools.ietf.org/html/draft-ietf-sidr-multiple-publication-points-00
http://tools.ietf.org/html/draft-ietf-sidr-multiple-publication-points-00
http://blog.ericgoldman.org/archives/2006/10/sexcom_an_updat.htm
http://blog.ericgoldman.org/archives/2006/10/sexcom_an_updat.htm
http://tools.ietf.org/html/rfc6481
http://tools.ietf.org/html/rfc6483
http://tools.ietf.org/html/rfc6489
http://tools.ietf.org/html/draft-kent-sidr-suspenders-00
www.labs.lacnic.net/rpkitools/looking_glass/
http://tools.ietf.org/html/draft-ietf-sidr-bgpsec-protocol-04
http://tools.ietf.org/html/draft-ietf-sidr-bgpsec-protocol-04
http://tools.ietf.org/html/rfc6480
http://tools.ietf.org/html/rfc6491
www.merit.edu/mail.archives/nanog/1997-04/msg00340.html
http://tools.ietf.org/html/rfc6811
http://www-x.antd.nist.gov/rpki-monitor/
 http://www.nist.gov/itl/csd/ct/ca-workshop-agenda2013.cfm
http://www.internetgovernance.org/2011/11/23/in-important-case-ripe-ncc-seeks-legal-clarity-on-how-it-responds-to-foreign-court-orders/
http://www.internetgovernance.org/2011/11/23/in-important-case-ripe-ncc-seeks-legal-clarity-on-how-it-responds-to-foreign-court-orders/
http://www.internetgovernance.org/2011/11/23/in-important-case-ripe-ncc-seeks-legal-clarity-on-how-it-responds-to-foreign-court-orders/
http://www.renesys.com/blog/2008/02/pakistan_hijacks_youtube_1.shtml
http://www.renesys.com/blog/2008/02/pakistan_hijacks_youtube_1.shtml
http://localcert.ripe.net:8088/trust-anchors
http://rpki.surfnet.nl/validitytables.html
http://irl.cs.ucla.edu/topology/

	Introduction
	RPKI Primer
	The hierarchical structure of the RPKI.
	How the RPKI prevents threats to BGP.

	Audit: The risk of RPKI takedowns
	Tradeoff: BGP threats vs RPKI threats.
	New threats created by the RPKI.
	Threats created by RPKI authorities.
	Threats that disrupt RPKI object delivery.

	Transparency is (sometimes) difficult.

	Tools to improve transparency
	A tool for detecting downgrades.
	A tool for visualizing downgrades.

	Changes to RPKI specifications
	Design goals.
	Design overview.
	Procedures for RPKI authorities.
	Consent via .dead objects
	Manifests as positive attestations

	Validation procedures for relying parties.
	Security analysis.
	On the necessity of our modifications.
	Data-driven analysis of our design.

	Related work
	Conclusion
	References

