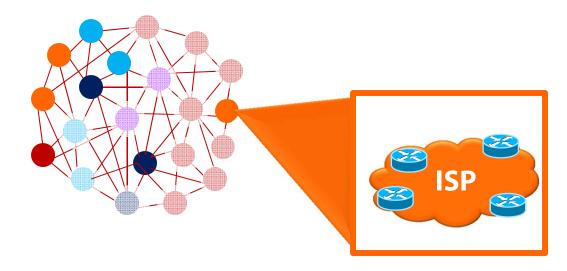
Diffusion of Networking Technologies



Bellairs Workshop on Algorithmic Game Theory Barbados April 2012

Sharon Goldberg Boston University Zhenming Liu Harvard University

Diffusion in social networks: Linear Threshold Model

[Kempe Kleinberg Tardos'03, Morris'01, Granovetter'78]

A node's utility depends only on its neighbors!

I'll adopt the innovation if θ of my friends do!

 $\theta = 1$ $\theta = 2$ $\theta = 3$ $\theta = 4$ $\theta = 6$

Optimization problem [KKT'03]: Given the graph and thresholds, what is the smallest seedset that can cause the entire network to adopt?

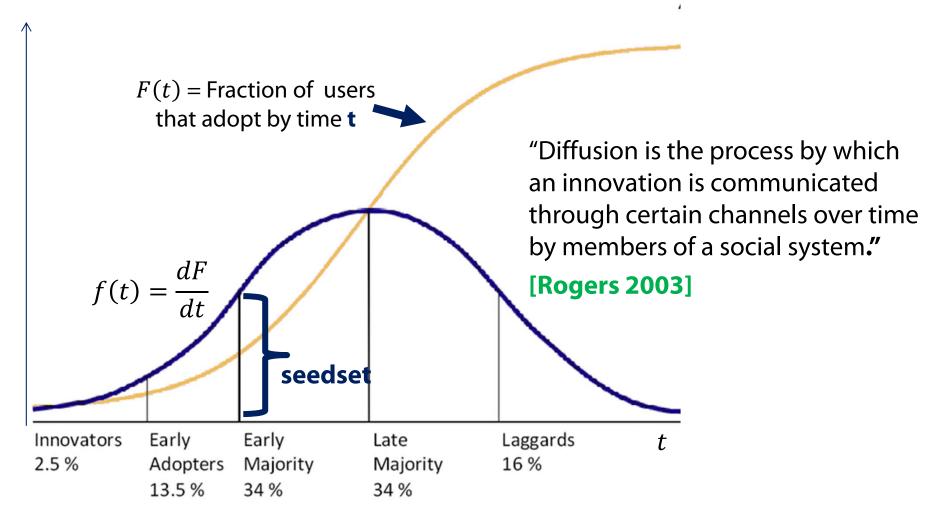
Seedset: A set of nodes that can kick off the process.

What if the **innovation** is a **networking technology** (e.g. IPv6, Secure BGP, QoS, etc)

And the **graph** is the network?

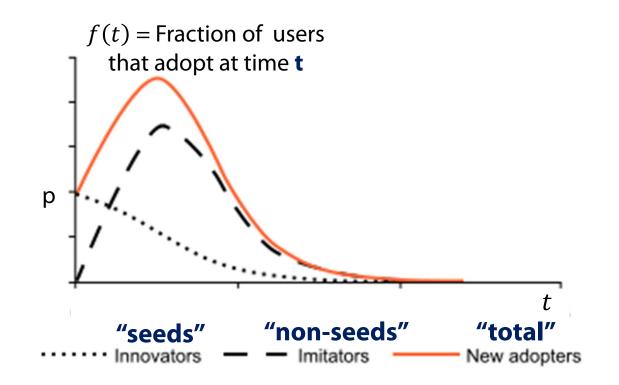
Inspiration: The literature on diffusion of innovations (1)

- Social Sciences: [Ryan and Gross'49, Rogers '62,]
 - General theory tested empirically in different settings (corn, Internet, etc)



Inspiration: The literature on diffusion of innovations (2)

- Social Sciences: [Ryan and Gross'49, Rogers '62,]
 - General theory tested empirically in different settings (corn, Internet, etc)
- Marketing: The Bass Model [Bass'69]
 - Forecasting extent of diffusion, and how pricing, marketing mix effects it



Inspiration: The literature on diffusion of innovations (3)

- Social Sciences: [Ryan and Gross'49, Rogers '62,]
 - General theory tested empirically in different settings (corn, Internet, etc)
- Marketing: The Bass Model [Bass'69]
 - Forecasting extent of diffusion, and how pricing, marketing mix effects it
- **Economics:** "Network externalities" or "Network effects" [Katz Shapiro'85...]
 - Models to analyze markets, econometric validation, etc

"The utility that a given user derives from the good depends upon the **number** of other users who are in the same "network" as he or she."

[Katz & Shapiro 1985]

Inspiration: The literature on diffusion of innovations (4)

- Social Sciences: [Ryan and Gross'49, Rogers '62,]
 - General theory tested empirically in different settings (corn, Internet, etc)
- Marketing: The Bass Model [Bass'69]
 - Forecasting extent of diffusion, and how pricing, marketing mix effects it
- **Economics:** "Network externalities" or "Network effects" [Katz Shapiro'85...]
 - Models to analyze markets, econometric validation, etc
- **Popular Science:** "Metcalfe's Law" [Metcalfe 1995]

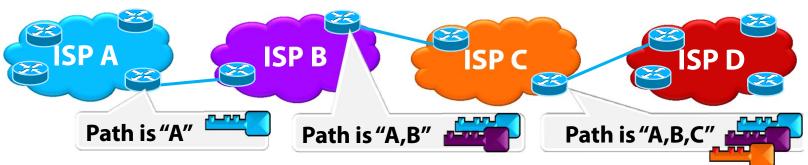
Traditional work: No graph. Utility depends on number of adopters.
[KKT'03, ...]: The graph is a social network. Utility is local.
Our model: Graph is an internetwork. Utility is non-local.

Diffusion in Internetworks: A new, non-local model (1)

Network researchers have been trying to understand why its so hard to deploy new technologies (**IPv6**, **secure BGP**, etc.)

I'll adopt the innovation if I can use it to communicate with at least θ other Internet Service Providers (ISPs)!

- $\theta = 2$ $\theta = 3$ $\theta = 12$ $\theta = 15$ $\theta = 16$
- These technologies work only if **all nodes on a path** adopt them.
 - e.g. **Secure BGP** (Currently being standardized.) All nodes must cryptographically sign messages so path is secure.



Other technologies share this property: QoS, fault localization, IPv6, ...

Diffusion in internetworks: A new, non-local model (2)

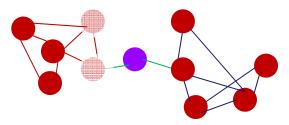
Network researchers have been trying to understand why its so hard to deploy new technologies (**IPv6**, **secure BGP**, etc.)

I'll adopt the innovation if I can use it to communicate with at least θ other Internet Service Providers (ISPs)!

 $\theta = 2$ $\theta = 3$ $\theta = 12$ $\theta = 15$ $\theta = 16$

Our new model of node utility: Node **u**'s utility depends on the size of the connected component of active nodes that **u** is part of.

eg. utility(u) = 5



Seedset: A set of nodes that can kick off the process.

Optimization problem: Given the graph and thresholds, what is the smallest seedset that can cause the entire network to adopt?

Social networks (Local) vs Internetworks (Non-Local)

Minimization formulation: Given the graph and thresholds θ , find the smallest seedset that activates every node in the graph.

Local influence: Deadly hard! Thm [Chen'08]: Finding an $O(2^{\log^{1-\epsilon}|V|})$ -approximation is NP hard.

Non-Local influence (Our model!): Much less hard. Our main result: An **O(r·k·log |V|)** approx algorithm

Maximization formulation: Given the graph, assume **θ's are drawn uniformly at random**. Find seedset of size **k** maximizing number of active nodes.

Local influence: Easy!

Thm [KKT'03]: An **O(1-1/e)**-approximation algorithm. How? 1) Prove submodularity. 2) Apply greedy algorithm.

Non-Local influence (Our model!): The usual submodularity tricks fail.

Our Results

Minimization formulation: Given the graph and thresholds θ , find the smallest seedset that activates every node in the graph.

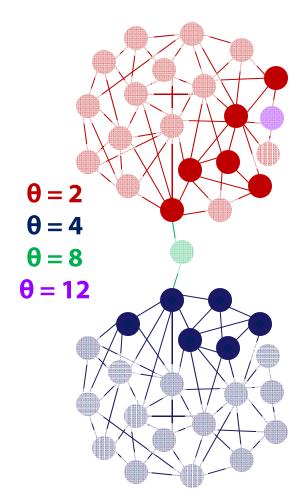
Main result: An O(r·k·log |V|) approx algorithm

r is graph diameter (length of longest shortest path)**k** is threshold granularity (number of thresholds)

Lower Bound: Can't do better than an $\Omega(\log |V|)$ approx. (Even for constant **r** and **k**.)

Lower Bound: Can't do better that an $\Omega(\mathbf{r})$ approx. with our approach.

Terminology & Overview



The problem: Given the graph and thresholds θ , find the smallest seedset that activates every node in the graph.

Activation sequence:

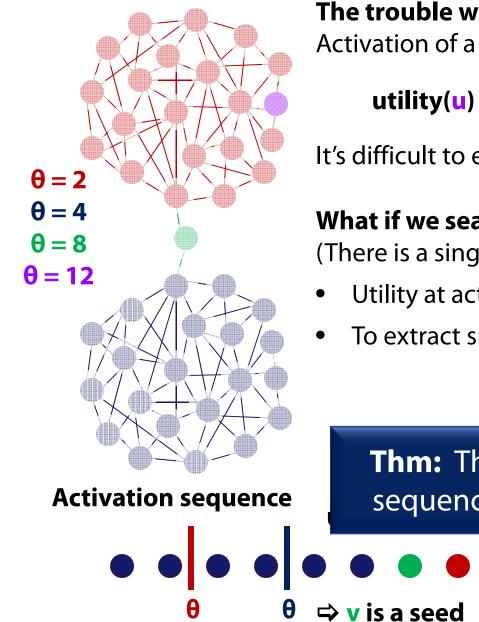
(Time at which nodes activate, one per step)

Talk plan:
Part I: From global to local constraints
Using connectivity.
Part II: Approximation algorithm

Part I: From global to local.

(via a 2-approximation)

Why connectivity makes life better.



The trouble with disjoint components:

Activation of a distant node can dramatically change utility

utility(u) = 7 v activates utility(u) = 15

It's difficult to encode this with local constraints.

What if we search for connected activation sequences?

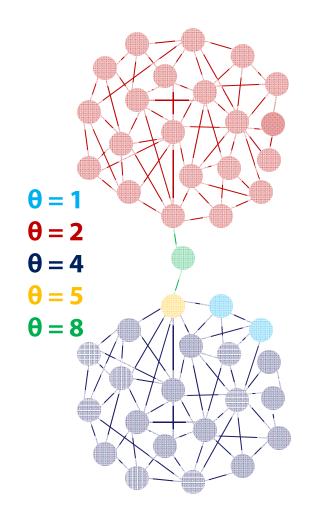
(There is a single connected active component at all times)

- Utility at activation = position in sequence
- To extract smallest seedset consistent with sequence:
 Just check if t > θ!

Thm: There is a **connected** activation sequence which has |seedset| < **20pt**.

 $\mathbf{A} \Rightarrow \mathbf{u}$ is not a seed!

Proof: 3 connected sequence with |seedset| < 2opt. (1)</p>



Proof: Given any **optimal sequence** transform it to a **connected sequence** by adding at most **opt** nodes to the seedset.

Optimal (disconnected) activation sequence

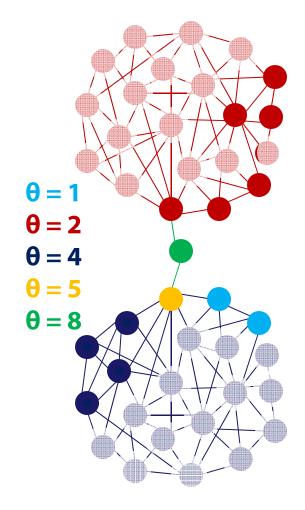
"connectors" (join disjoint components)

Transform: Add connector to seedset, rearrange

We always activate large component first.

Why? Non-seeds in small component must have θ smaller than size of large component ⇒ no non-connectors are added to seedset!

■ Proof: ∃ connected sequence with |seedset| < 2opt. (2)</p>

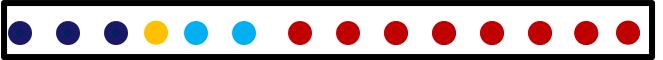


Proof: Given any **optimal sequence** transform it to a **connected sequence** by adding at most **opt** nodes to the seedset.

Optimal (disconnected) activation sequence

Transform: Add connector to seedset, rearrange

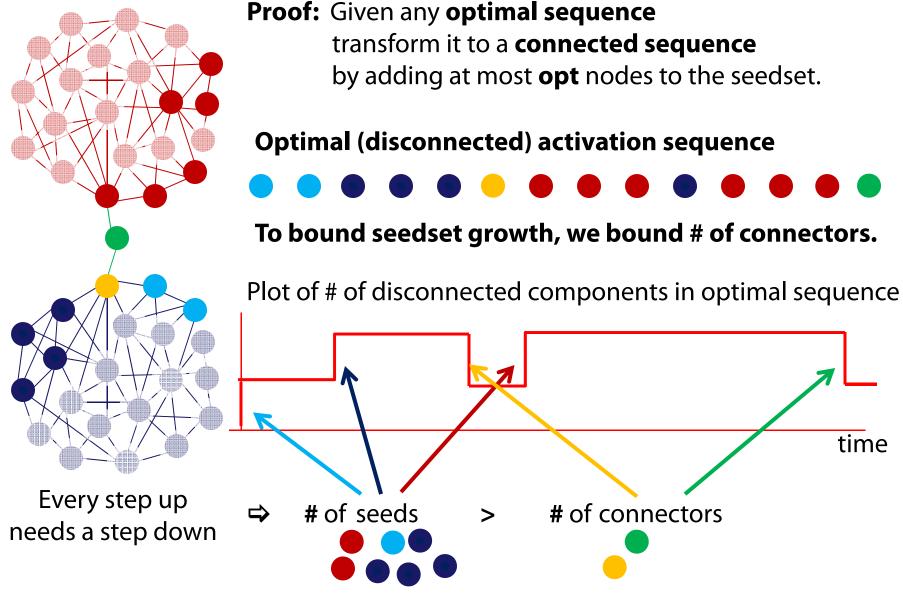
Transform: Add connector to seedset, rearrange



Seedset:

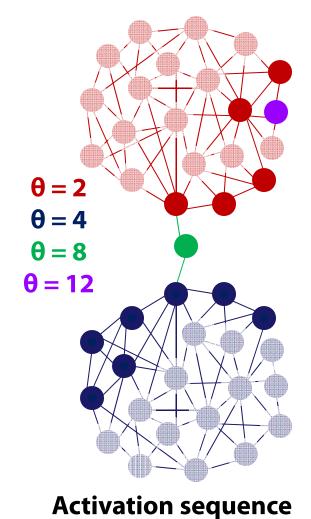
The activation sequence is now connected.

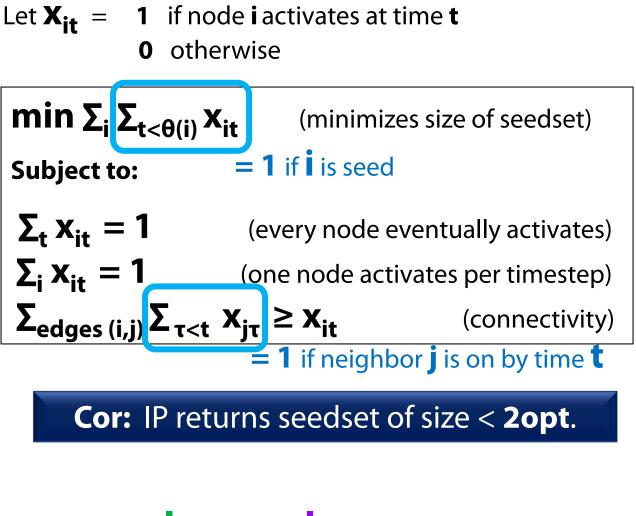
Proof: 3 connected sequence with |seedset| < 2opt. (3)</p>



In the worst case, our transformation doubles the size of the seedset!

This IP finds optimal connected activation sequences





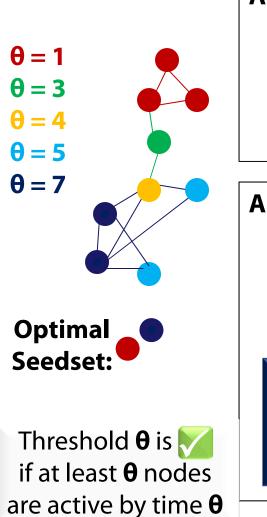
Part II: How do we round this?

Iterative and adaptive rounding with **both** the seedset and sequence.

We return **connected seedsets** instead of **connected activation sequences**. (⇔ O(r)-approx instead of 2-approx)

Rounding the seedset or the sequence?

Because integer programs are not efficient, we relax the IP to a linear program (LP). Now the X_{it} are fractional value on [0,1]. How can we round them to an integers?



Approach 1: Sample the seedset.

i is a seed with probability $\propto \sum_{t < \theta(i)} X_{it}$

Pro: Small seedset.

Con: No guarantee that every node activates.

Approach 2: Sample the activation sequence.

i activates by time t with probability $\propto \sum_{\tau < t} X_{i\tau}$

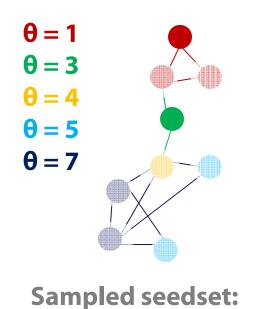
Pro: Every node is activated.

Con: Corresponding seedset can be huge!

Solution?

Approach 3: Sample both together. Then reconcile them adaptively & iteratively.

Approach 3: Sample seedset and sequence together!



Sample seedset: (use Approach 1)

- 1. Let **i** be a seed with prob. **O(log |V|)** $\Sigma_{t < \theta(i)} X_{it}$
- 2. Glue seedset together so it's connected

This grows seedset by a factor of **O(r log |V|)**

Construct an activation sequence deterministically:

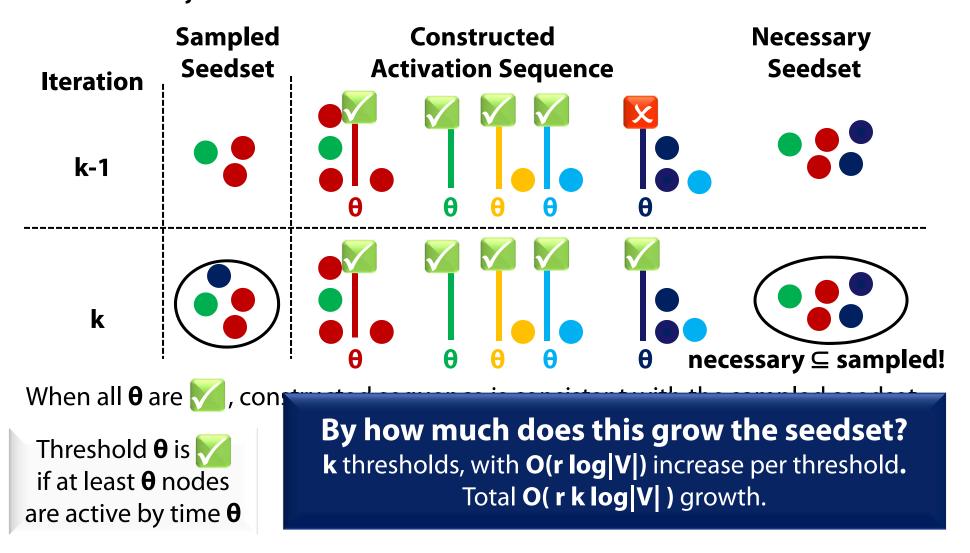
- Activate all the seeds at time 1
- For each timestep **t**
 - For every inactive node connected to active node
 - ... activate it if it has threshold $\theta > t$

Constructed Activation Sequence:

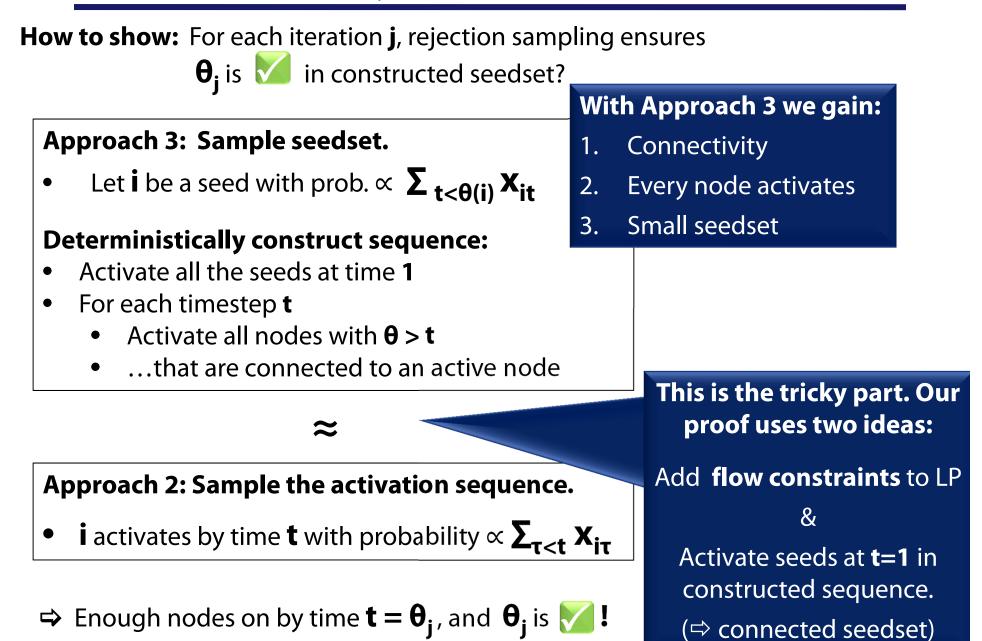
Iteratively round both seedset and sequence!

At iteration j:

- Use rejection sampling to add **extra** nodes to sampled seedset
- ... so that $\boldsymbol{\theta}_{i}$ is \bigvee in constructed activation sequence.



Why does this work?



Wrapping up

Minimization formulation: Given the graph and thresholds θ , find the smallest seedset that activates every node in the graph.

Main result: An **O(r·k·log |V|)**-approx algorithm based on LPs **r** is graph diameter, **k** is number of possible thresholds Algorithm finds **connected seedsets**.

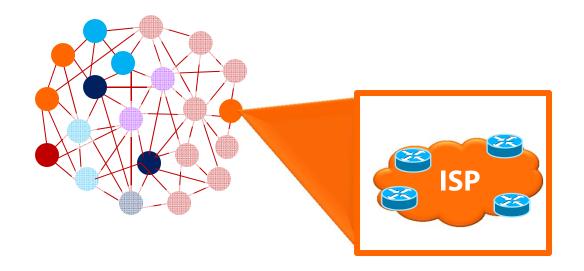
Lower Bound: Can't do better than an $\Omega(\log |V|)$ approx. (Even for constant **r**, **k**)

Lower Bound: Can't do better that an $\Omega(\mathbf{r})$ approx if seedset is connected.

Open problems:

- Can we solve without LPs?
- Can we gain something with random thresholds?
- Apply techniques in less stylized models? (e.g. models of Internet routing.)
- ...

Thanks!



http://arxiv.org/abs/1202.2928