
EbbRT: Elastic Building Block Runtime - Case Studies

Dan Schatzberg, James Cadden, Han Dong, Orran Krieger, Jonathan Appavoo
Boston University

Abstract

We present a new systems runtime, EbbRT, for cloud
hosted applications. EbbRT takes a different approach to
the role operating systems play in cloud computing. It
supports stitching application functionality across nodes
running commodity OSs and nodes running specialized
application specific software that only execute what is
necessary to accelerate core functions of the application.
In doing so, it allows tradeoffs between efficiency, devel-
oper productivity, and exploitation of elasticity and scale.

EbbRT, as a software model, is a framework for con-
structing applications as collections of standard applica-
tion software and Elastic Building Blocks (Ebbs). Elastic
Building Blocks are components that encapsulate runtime
software objects and are implemented to exploit the raw
access, scale and elasticity of IaaS resources to accelerate
critical application functionality. This paper presents the
EbbRT architecture, our prototype and experimental eval-
uation of the prototype under three different application
scenarios.

1 Introduction

EbbRT is a new distributed application runtime for Infras-
tructure as a Service (IaaS) clouds. It is designed to al-
low applications to efficiently and elastically exploit large
numbers of virtual or physical nodes. It is also designed
to reduce the development and operational costs of dis-
tributed cloud applications.

EbbRT is designed around three key methodologies.
First, it is a realization of the MultiLibOS model[?], where
applications are distributed across a mix of general pur-
pose OSs and specialized library OSs. This model takes
advantage of library OSs by using them as accelerators to
one or more processes running on a commodity OS. The
small footprint of system software provided by the library
OS permits the application to rapidly bootstrap and ex-
ploit new nodes. The library can be heavily customized to
adapt the use of the hardware to the specific application
functionality being deployed to it.

Second, it adopts a lightweight, non-preemptive event-
driven programming model. This model is well matched
to the communication and protocol processing nature of
many cloud applications. The implementation in a li-
brary OS eliminates traditional OS boundaries and allows
the mixing of application logic and device interaction.
This enables applications to customize the processing of
any hardware interrupt to improve processor efficiency
for handling external interactions — a critical function of
these applications.

Third it adopts a partitioned object model called Elastic
Building Blocks (Ebbs). A partitioned object model uses
object orientation both as a methodology for structuring
the software as components and as a way to encapsulate
and reuse distributed and multi-core data structures and
operations. Ebbs provides EbbRT with two fundamental
runtime aspects: 1) all system functionality in the library
OS is provided by Ebbs, allowing a developer to com-
pose, customize or configure the library OS to meet an
application’s specialized requirement, 2) the Ebb compo-
nent infrastructure provides developers with a program-
ming model for expressing elasticity and managing the
complexity of distributed and multi-core applications.

This paper describes the EbbRT architecture, prototype
and three use cases that explore different aspects of the de-
sign. These use cases are: 1) an EbbRT implementation of
memcached[10], 2) a port of the V8[12] javascript engine
and node.js[14], and 3) the integration of an elastically
distributed matrix object into the Sage Math[1] environ-
ment.

The goals of EbbRT are to enable the efficiency advan-
tages associated with specialized system software while
supporting the high development productivity associated
with reusable general purpose software. The evaluation
provides initial evidence of the suitability of EbbRT to its
goals.

Efficiency: All three use cases demonstrate improve-
ment in efficiency over the application running on linux.
The third example also demonstrates that we can boot and
initialize new nodes rapidly to efficiently map the elastic-
ity of the application onto the elasticity afforded by cloud
resources.

Productivity: Each of the use cases demonstrate differ-
ent aspects of productivity. The first suggests that we can
write a very simple event-driven application without all
the complexity needed to achieve high performance on a
general purpose OS. The second demonstrates that we can
support a complex, managed run time, allowing existing
applications of the runtime to execute without modifica-
tion. The third demonstrates that we can modify complex
applications incrementally to exploit elasticity in novel
ways.

While new application specific objects were introduced
and different existing objects were customized in all three
use cases, the core EbbRT framework remained stable and
sufficient; suggesting that it may be of broad applicability.

The rest of the paper is structured as follows: The mo-
tivation for the design of EbbRT is presented in Section 2.
Section 3 describes how the three key methodologies in
EbbRT relates to previous work. Section 4 provides an
overview of EbbRT’s architecture and describe our proto-
type. Section 5 evaluates the prototype using the three use
cases.

2 Motivation
Efficiency for applications using a cloud is determined by;
the instructions per cycle (IPC) on the nodes used , the
overheads to perform I/O for these communication bound
applications, and the ability to rapidly grow and shrink
resources to match the application’s varying demands.

Today, distributed cloud applications rely on middle-
ware that run on top of legacy operating systems. We
believe that much greater efficiency will be achieved if
the support for complex cloud applications is done at the
operating system level. We believe that changes in our
model of an OS will be critical if we want to rapidly grow
and shrink resources, exploit very low latency communi-
cation between nodes, and enable complex heterogeneous
systems. Unfortunately, it is a difficult and complex task
to re-write our existing operating system to explore differ-
ent OS functionality; hence innovation is largely happen-
ing above the OS.

The complexity of our existing operating systems is
driven by the need to concurrently handle multiple ten-
ants and applications with diverse functional and resource
management requirements. However, in an IaaS cloud,
nodes are typically dedicated to a single tenant and dis-
tributed application; reducing much of the security and
resource management burden. Further, distributed ap-
plications typically adopt a service-oriented architecture,
where sets of nodes are dedicated to specific application
functionality (e.g. database, in memory cache, application

logic service, etc.). Hence, we can see that much of the
complexity of our legacy OSs is not needed for many of
the nodes in an IaaS cloud.

EbbRT takes advantage of the simplified per-node de-
mands in an IaaS cloud to exploit a different OS model;
the MultiLibOS model. In this simpler environment we
have the opportunity to explore new functionality to ef-
ficiently meet the needs of cloud applications; namely,
direct OS support for the event model common to these
applications, and a programming model (Ebbs) to help de-
velopers reason about complex distributed and multi-core
code.

3 Related Work
EbbRT draws from work on library OSs, event driven soft-
ware, and the use of partitioned object models in both
multiprocessor and distributed systems. In this section we
provide the context for each and how EbbRT relates to and
builds on this previous work.

3.1 Library OSes
Library operating systems[9] organize a single application
and the OS functionality it requires into a single address
space and protection domain. The application code links
directly to the OS code and invokes it via a standard func-
tion call. Library OSs enable reductions in overheads and
the opportunity to specialize and tailor system functional-
ity and interfaces for a particular application’s needs.

In recent years, several efforts have explored how virtu-
alization can be leveraged to provide benefits by directly
executing applications in their own VMs linked with a
library OS [20, 24, 16]. These benefits range from im-
proved security to higher performance. The basic ap-
proach is to extract out a particular function of an appli-
cation and run it along with a library OS in its own virtual
machine.

Generally, library OSs provide some level of ABI[24,
6] or API[20, 16, 19, 23, 3] compatibility. This has been
done in three ways; 1) supporting C and C++ standard
libraries, 2) porting of managed language runtimes such
as Java[3, 16] and Ocaml[20] and/or 3) using a shim layer
to forward system calls to an instance of a standard OS
running in a different VM.

EbbRT: EbbRT provides a distributed runtime which
allows processes of general purpose systems to launch
back-end nodes running a lightweight library OS. The
runtime allows for function offloading from the library
OS to the general purpose system and vice-versa. From a
users perspective, an EbbRT application appears like any

2

other process that is launched, owned and managed by the
user. This front-end process serves both as the user’s ac-
cess point to the application, and also as the access point
for the back-end nodes to the front-end OS resources such
as files and external I/O channels. There are cases under
which an EbbRT application might exploit more than one
front-end node to reduce contention and improve fault tol-
erance. Our current work, however, focuses on the case of
an application having a single front-end process.

EbbRT exploits library OSs for the back-ends to enable
application and hardware specific optimizations. In par-
ticular, the event and Ebb primitives described in the next
sections can interact with the hardware at a very low level.
All services implemented in the library OS can be tuned
to the specific needs of the application.

The EbbRT library OS is distributed with a port of the C
and C++ standard libraries. OS functionality is provided
to these libraries by invoking methods of EbbRT compo-
nents. These components can be implemented to commu-
nicate with the front-end to alleviate the burden for native
local implementation where appropriate. This approach to
compatibility is tractable for supporting managed runtime
environments as demonstrated by our port of the node.js
runtime.

Other library OSs have been developed to be deployed
on a cloud [3, 20], but EbbRT is the first distributed library
OS we are aware of. Other research groups exploring new
operating systems for the cloud [25, 29] are not focused
on a library OS model. We believe that the asymmetric
model adopted by EbbRT, that includes both general pur-
pose and library OSs, is both unique and critical to al-
lowing us to aggressively explore new technologies while
supporting real applications.

3.2 Event Driven Software

Event driven architectures and associated programming
models are designed to reflect and enable applications that
must respond to asynchronous actions. Typically, this is
done with a callback model such that when an action oc-
curs, a programmer-specified routine is invoked by the
system in response.

Hardware inherently supports an event driven model
through its interrupt and exception support. As such, the
software at the lowest level of most operating systems is
written in an event driven manner directly on top of the
hardware mechanisms. Operating system research has
also explored how systems software can be better struc-
tured to directly support network based application pro-
cessing which is inherently event driven[28, 17, 22].

The suitability of event driven programming to network

application programming has made it popular for cloud
and internet applications, so much so that the legacy pro-
cess and thread models of commodity OSs are often aban-
doned in favor of lighter weight user-level primitives for
supporting event driven programming via some form of
explicit stack switching. Similarly, many user-level li-
braries such as Boost.ASIO and libuv have been devel-
oped to ease the burden of writing portable event driven
applications on top of commodity OS features. Fur-
ther, web application runtimes and languages have widely
embraced event driven models and incorporated features
such as promises and lambdas to better facilitate the use of
continuations that are often required when programming
in an event driven fashion.

EbbRT: EbbRT supports a non-preemptive event
driven execution model. Not only does this match the
trends of IaaS application programming, but also, it al-
lows for a lightweight implementation which maps di-
rectly to hardware mechanisms. Hardware interrupts
cause application event handlers to be invoked. Event
handlers run to completion with interrupts disabled. This
allows application software to execute directly off of hard-
ware interrupts without the need for thread scheduling and
context switches. In order to support blocking program-
ming interfaces, software can voluntarily yield the proces-
sor, saving its state, in order to dispatch further events. In
contrast to other event driven operating systems [27, 2],
where continuations required by an event driven system
added tremendous programmer complexity, we make ex-
tensive use of C++11 language features, such as lambdas,
to reduce programmer complexity.

This execution model allows for a number of optimiza-
tions. Per-core data structures can be reused across many
events without the need to synchronize due to the lack
of pre-emption. Additionally, because interrupts are only
enabled at the termination of an event-handler, state does
not need to be saved when an interrupt occurs. At a larger
level, much of the complexity of a scheduling infrastruc-
ture is avoided, allowing applications to easily control
event execution.

The lack of preemption means that a long running event
will make the system non-responsive to new events. Soft-
ware developed directly to the base event model needs to
be carefully designed to avoid this. We have so far found it
natural to implement the core system software under this
constraint. In scenarios where a more complex execution
model is required, the event infrastructure can serve as a
natural foundation for threads and future schedulers.

While much previous work has studied event driven
models and non-preemptive threading, EbbRT’s novelty
lies in exposing the combination of these techniques to

3

general purpose cloud applications in a library OS model.
As we will see, direct low-level support of events in a
library OS can result in major effiency gains for event-
driven cloud applications.

3.3 Partitioned Object Models

The development of high-performance, parallel software
is non-trivial. The concurrency and locality management
needed for good performance can add considerable com-
plexity. Prior work has demonstrated that a partitioned
object model can facilitate the construction of parallel sys-
tem software, both for distributed and shared memory sys-
tems. In a partitioned object model, an object is internally
composed of a set of distributed representatives. Each
representative locally services requests, possibly collabo-
rating with one or more other representatives of the same
partitioned object instance. Cooperatively, all the repre-
sentatives of the partitioned object implement the com-
plete functionality of the object. To the clients of a parti-
tioned object, the object appears and behaves like a tradi-
tional object.

The distributed nature of partitioned object models
make them ideally suited for the design of both multi-
processor and distributed system software, which often
requires a high degree of modularity and yet benefits from
the sharing, replicating and partitioning of data on a per-
object basis. Fragmented Objects(FOs) [7, 21, 26] and
Distributed Shared Objects(DSOs) [5, 13] both explore
the use of a partitioned object model as a programming
abstraction for coping with the latencies in a distributed
network environment, LAN and WAN respectively. Clus-
tered Objects[11, 18, 4] demonstrated the effectiveness of
a partitioned object model in the construction of multi-
processor operating systems.

EbbRT: Core to EbbRT is a partitioned object model
called Elastic Building Blocks (Ebbs) that provide a model
for software components to independently and elastically
expand to react to system-wide demand. An Ebb is associ-
ated with its EbbId, a system wide unique identifier. When
a client invokes an interface of an Ebb, the request is di-
rected to a per-core representative which may communi-
cate with other representatives on other cores or nodes
within the system to fulfill the request. EbbRT puts no
restrictions on how the representatives of an object must
communicate or organize themselves; allowing Ebbs to be
used for a wide range of different software components.

Object invocations are directed efficiently to a repre-
sentative by exploiting a virtual memory region backed
by different physical pages on each core. Representatives
are created on demand. When a request is made to a non-

existent representative a programmer specified fault han-
dler is invoked in order to construct it.

While EbbRT draws heavily from previous work on
partitioned objects, it differs by providing a unified frame-
work for reasoning about both distributed and multi-core
parallelism. In addition, the combination in an event-
driven library OS allows the application developer to di-
rectly reason about parallelism resulting from interactions
with the hardware.

4 Architecture and Prototype

In this section we present the architecture of EbbRT and
our prototype of it.

4.1 Architecture

As discussed, EbbRT is structured as a MultiLibOS and
supports a single instance of an application distributed
across a set of IaaS provided nodes. Figure 1 illustrates
the three layers of the EbbRT software architecture. The

System Base Ebbs

Global Id
Map

Node
Allocator

Ebb
Allocator

Network
Manager

Event
Manager

Local Id
Map

Memory
Allocator

Messenger

Back End
Base SW Mechanisms

EbbRT Library OSStandard OS -- Linux
Front End

Single Protection Domain
& Virtual Address Space

A Standard User Process
linked with EbbLib-Linux

Application Specific Ebbs
Device Driver

Stream
FileSystem

Matrix
Scheduler
Memcached

Figure 1: EbbRT Architecture
lowest layer provides the base software mechanisms for
constructing the address spaces that the Ebb application
will run in. The rest of the EbbRT software, illustrated
in the top two layers, takes the form of Ebbs and execu-
tion occurs on lightweight non-preemptive events. The
system base Ebb layer is mandatory and provides the sup-
port for Ebbs, events and off-node communication. While
the Ebbs in this layer are mandatory, the implementations
themselves can be customized for any particular appli-
cation’s needs or hardware features. Collectively, these
Ebbs define the base interfaces and function of EbbRT,
everything else is specific to an application and linked in

4

as necessary. While implementations may differ, the same
interfaces are provided on the front-ends and back-ends.

4.1.1 Base Software mechanisms

In the case of a front-end, a standard user process linked
to the EbbRT library serves as the EbbRT address space
on the node. However, the back-ends use custom boot
images that contain the base EbbRT Library OS software
that bootstraps the node and maps all the nodes resources
to a single virtual address space running with ring zero
privilege. All physical memory is identity mapped into
this address space.

The base software mechanisms include interfaces for
establishing flexible virtual mappings. For example, this
includes virtual memory regions for applications to spec-
ify their own page fault handler. Additionally, debugging
facilities and boot code are distributed as part of this layer.
A more complete discussion of the base software mecha-
nisms is out of scope for this paper

4.1.2 System Base Ebbs

The system base Ebbs provide interfaces that additional
Ebbs can be built on. A single instance of each of these
Ebbs is provided when the application is initialized. They
are fully replicated and their internal representative con-
struction happens on demand as nodes are added to the
application and the instances themselves are accessed on
a particular node. This layer provides mechanisms for
dynamic allocation and configuration of Ebbs as well as
communication between them. We defer further descrip-
tion of these Ebbs to our discussion of them in the three
use cases.

4.1.3 Application Specific Ebbs

Above the base Ebb layer, arbitrary application specific
Ebbs can be constructed. A critical goal of the architec-
ture is to permit a high degree of specialization and cus-
tomization for an application’s needs through composition
and configuration.

EbbRT’s component architecture was chosen to make
it viable to construct reusable libraries of Ebbs. Fine-
grained, object-oriented decomposition provides many
degrees of freedom to customize even its most basic
system functionality, such as the event processing loop
and interrupt dispatch. In this case, it could be accom-
plished with an application customized implementation
of the Event Manager. EbbRT expects many traditional
bundled-in features of a library OS to be provided as in-
dependent libraries of Ebbs. These include additional de-

vice support, files, network protocols and other system
abstractions. The Ebb library organization extends into
the application as well. The support for libraries of appli-
cation Ebbs that provide application specific components
such as scalable and elastic matrices, are a core value of
the architecture. As such, the final runtime structure of an
Ebb application should be a composition of Ebb instances
that are solely focused and necessary for the application
specific processing that is to be done.

4.2 Prototype
Our EbbRT prototype consists of a main body of C++
software from which two libraries are generated. The
source is composed of approximately 9600 lines of C++
and 330 lines of assembly code. One library generated
is a standard Linux library. This front-end library can be
linked either statically or dynamically to a Linux applica-
tion. The other library is a x86-64 library that can be used
to create a boot image that contains the EbbRT library OS
and can be launched in a KVM virtual machine. All soft-
ware targeting the EbbRT library OS is built using a port
of the GNU C++ toolchain. This allows EbbRT applica-
tions to make use of the C and C++ standard libraries and
runtime features such as exceptions.

In order to explore EbbRT, we have constructed a sim-
ple synthetic IaaS that launches virtual machines. Us-
ing our IaaS interface, a user can dynamically acquire
nodes and boot them with arbitrary images. All nodes
of a particular user are placed on a user specific private
virtual network. EbbRT applications can allocate addi-
tional nodes by invoking a system provided Ebb that calls
out to our IaaS daemon. This daemon launches virtual
machines to boot with the specified image and set of ar-
guments. Another implementation of this Ebb has been
developed targeting the HP Public Cloud.

While our prototype, as stated above, is realized on
KVM, nothing precludes EbbRT from running on a phys-
ical host. We expect that as IaaS providers evolve to hard-
ware systems that make physical provisioning viable, our
prototype can be modified to provide even greater value.

5 Evaluation
We evaluate and explore the EbbRT prototype through
three case studies that evaluate and demonstrate different
aspects of the system. The first use case, memcached,
demonstrates the performance potential possible with our
approach. The second, node.js, discusses our experience
porting a managed runtime and demonstrates the viability
of supporting unmodified applications. The third, Sage,

5

demonstrates the value of the asymmetric model, allowing
software packages to be incrementally modified to exploit
the elasticity and scale of IaaS environments.

5.1 Memcached
This case study describes a memcached[10] server, im-
plemented with EbbRT, to produce a bootable image. This
use case demonstrates that EbbRT enables very simple ap-
plication code to fully exploit hardware and illustrates the
use of the event driven execution model for supporting a
cloud application.

Memcached implements a simple key-value store. It is
designed to be highly performant, and has become a com-
mon benchmark in the examination and optimization of
networked systems. Previous work has shown that mem-
cached incurs significant OS overhead [15], and hence is
a natural target for a library OS.

5.1.1 Implementation

Accept Up Call

Session

 Receive Up Call

Hash Table

Data Data DataData Data Data

header

Send Down Call

Accept
Logic Allocate

Session
Structure

Allocate
response

header

Put: Data in
Hash Table

Get: Link To Data
From Hash Table

Get:
Link Data
to Header

Memory
Allocator

Data Data Data

Network
Manager

Data

...

Data

VirtIO Net
Driver

VirtIO In VirtIO Out

LWIP In/Out

LWIP

Buffers Read and Written By VirtIO Net Device

Receive Queue Direct Transmit

Data

Memcached

Figure 2: EbbRT Memcached Application

The back-end EbbRT memcached server is a simple

single-core application that supports the standard mem-
cached binary protocol. Our implementation is only 277
lines of original C++ code. To a developer with knowl-
edge of the EbbRT interfaces, this basic application can
be developed in a single afternoon.

The upper portion of Figure 2, above the dashed line,
illustrates the logic of our application and its primary
data structures. The application is constructed around two
events, Accept and Receive, denoted by the two up arrows
entering the memcached portion. These are registered
with and invoked by the Network Manager. The appli-
cation code also invokes the Network Manager to send
responses (illustrated with the downward arrow exiting
the memcached portion). Given that only a single core
is used by the application and EbbRT’s non-preemptive
event model, all the call backs are executed sequentially
and run to completion.

The memcached code registers a function to be invoked
when a new connection is accepted. For each connection
the memcached logic creates a session object to process
requests on the connection. The application registers to
receive up calls when data is received on the associated
connection.

The lower portion of Figure 2 illustrates how the EbbRT
library OS internals interact with the memcached applica-
tion. At the bottom the Network Interface Card (The Vir-
tIO Net paravirtualized device) deposits Ethernet frames
into memory buffers. When a buffer is written to, the de-
vice marks an associated descriptor as dirty. When all
buffers are used, the device will drop new Ethernet frames
received.

In the steady higher load states the EbbRT network de-
vice driver Ebb (shown at the bottom of the diagram) uses
a re-occurring idle event which runs when no other events
exist. This causes the device state to be polled when data
is available rather than repeatedly taking interrupts. If no
used buffers are found, interrupts are enabled on the de-
vice and the idle event handler is unregistered. This allows
the processor to drop into a low power state if no requests
are being received. If a used buffer is found, a descriptor
to the buffer is passed to the Network Manager for fur-
ther processing. The memory containing the payload is
never copied, a descriptor is passed through the network-
ing stack all the way to the application.

The Network Manager wraps the Light Weight IP
(lwIP) [8] networking stack that is linked and ported to the
EbbRT Library OS. This software processes the frame and
identifies it with a TCP connection. The Network Man-
ager then invokes the application registered callback for
data reception on that connection.

The memcached application logic will then run to com-

6

pletion (including any network sends) and return back to
this point. This code will continue to return back until
the top frame of the event is exited. At this point, the
Event Manager’s event loop logic will briefly enable in-
terrupts to process any pending interrupts. In the mem-
cached scenario, the only interrupts that might occur are
timer interrupts associated with network processing (e.g.
retransmits, delayed ACKs). The event loop will disable
interrupts and then execute the idle handler.

Jointly the upper and lower portions of Figure 2 illus-
trates the entire path of input processing. What’s critical
to note is how packet data and memory moves up from the
NIC to the application on a single event with no preemp-
tion and no memory copies. This creates a run to comple-
tion packet processing model that encompasses all soft-
ware logic, device, protocol stack and application. In fact,
the application hash table directly stores buffers that were
originally allocated by the device driver when a set is in-
voked. When get is invoked this same memory can be
chained along with a newly allocated message header for
direct transmission by the device.

5.1.2 Evaluation

Environment Experimental measurements were gath-
ered on a single Dell PowerEdge R620 server, equipped
with two 10-core Intel Xeon EV-2670v2 processors, the
Intel C6202 chipset, and 32GB of DDR3 RAM. The host
system ran CentOS 6.5 with Linux 2.6.32. Guest Linux
VMs ran Debian 7.4 with Linux 3.2.0. Our IaaS sim-
ulation daemon, that ran on the host, was configured to
deploy qemu-kvm (version 1.7.5) instances. Each KVM
guest (EbbRT or Linux) was each given a single VCPU,
pinned explicitly to an inactive physical core, and 4GB of
memory. The guests were connected to the physical net-
work via an Ethernet bridge on the host machine, and used
KVM vhost-net.

To evaluate the performance of our memcached imple-
mentation we ran the memaslap benchmark included with
memcached. Memaslap is run on a remote machine con-
nected to the host machine via a switch and a gigabit Eth-
ernet link. In this way, each test accounts for the round trip
latencies of a single network hop (0.10 ms). Memaslap is
configured to do a 9:1 ratio of get operations to set opera-
tions. We run the same experiments on the standard Linux
memcached implementation to provide a comparison.

Figure 3 shows the throughput of memcached for a
small payload as the number of concurrent requests from
the client increase. Furthermore, the EbbRT implemen-
tation’s throughput peaks at around 64 connections, with
about 1.7 times the throughput of the Linux implementa-
tion with the same concurrency.

100 200 300 400 500

Connections

50k

100k

150k

Tr
an

sa
ct

io
ns

 p
er

 s
ec

on
d

EbbRT memcached
Linux memcached

Figure 3: Memcached throughput as a function of number
of concurrent clients

Figure 3 also illustrates that with more than 64 connec-
tions, Linux’s throughput maintains the same rate, while
EbbRT’s gradually degrades. The source of this degrada-
tion in EbbRT is shown in Figure 4. The main degradation
is in the LWIP receive performance. Upon examination of
the code, we discovered that each receive ends up travers-
ing a linked list of all the connections. Moreover, LWIP
moves the most recently used connection to the front of
the list, causing most accesses for this benchmark to need
to traverse the entire list. We believe that this degradation
stops once concurrency reaches 256 because the number
of concurrent packets exceeds the ring buffer of the de-
vice, resulting in TCP retries, and slowing down some
clients. This results in the LWIP optimization having less
of a negative consequence.

Figure 4 also demonstrates another important point.
Even in EbbRT’s highly optimized environment, at low
concurrency, the total time spent in application code is
only around 15% of the total execution time for a single
memcached operation. This demonstrates the importance
of optimizing system software for this kind of application.

Figure 5 shows the performance of memcached, with
a fixed concurrency of 64 sockets (EbbRT’s peak) as the
payload size increases. EbbRT is able to process packets
at a high enough rate to saturate the network at around
800 bytes, while the implementation on Linux is not able
to saturate the network until packets are around 2 kilo-
bytes. Note, the dip in performance for both implemen-
tations occurs when they segment packets across multiple
ethernet frames. We are investigating the source of the
sawtooth shown in EbbRT’s throughput as payload sizes
become large.

7

32 64 128 256 512
Connections

1

2

3

4

5

6

7

8
Ti

m
e

(m
ic

ro
se

co
nd

s)

VirtIO Out
VirtIO In

Memcached
lwIP Out

lwIP In

Figure 4: Per-request latency breakdown of EbbRT mem-
cached

Discussion The performance data above indicates that
the EbbRT implementation of memcached is able to
achieve major performance gains over the Linux based
implementation. Under peak conditions, with small pay-
loads the EbbRT memcached implementation is able to
handle 1.7 times as many requests as the Linux imple-
mentation and saturate the network at a much smaller
packet size. The current performance degradation is due
to the LWIP library used for TCP/IP. While LWIP is small
and simple to port it is not designed or optimized for
high-performance compared to Linux’s mature and server
grade protocol stack. Not only is its performance under
load problematic, but it does not have support for hard-
ware optimizations like segmentation offload. A more
performant TCP implementation for EbbRT is currently
under way.

To understand why performance is so much better with
the EbbRT implementation, its worthwhile to compare
what has to happen with the Linux implementation to the
EbbRT based one. With Linux, the application calls epoll
(a context switch), the kernel wakes it up when a packet
arrives (context switch), the application then reads the
data (context switch and copy) and then writes a reply (an-
other context switch and copy). In contrast with EbbRT all
these system calls and copies are avoided; EbbRT results
in fewer context switches and buffer copies than Linux on
every client request.

One option with an EbbRT implementation is to make
optimizations that are application specific and perform
poorly for other applications. For example, we found
that under extremely heavy load a minor performance im-
provement resulted when we handled packets in reverse

0 500 1000 1500 2000 2500 3000

Payload Size (KB)

50

100

150

Ra
te

 (M
B/

s)

EbbRT memcached
Linux memcached

Figure 5: Memcached throughput as a function of payload
size

order, since starving some clients under very heavy load
limited the number of TCP timeouts observed. This same
change resulted in orders of magnitude degradation on a
simple TCP streaming benchmark. While this optimiza-
tion is not that significant (and was not used while gath-
ering the earlier results), it demonstrates how a brittle
change that only performs well for one application is a
reasonable option in a system like EbbRT.

The results obtained are consistent with Chronos [15],
which achieved similar performance on top of Linux by
bypassing the operating system. The two projects have
adopted very different approaches to achieve the same
goal. It is certainly possible to provide functions on a
general purpose OS that allow applications to be devel-
oped that bypass any specific OS functionality. However,
doing so results in significant OS complexity. Now that
one can easily provision nodes on an IaaS cloud, we be-
lieve the EbbRT design provides a natural alternative to
supporting performance demanding applications that are
a poor match for general purpose systems.

Perhaps the most important result of this memcached
experiment is that the application took only 277 lines
of original code to implement. The effort in designing
EbbRT has made it possible for very simple applications
to be written very close to the hardware.

Our experience in developing memcached also demon-
strates that EbbRT is a natural match for the intrinsic event
driven nature of this kind of application. These applica-
tions, which are fundamentally about handling network-
ing events, are a mismatch for general purpose OSes, on
which an event model is constructed on top of threads
within a protection domain isolated from the device.

8

It should be noted that our current implementation of
memcached is limited to one core. While EbbRT is de-
signed to support multi-core applications, the LWIP li-
brary limits our multicore performance. Removing this
barrier is, for now, future work.

5.2 NodeJS

This case study describes the port of node.js, a JavaScript
environment for server-side applications, to EbbRT. It il-
lustrates three points: 1) EbbRT can support complex
managed code environments, allowing existing software
to run unmodified on the library OS back ends with per-
formance advantages as compared to Linux. 2) EbbRT’s
non-preemptive, event-driven execution environment is
suitable for large, complex applications such as node.js.
3) OS functionality can be offloaded to a general purpose
OS, easing the effort of porting to the EbbRT library OS.

Node.js links with several libraries to provide its event-
driven environment. In particular, the two libraries
which involved the most effort to port were V8, Google’s
JavaScript engine written in C++, and libuv, a library writ-
ten in C which abstracts OS functionality and callback
based event-driven execution. Porting V8 was relatively
straightforward as EbbRT supports the C++ standard li-
brary which V8 depends on. Additional OS dependent
functionality such as clocks, timers and virtual memory
are provided by the base Ebbs of the system.

Porting libuv required significantly more effort; there
are over one hundred functions in the libuv interface
which have OS specific implementations. We did not im-
plement all of these functions, only those that were in-
voked in the process of running various Node.js applica-
tions.

The most complex aspect of the port is mapping the
event loop to the underlying operating system. In EbbRT,
the fundamental challenge was matching the stack con-
ventions between EbbRT’s event loop and libuv’s expec-
tation to have all events processed on a single stack. This
involved constructing mechanisms for the necessary stack
and register management. While this did not involve a
significant amount of code, it was the majority of the in-
tellectual effort. Our approach allows the libuv callbacks
to be invoked from the hardware interrupt in the same way
that the memcached application was able to.

In particular, the networking interfaces provided by
libuv were translated into invocations of the Network
Manager Ebb. Callbacks were installed such that they
were invoked on a single stack. This was sufficient to
allow us to run node.js applications including TCP stream
processors and web servers.

The port effort was significantly simplified by exploit-
ing EbbRT’s model of function offload. For example,
filesystem access was implemented by invoking a FileSys-
tem Ebb. Rather than implement a file system and hard
disk driver within the EbbRT library OS, the Ebb of-
floaded calls to a representative running in a Linux pro-
cess. Our implementation of the FileSystem Ebb is naı̈ve,
sending messages and incurring round trip costs for every
access rather than caching data on local representatives.
However, our simple approach allowed us to exploit func-
tionality provided by Linux in order to accelerate the port-
ing effort.

5.2.1 Evaluation

Memcached allowed us to explore communication ori-
ented software. Largely, optimizations of the protocol
stack would benefit any networked application running on
node.js. Instead, our evaluation focuses on exploring how
the port of node.js enables runtime managed code to exe-
cute on the EbbRT library OS. To do this we study a stan-
dard JavaScript benchmark. In particular, we deployed the
EbbRT library OS without a corresponding front-end to
isolate the library OS’s support for the managed runtime.
The standalone library OS launches node.js with version
7 of the V8 JavaScript benchmark suite. This was com-
pared to a Linux appliance booted with the Ubuntu 14.04
server kernel (3.13.0-12-generic) and a custom RAM disk
which starts node.js with the V8 benchmark suite via the
init script. Both systems power off once the benchmark
suite terminates and node.js exits. All experiments were
performed on the same server as the memcached experi-
ments.

The V8 JavaScript benchmark suite runs seven individ-
ual benchmarks exercising different aspects of the engine
such as memory management, code generation, and vari-
ous compute intensive operations. It is important to note
that none of these benchmarks perform any I/O. The suite
reports a score for each benchmark. The score is com-
puted by inverting the running time of the benchmark and
scaling it by the score of a reference implementation. The
total score is the geometric mean of the individual scores.

Figure 6 illustrates the arithmetic mean of all reported
benchmark suite scores with error bars showing the stan-
dard error. The results indicate that for all benchmarks
except the Earley-Boyer benchmark, V8 running on the
EbbRT Library OS slightly outperforms V8 running on
Linux. The results show a difference in mean total score
of 259.47± 7.33, demonstrating that the benchmark run-
ning under EbbRT shows a 1.74% ± 0.049% improve-
ment in mean total score.

These results illustrate that a library OS can support a

9

managed runtime in a fashion that achieves equivalent re-
sults to a general purpose OS. In fact our straightforward
port achieves a performance advantage as compared to
Linux. However, a library OS can provide further oppor-
tunities to achieve better performance through customiza-
tion of low-level system software. For example, one might
explore modifying V8 to take advantage of direct access
to page tables for garbage collection.

While running these benchmarks within VMs, we ob-
served that the total execution time of the EbbRT VM was
about 10% less than the Linux VM. EbbRT’s smaller foot-
print and faster boot process allowed the VM to run the
benchmark and terminate more quickly. This effect is ex-
plored in detail in the Sage use case.

5.2.2 Discussion

This use case demonstrates that it is possible to get a com-
plex runtime to execute on EbbRT along with the large
body of software it supports. In the memcached scenario,
we demonstrated that EbbRT benefits applications by al-
lowing them to map more closely to the hardware. How-
ever, our memcached implementation was written directly
to our base interfaces. Many applications are considered
to be too large to be completely rewritten to target EbbRT,
despite potential performance improvements. The node.js
result demonstrates that EbbRT’s performance advantages
can be realized by a large body of existing software.

The port of node.js (including V8 and libuv) is 1585
lines of code of which the majority (1237) is in the port of
libuv. The port took a single graduate student two weeks
to bring to level of completion where we were able to
run node.js webservers capable of serving files (exercis-
ing both networking and file access interfaces). The final
boot image which is generated is 5.76 megabytes in total
size.

A key result of this port is the ability to run complex ap-
plications without requiring modification to the system’s
base layers. The node.js application uses the same Event
Manager and Networking Manager as the memcached ap-
plication. We found no need for pre-emption while port-
ing this application. This provides evidence that our ap-
proach leads to constructing reusable software, without
which the effort to port applications to EbbRT would be
daunting.

This use case, along with memcached, shows that the
primitives provided by EbbRT are simple and lightweight,
allowing for low level optimizations, yet the same primi-
tives are also expressive enough to be suitable for a wide
range of different applications.

5.3 Sage

In this case study we extend Sage (mathematics
software)[1] with EbbRT. This study demonstrates how
a process running on a general purpose OS can elastically
exploit an IaaS by offloading functionality to specialized
library OSs.

Sage is a large open source mathematics environment
similar to Matlab. It provides many common math library
routines and objects through a Python interface (typically
accessed via an interactive shell). Sage does supports MPI
interfaces but this puts the burden on a mathematical user
to write explicit parallel code and requires users to setup a
dedicated static MPI cluster. EbbRT integration into Sage
provides a path to using IaaS resources to transparently
enable a user to do large scale parallel computation with
no additional burden.

EbbRT EbbRT EbbRT

EbbRTEbbRTEbbRT

SAGE

LINUX

EbbRT MatrixEbb

Figure 7: EbbRT Sage Matrix Integration.

Following the standard method for adding an extension
to Sage, we created a Python module which can be dy-
namically loaded into the Sage environment. This mod-
ule links with the EbbRT Linux library and provides a
python matrix object which wraps a matrix Ebb. When
this python matrix is instantiated at the command line, an
instance of the matrix Ebb is constructed to back it. Af-
ter calls are made to the python matrix object, they are
forwarded to the matrix Ebb which may internally dis-
tribute its functionality to satisfy its interface. Figure 7
illustrates the realized runtime structure. Using our ex-
perimental IaaS infrastructure, the Ebb matrix behaves as
we expect spawning and destroying VM’s and distributing
the work across them.

In our particular matrix Ebb implementation, the rep-
resentative running within the Sage process on Linux al-
locates nodes from the Node Allocator booted with the
EbbRT Library OS to hold a fixed tile of the matrix val-
ues and perform the core computations on that matrix
tile. The matrix Ebb links with the Boost uBLAS library
to provide local matrix operations. Nodes are allocated
lazily, when an operation requires a particular portion of

10

the matrix for the first time. This structure allows for ma-
trix operations to be done both lazily and in parallel. Our
matrix Ebb implements a number of matrix operations
such as summation, multiplication, element-wise random-
ization, and element access.

From the perspective of a user at the Sage console, the
matrix behaves just as any other python object. In fact, if
an instance of the matrix object is garbage collected (per-
haps due to the python variable going out of scope), the
underlying Ebb is destroyed and any nodes that were al-
located are freed to the Node Allocator. This is a feature
of the particular matrix Ebb implementation. A differ-
ent implementation may co-locate matrices on the same
nodes in which case its destruction logic would encapsu-
late the dependency. Ebb encapsulation ensures that such
differences in implementation would not impact Sage or
the python module.

5.3.1 Evaluation

Parallel matrix computation is extensively studied in High
Performance Computing (HPC). The operations being
done, the algorithms for the operations, the data distribu-
tion and interconnect technology are all important factors
in deciding how to structure and implement a distributed
matrix. The performance of the matrix and its operations
that we have implemented as an Ebb is what one would
expect from a straight-forward distributed matrix imple-
mentation. Portions of an operation that are tile specific
are done on the appropriate node and cross tile portions of
an operation induce communication. As IaaS data-center
inter-connects continue to evolve we expect that there will
be a broad spectrum of choices on how one might imple-
ment such an Ebb matrix.

Independent of any particular matrix Ebb implementa-
tion, the value of EbbRT is its ability to enable a developer
to stitch-in the node allocation and deallocation into Sage,
and the ability to maximize the value of an allocated node.
The latter case breaks this down along three dimensions:
1) the latency in utilizing a newly allocated node (booting
and dispatching application logic), 2) the efficiency in ex-
ecuting the compute intensive work, and 3) ability to max-
imize the I/O capabilities of the node for data exchange.
The last of these three was explored in the memcached use
case which illustrated the ability to customize I/O paths.
We focus our Sage evaluation on the first two dimensions.

In these experiments we construct and study two
bootable images, one EbbRT based and the other Linux.
In the case of EbbRT we package the back-end EbbRT
Sage application matrix code along with test logic. Using
the Ebb Matrix code the test logic allocates a local matrix
tile of a specific size and then performs a set of local only

actions on the tile values. Specifically, the operations in-
clude zeroing the values (as per the requirements of Sage),
randomizing the values and obtaining a sum across all the
values of the tile. This behavior is repeated for a specified
number of iterations and then the VM is powered down
via appropriate firmware calls. The EbbRT test code is
carefully constructed not to do any external communica-
tion. However, it does go through its normal boot process
as a backend which includes initializing the network in-
terface card and protocol stack.

In the case of Linux we build an EbbRT Linux appli-
cation that runs the same back-end EbbRT application
matrix code, however, it uses the hosted version of the
EbbRT library to run on Linux. This application includes
the same test logic as above and provides us with a com-
parable application workload.

While IaaS providers have different image deployment
strategies, one factor that will affect boot latency is the
time to transfer the boot image to the node. In our case,
the EbbRT image is an uncompressed bootable ELF im-
age that is 1.2 Megabytes in size, while the Linux boot
image is in aggregate 31.6 Megabytes in size. It is com-
posed of a compressed Linux kernel of 5.6 Megabytes, the
generic initial compressed ram disk of 24 Megabytes and
the test application (including the libraries it depends on)
that increases the compressed ram disk by an additional
2 Megabytes. These sizes imply a significant difference
in potential transfer times – 240ms vs 10ms at 125Mb/s
(ideal 1gE) and 24ms vs 1ms at 1250Mb/s (ideal 10gE).
While we did not aggressively optimize the size of the
Linux inital ram disk or kernel, we believe our values to
be reasonable while maintaining the systems generality
and robustness.

Linux EbbRT Ratio
Instructions 1915M (0.1M) 73M (0.07M) 0.038
Cycles 1711M (0.7M) 95M (0.06M) 0.056
Seconds 4.01 (0.01) 1.52 (0.02) 0.376

Table 1: Sage Boot Costs.

To obtain a baseline measurement, we ran the Linux
and EbbRT images with the application configured to do
no work. This gives the base costs for the two configura-
tions to boot and initialize the VM, launch the application
and terminate. Using the Linux perf tool we obtain aggre-
gate elapsed time in seconds for the VM along with guest
cycles and instructions. We report mean values along with
standard error in the mean. From the data shown in Ta-
ble 1, we see that EbbRT conducts dramatically less work
within the VM and boots approximately 2.6 times faster.
It is critical to note that the guest cycles and instructions

11

1 2 4 8 16 32 64 128 256 512

Memory Usage (MB)

0

1

2

3

4

5

6

7

Ti
m

e
(s

)
 EbbRT
 Linux

Figure 8: Aggregate time of the VMs lifetime

only reflect work done in the VM and not work done in
the hypervisor on behalf of the VM. However, the elapsed
time reported by perf is the entire time the VM was alive.
Given this, we suspect that the true VM efficiency is not
solely reflected in the IPC computed based on the VM
guest instructions and cycles.

1 2 4 8 16 32 64 128 256 512

Memory Usage (MB)

0.0

0.5

1.0

1.5

2.0

2.5

Ti
m

e
(s

)

 EbbRT
 Linux

Figure 9: Work time of matrix operations

Figures 8 and 9 present the data we obtained from a se-
ries of experiments that vary the matrix size. As the matrix
size increases, the elapsed time grows proportional to the
matrix size, as shown in Figure 8. EbbRT demonstrates a
smaller elapsed time for all sizes. At the largest size Linux
takes 6.17 seconds vs 3.18 seconds for EbbRT (1.94 times
faster). While the reduced boot costs of EbbRT are a dom-
inant factor in the result, it is not sole factor.

Subtracting the boot times (Table 1) we can isolate the

application work phase, as shown in Figure 91. From this
curve we see that EbbRT does the same application work
in a smaller elapsed time. We suspect that this is due to
EbbRT placing fewer demands on the hypervisor through
its use of large pages and simplified address space struc-
ture. Doing so will require fewer guest page-table ac-
cesses and attendant hypervisor processing for their main-
tenance. While not shown here, the application work in
terms of instructions and cycles is roughly the same for
both Linux and EbbRT.

5.3.2 Discussion

The EbbRT Linux front-end library made the integration
of IaaS resources into Sage equivalent to developing any
other extension to Sage. The Sage integration code we
developed (143 lines) remained stable and independent to
any changes we made to the Ebb Matrix functionality it-
self or optimizations of the backend operations.

From the data, we see that EbbRT benefits from its li-
brary OS architecture to achieve greater efficiency both
in initializing the node and in doing the actual compu-
tational work. This latter result is surprising, as the ap-
plication is fundamentally a tight user loop and compu-
tationally bound. However, it is still memory intensive
and address space maintenance can induce overheads that
will increase the elapsed time. In general, a library OS
running a dedicated application can eliminate overheads
associated with general purpose OSs that induce noise
that slow down computational and memory bound appli-
cations. This result is in line with observations made in
the HPC community.

While the results in this evaluation are focused on lo-
cal per-node performance, an important opportunity that
EbbRT enables is the ability to customize the Matrix im-
plementation. Specifically, one could exploit direct access
to the interconnection network and the unique hardware
facilities that it offers. As was demonstrated in the mem-
cached use case, the matrix processing could be integrated
into the interrupt handling. This is particularly attractive
as one could eliminate standard protocol processing and
exploit both hardware and software techniques that are
typically used in HPC, such as RDMA and hardware sup-
port for combine and collective operators.

6 Conclusion
We have introduced a new system software runtime called
EbbRT. EbbRT explores a unique system architecture,

1In this data we observed a single outlier which has been removed.

12

where general purpose OSs are augmented by small li-
brary OSs to exploit the features of an IaaS provider. Our
system adopts a non-preemptive execution model which
allows the event driven nature of modern cloud appli-
cations to take advantage of the hardware directly. We
also explore a new partitioned object model, called Ebbs,
which encapsulate distributed software, allowing compo-
nents to be independently customized and reused.

Our runtime allows applications to run software on
our lightweight library operating system without requir-
ing large investment in porting existing, non-performance
critical functionality. We have demonstrated through our
memcached implementation that by allowing applications
to more directly exploit the hardware, significant perfor-
mance advantages can be realized. Our node.js port shows
that by offloading functionality, we can rapidly port rich
applications to reap the benefits of library operating sys-
tems. Finally, our Sage application shows how we can
integrate our library with existing applications to enable
the use of IaaS resources in a fine-grain fashion.

In contrast to a conventional operating system, which
at some level can be defined to be complete, EbbRT is in-
tended to provide a structure for constantly evolving sys-
tem software to meet new application needs and hardware.
Results presented in this paper give us some confidence
that the architecture will be flexible enough to meet this
challenge.

Serious open questions remain about our system de-
sign. One important assumption of this work is that IaaS
providers will further improve the ability to rapidly provi-
sion hardware on demand. We fear that some value of our
system will be lost if this does not bear true. Another sig-
nificant concern is that the development of different appli-
cations will lead to large vertical stacks of software which
do not compose. Many different implementations of sys-
tem software may also cause a significant configuration
challenge. It remains to be seen how these challenges im-
pact the system.

References

[1] Sage.

[2] M. Accetta, R. Baron, W. Bolosky, D. Golub,
R. Rashid, A. Tevanian, and M. Young. Mach: A
new kernel foundation for unix development. pages
93–112, 1986.

[3] G. Ammons, J. Appavoo, M. Butrico, D. Da Silva,
D. Grove, K. Kawachiya, O. Krieger, B. Rosenburg,
E. Van Hensbergen, and R. W. Wisniewski. Libra: A
Library Operating System for a Jvm in a Virtualized
Execution Environment. In Proceedings of the 3rd
International Conference on Virtual Execution En-
vironments, VEE ’07, pages 44–54, New York, NY,
USA, 2007. ACM.

[4] J. Appavoo, D. D. Silva, O. Krieger, M. Auslander,
M. Ostrowski, B. Rosenburg, A. Waterland, R. W.
Wisniewski, J. Xenidis, M. Stumm, and L. Soares.
Experience distributing objects in an smmp os. ACM
Trans. Comput. Syst., 25(3), Aug. 2007.

[5] H. Bal, M. F. Kaashoek, and A. S. Tanenbaum. A
distributed implementation of the shared data-object
model. In IN USENIX WORKSHOP ON EXPE-
RIENCES WITH BUILDING DISTRIBUTED AND
MULTIPROCESSOR SYSTEMS, pages 1–19, 1989.

[6] A. Belay, A. Bittau, A. Mashtizadeh, D. Terei,
D. Mazières, and C. Kozyrakis. Dune: safe user-
level access to privileged cpu features. In Proceed-
ings of the 10th USENIX conference on Operat-
ing Systems Design and Implementation, OSDI’12,
pages 335–348, Berkeley, CA, USA, 2012. USENIX
Association.

[7] G. Brun-Cottan and M. Makpangou. Adaptable
Replicated Objects in Distributed Environments.
Research Report RR-2593, 1995. Projet SOR.

[8] A. Dunkels. lwip - a lightweight tcp/ip stack.

[9] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr.
Exokernel: An Operating System Architecture for
Application-level Resource Management. In Pro-
ceedings of the Fifteenth ACM Symposium on Oper-
ating Systems Principles, SOSP ’95, pages 251–266,
New York, NY, USA, 1995. ACM.

[10] B. Fitzpatrick. Distributed caching with mem-
cached. Linux J., 2004(124):5–, Aug. 2004.

13

[11] B. Gamsa, O. Krieger, J. Appavoo, and M. Stumm.
Tornado: Maximizing Locality and Concurrency in
a Shared Memory Multiprocessor Operating Sys-
tem. In Proceedings of the third symposium on Op-
erating systems design and implementation, OSDI
’99, pages 87–100, Berkeley, 1999. USENIX Asso-
ciation.

[12] Google. V8 javascript engine.

[13] P. Homburg, M. V. Steen, and A. S. Tanenbaum.
Distributed shared objects as a communication
paradigm. In In Proc. of the Second Annual ASCI
Conference, pages 132–137. University Press, 1996.

[14] Joyent. Node.js.

[15] R. Kapoor, G. Porter, M. Tewari, G. M. Voelker, and
A. Vahdat. Chronos: Predictable Low Latency for
Data Center Applications. In Proceedings of the
Third ACM Symposium on Cloud Computing, SoCC
’12, pages 9:1–9:14, New York, NY, USA, 2012.
ACM.

[16] A. Kivity, D. Laor, G. Costa, P. Enberg, N. Har’El,
D. Marti, and V. Zolotarov. OSv—Optimizing the
Operating System for Virtual Machines. In 2014
USENIX Annual Technical Conference (USENIX
ATC 14), pages 61–72, Philadelphia, PA, June 2014.
USENIX Association.

[17] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The Click Modular Router. ACM Trans.
Comput. Syst., 18(3):263–297, Aug. 2000.

[18] O. Krieger, M. Auslander, B. Rosenburg, R. W. Wis-
niewski, J. Xenidis, D. Da Silva, M. Ostrowski,
J. Appavoo, M. Butrico, M. Mergen, A. Waterland,
and V. Uhlig. K42: building a complete operating
system. In Proceedings of the 1st ACM SIGOPS/Eu-
roSys European Conference on Computer Systems
2006, EuroSys ’06, pages 133–145, New York, NY,
USA, 2006. ACM.

[19] Y. Li, R. West, and E. Missimer. A virtualized sep-
aration kernel for mixed criticality systems. In Pro-
ceedings of the 10th ACM SIGPLAN/SIGOPS Inter-
national Conference on Virtual Execution Environ-
ments, VEE ’14, pages 201–212, New York, NY,
USA, 2014. ACM.

[20] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott,
B. Singh, T. Gazagnaire, S. Smith, S. Hand, and
J. Crowcroft. Unikernels: Library Operating Sys-
tems for the Cloud. SIGPLAN Not., 48(4):461–472,
Mar. 2013.

[21] M. Makpangou, Y. Gourhant, J.-P. Le Narzul, and
M. Shapiro. Fragmented Objects for Distributed Ab-
stractions. In T. L. Casavant and M. Singhal, editors,
Readings in Distributed Computing Systems, pages
170–186. IEEE Computer Society Press, 1994.

[22] D. Mosberger and L. L. Peterson. Making Paths Ex-
plicit in the Scout Operating System. In Proceed-
ings of the Second USENIX Symposium on Operat-
ing Systems Design and Implementation, OSDI ’96,
pages 153–167, New York, NY, USA, 1996. ACM.

[23] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos,
A. Krishnamurthy, T. Anderson, and T. Roscoe. Ar-
rakis: The Operating System is the Control Plane.
In 11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 14), pages 1–16,
Broomfield, CO, Oct. 2014. USENIX Association.

[24] D. E. Porter, S. Boyd-Wickizer, J. Howell, R. Olin-
sky, and G. C. Hunt. Rethinking the Library OS from
the Top Down. In Proceedings of the sixteenth in-
ternational conference on Architectural support for
programming languages and operating systems, AS-
PLOS ’11, pages 291–304, New York, NY, USA,
2011. ACM.

[25] B. Rhoden, K. Klues, D. Zhu, and E. Brewer. Im-
proving per-node efficiency in the datacenter with
new os abstractions. In Proceedings of the 2nd ACM
Symposium on Cloud Computing, SOCC ’11, pages
25:1–25:8, New York, NY, USA, 2011. ACM.

[26] M. Shapiro. SOS: A Distributed Object-oriented
Operating System. In Proceedings of the 2Nd Work-
shop on Making Distributed Systems Work, EW 2,
pages 1–3, New York, NY, USA, 1986. ACM.

[27] R. C. Unrau, O. Krieger, B. Gamsa, and M. Stumm.
Hierarchical clustering: A structure for scalable
multiprocessor operating system design. J. Super-
comput., 9(1-2):105–134, Mar. 1995.

[28] M. Welsh, D. Culler, and E. Brewer. Seda: An archi-
tecture for well-conditioned, scalable internet ser-
vices. In Proceedings of the Eighteenth ACM Sym-
posium on Operating Systems Principles, SOSP ’01,
pages 230–243, New York, NY, USA, 2001. ACM.

[29] D. Wentzlaff, C. Gruenwald, N. Beckmann,
K. Modzelewski, A. Belay, L. Youseff, J. Miller, and
A. Agarwal. An Operating System for Multicore and

14

Clouds: Mechanisms and Implementation. In Pro-
ceedings of the 1st ACM symposium on Cloud com-
puting, SoCC ’10, pages 3–14, New York, NY, USA,
2010. ACM.

15

Crypto DeltaBlue EarleyBoyer NavierStokes RayTrace RegExp Richards Splay Total
0

5000

10000

15000

20000

25000

30000

35000

Sc
or

e

EbbRT
Linux

Figure 6: V8 Benchmarks

16

	Introduction
	Motivation
	Related Work
	Library OSes
	Event Driven Software
	Partitioned Object Models

	Architecture and Prototype
	Architecture
	Base Software mechanisms
	System Base Ebbs
	Application Specific Ebbs

	Prototype

	Evaluation
	Memcached
	Implementation
	Evaluation

	NodeJS
	Evaluation
	Discussion

	Sage
	Evaluation
	Discussion

	Conclusion

