
EbbRT: A Customizable Operating System for Cloud Applications

Dan Schatzberg, James Cadden, Han Dong, Orran Krieger, Jonathan Appavoo
Boston University

Abstract
Efficient use of hardware requires operating system com-
ponents be customized to the application workload. Our
general purpose operating systems are ill-suited for this
task. We present EbbRT, a new operating system that
enables per-application customizations for cloud applica-
tions. EbbRT achieves this through a novel heterogeneous
distributed structure, a partitioned object model, and an
event-driven execution environment. This paper describes
the design and prototype implementation of EbbRT, and
evaluates its ability to improve the performance of com-
mon cloud applications. The evaluation of the EbbRT pro-
totype demonstrates memcached, run within a VM, can
outperform memcached run on an unvirtualized Linux.
The prototype evaluation also demonstrates an 14% per-
formance improvement of a V8 JavaScript engine bench-
mark, and a node.js webserver that achieves a 50% re-
duction in 99th percentile latency compared to it run on
Linux.

1 Introduction
General purpose operating systems must balance the
needs of a diverse set of applications, often sacrificing the
efficiency of any one application to preserve generality.
The conventional wisdom is that high performance can
be achieved through specialization of operating system
paths. Previous systems, including Spin[9] and Vino[37],
have developed mechanisms that enable per-application
customization in general purpose operating systems.

Cloud computing enables a new approach. Cloud appli-
cations are deployed within virtual machines specialized
to a particular role such as a database or webserver. The
operating system only needs to provide the runtime for a

single application. In this context, a general purpose oper-
ating system’s paths provides far more functionality than
most applications require. Instead, an application would
be better served by an environment tailored to its charac-
teristics.

This paper explores a new approach to constructing
high performance cloud applications. In this approach,
the operating system is a body of software comprised of
a set of components that developers can extend, replace
or discard in order to construct and deploy a particular
application. This approach differs from other cloud oper-
ating systems[8, 32, 24] which provide a single software
layer to which applications are developed. We believe our
approach enables greater degrees of customization than
previous systems.

We present EbbRT, a new operating system which en-
ables applications to customize even the lowest layers
of the system while retaining sufficient structure to pro-
mote the reuse and composability of components. EbbRT
uniquely exploits the opportunity of cloud computing to
construct application specific environments. We demon-
strate that EbbRT significantly outperforms Linux on a se-
ries of compute intensive and network bound workloads.
For example, a memcached port to EbbRT, run within
a commodity hypervisor, is able to attain 58% greater
throughput than memcached run within a Linux virtual
machine and is able surpass the performance of mem-
cached running directly on the native Linux host. Addi-
tionally, we demonstrate that EbbRT is able to support a
managed runtime environment, node.js, with modest de-
veloper effort. Our port of this environment is able to at-
tain a 13.9% improvement on a standard javascript bench-
mark and over 50% improvement in 99th percentile la-
tency of a node.js webserver.

This paper is structured as follows: Section 2 presents

1

the high-level EbbRT architecture and design. Section 3
describes our prototype implementation as well as several
components developed with the system primitives. Sec-
tion 4 presents our evaluation of the EbbRT prototype us-
ing several microbenchmarks and two cloud applications.
Section 5 discusses the related work. Finally, Section 6
concludes.

2 System Design
In this section we describe the high-level design of the
system. In particular the three elements of the design dis-
cussed are: 1) a heterogeneous distributed structure, 2) the
modular system structure, and 3) a non-preemptive event-
driven execution environment.

EbbRT
Native

ramcores nics

ramcores nics

OS

VM0 VM1

EbbRT
Native

ramcores nics

VM2
Frontend OS Process linked to EbbRT Hosted library

Backend privileged protection-domain
linked to Native EbbRT library OS

EbbRT
Hosted

Process

Figure 1: High Level EbbRT architecture

2.1 Heterogeneous Distributed Structure
Our design is motivated by the common deployment
strategies of cloud applications. Infrastructure as a Ser-
vice providers enable a single application to be deployed
across multiple machines within an isolated network.
Within this context, there is no need to run general pur-
pose operating systems on all machines of an application,
instead we employ a heterogeneous mixture of general
purpose operating systems and specialized library OSs as
illustrated in Figure 1.

EbbRT consists of a custom single-address space li-
brary OS[14] and associated toolchain (for building

bootable application binaries). We refer to this as a native
environment. EbbRT can also be embedded into a process
of a general purpose OS by linking to a user-level library
which we refer to as a hosted environment of the EbbRT.

A common deployment of a EbbRT application
launches a hosted process and one or more native library
OSs which communicate via a local network. A user is
able to interact with the EbbRT application as they would
any other process of the general purpose OS. A EbbRT
application may provide additional interfaces to the na-
tive portions of the application, or offload functionality
transparently.

The native library OS allows application software to
be written directly to hardware interfaces uninhibited by
legacy interfaces and protection mechanisms of a general
purpose operating system. The native environment sets
up a single address space, basic system functionality (e.g.
timers, networking, memory allocation) and invokes an
application entry point while still running at the highest
privilege level.

The hosted user-space library allows EbbRT applica-
tions to integrate with legacy software. This frees the na-
tive library OSs from the burden of providing compati-
bility with legacy interfaces. Rather, functionality can be
offloaded via RPCs to the hosted environment. This is
critical in enabling a light-weight high-performance na-
tive environment.

2.2 Modular System Structure
EbbRT allows application developers to modify or extend
all levels of the initial EbbRT environment. In order to
support this, a EbbRT application is almost entirely com-
prised of objects we call Elastic Building Blocks (Ebbs).
As with objects in many programming languages, they
encapsulate implementation details behind a well-defined
interface.

The namespace of Ebbs are shared across all machines
in the system (hosted and native). Ebbs are distributed,
multi-core fragmented objects [10, 29, 36]. When an Ebb
is invoked, a local representative handles the call. Repre-
sentatives may communicate with each other to satisfy the
invocation. For example, an object providing file access
might have representatives on a native instance simply
function-ship requests to a hosted representative which
translates these requests into requests on the local file sys-

2

tem. By encapsulating the distributed nature of the object,
optimizations such as such as RDMA, caching, using lo-
cal storage, etc. would all be hidden from clients of the
filesystem Ebb.

Motivated by the desire to enable even the lowest lev-
els of the native environment to be modular, Ebbs must
also have lightweight run-time requirements and nearly
zero-overhead. For example, we define the native mem-
ory allocator as an Ebb (using per-core representatives for
locality) so that it can be easily replaced by a developer.

ramcores nics

ramcores nics

OS

VM0 VM1

ramcores nics

VM2
EC Instance

Encapsulated, per-VM, per-core
Representatives

Figure 2: Runtime structure of an Elastic Building Block.

2.3 Non-preemptive Event-driven Execu-
tion Environment

Execution in EbbRT is non-preemptive. There is one
event loop per-core which dispatches external events,
such as timer completions or device interrupts, and soft-
ware generated events. A registered event handler is in-
voked which runs without preemption. This model is in
contrast to a more standard threaded environment where
multiple threads are multiplexed across one or more cores
with preemption. Our event-driven execution environ-
ment can be efficiently implemented directly on top of
interrupts, providing a low overhead abstraction over the
hardware. This allows application software to run imme-
diately off a device interrupt without the typical costs of
scheduling decisions or protection domain switches.

We support an analogous environment within the
hosted library by providing an event loop using under-
lying OS functionality such as poll or select. While

we cannot achieve the same efficiency in our hosted envi-
ronment, we strive to provide a compatible environment
to allow software libraries to be reused across both hosted
and native instances.

Many cloud applications are driven by external requests
such as network traffic and so the event-driven program-
ming environment provides a natural way to structure the
application. Indeed, many cloud applications use a user-
level library (e.g. libevent[33], libuv[4], Boost ASIO[2])
to provide such an environment.

3 Implementation
In this section we present salient aspects of the EbbRT
implementation. We first highlight the challenges that the
implementation must address given the goals and design
of the system. We then briefly provide an overview of the
software structure and describe the details of the imple-
mentation.

3.1 Challenges

The goals and design of EbbRT raises several challenges
that must be addressed by the implementation.

1. The heterogeneous hybrid structure of EbbRT runs
the risk of imposing greater complexity on devel-
opers. To this end the design heavily relies on the
Ebb component model to mitigate this complexity
through a partitioned object orientation. The Ebb
implementation must then permit the the complexity
associated with distributed representatives structures
to be encapsulated reused but at the same time not
hinder performance

2. The end-to-end event driven programming model
also raises the specter of complexity. The implemen-
tation must help mitigate the attendant complexity
while not sacrificing performance. Event driven pro-
gramming is difficult and not all software conforms
to non-preemptive non-blocking interfaces. The im-
plementation must create an environment in which
application developers can readily program to our
event driven components and yet also utilize exist-
ing blocking based software libraries.

3

3.2 Software Structure Overview

EbbRT is comprised of an x86_64 library OS and
toolchain as well as a Linux userspace library. Both
components are written predominately in C++11 total-
ing 13,930 lines of new code[41]. The native library
OS is deployed along with a modified GNU toolchain
(gcc, binutils, libstdc++) and newlib (libc) that provide
an x86_64-ebbrt target. Application code targeting the
native library OS is compiled with this toolchain and the
resulting binary is a bootable ELF linked with the library
OS. We provide C and C++ standard library implementa-
tions which make it straightforward to port many software
libraries. For example, we use many of the Boost C++ li-
braries [1] within our system. We do not strive for Linux
ABI compatibility or POSIX API compatibility. Some
functions (e.g. fork) would be challenging for us to im-
plement and would restrict the range of optimizations that
we could enable.

3.3 Details

In the remainder of this section we describe five aspects of
the implementation that addresses the challenges of 3.1.

3.3.1 Events

Both the hosted and native environments provide an event
driven execution model. Within the hosted environment
we use the Boost ASIO library[2] in order to interface
with the system APIs. Within the native environment, our
event-driven API is implemented directly on top of the
hardware interfaces. Here, we focus our description on
the implementation of events within the native environ-
ment.

When the native environment boots an event loop per
core is initialized. Events are non-preemptive and typ-
ically generated by a hardware interrupt. Devices can
allocate a hardware interrupt from the EventManager
and then bind a handler to that interrupt. When a hard-
ware interrupt fires, a corresponding exception handler
is invoked. Each exception handler execution begins on
the top frame of a per-core stack. The exception handler
checks for an event handler bound to the corresponding
interrupt and then invokes it. When the event handler re-

turns, interrupts are enabled and more events can be pro-
cessed.

Applications can also Spawn synthetic events on any
core in the system. The Spawn method of the Event-
Manager receives an event handler which is invoked
from the event loop. Spawned events are only executed
once. If an application wishes to have a reoccurring
event handler invoked, then it may be installed as an
IdleHandler. In order to prevent interrupt starvation,
when an event completes the EventManager 1) En-
ables then disables interrupts, providing a short window to
handle any pending interrupts. 2) Dispatches a single syn-
thetic event, if one exists. 3) Invokes all IdleHandlers
and then 4) Enables interrupts and halts. If any of these
steps result in an event handler being invoked, then the
process starts again at the beginning. This way, hardware
interrupts and synthetic events are given priority over re-
peatedly invoked idle handlers.

As an example, a network card driver is able to imple-
ment adaptive polling in the following way: An interrupt
is allocated from the EventManager and the device is
programmed to fire that interrupt when packets are re-
ceived. The event handler will then process each received
packets to completion and return to the EventManager
which will re-enable interrupts. If the interrupt rate ex-
ceeds a configurable threshold, then the driver disables
the interrupt and installs an IdleHandler to process
received packets. The EventManager will then repeat-
edly call the idle handler, effectively polling the device
for more data. When the packet arrival rate drops below a
configurable threshold, the driver re-enables the interrupt
and disables the idle handler to return to interrupt-driven
execution. While our EventManager implementation
is simple, it provides sufficient functionality to implement
this dynamic behavior.

A common challenge associated with event-driven pro-
gramming occurs when a code path must be modified to
wait for the completion of an asynchronous event (e.g.
write a file). In traditional systems, a thread will simply
block until the event completes and wakes up the thread
to continue. However, in non-blocking systems this is not
possible. Instead, all calls along the path must pass along
a continuation to be invoked when the event completes.
Adya et al.[5] refer to this as stack ripping. Given our
desire to enable reuse of existing software, we use a hy-
brid model that allows events to explicitly save and restore

4

event state (the stack and volatile register state). This
has allowed us to quickly port software libraries which
require a typically blocking system call. At the point
where the block would occur, the current event saves its
state and processing of pending events is resumed. The
original event state can be restored and its execution re-
sumed when the asynchronous work completes. The save
and restore event mechanisms enable explicit cooperative
scheduling between events in order to provide familiar
blocking semantics.

Our adoption of non-preemptive programming allevi-
ates the need for a scheduler. Additionally, as we will
discuss later, many components of EbbRT use per-core
data structures to achieve multi-core scalability. In a pre-
emptive system, accessing per-core data structures would
require atomic operations, which can be expensive even if
uncontended [13]. In EbbRT, events cannot be preempted
and will never be migrated across cores. This allows de-
velopers to use non-atomic operations to access per-core
data structures.

3.3.2 Elastic Components

Nearly all software in EbbRT is written as Elastic Com-
ponents (Ebbs) which encapsulate both the data and func-
tion of a software component. An Ebb provides a func-
tional interface using a standard C++ class definition. Ev-
ery instance of an Ebb has a system-wide unique EbbId
(32 bits in our current implementation). Software invokes
the Ebb by converting the EbbId into an EbbRef which
can be dereferenced to a per-core representative which is
merely a reference to an instance of the underlying C++
class. We use C++ templates to implement the EbbRef
generically for all Ebb classes.

Ebbs may be invoked on any machine or core within
the application. Therefore, it is necessary for initialization
of the per-core representatives happen on-demand. In the
case that an Ebb is short-lived and only be accessed on
one core, initializing representatives aggressively would
incur significant overhead. An EbbId provides an offset
into a virtual memory region backed with distinct per-core
pages which holds a pointer to the per-core representative
(or null if it does not exist). When a function is called on
an EbbRef, it checks the per-core representative pointer -
in the common case where it is non-null, it is dereferenced
and the call is made on the per-core representative. If the

pointer is null, then a type specific fault handler is invoked
which must return a reference to a representative to be
called or throw a language-level exception. Typically a
fault handler will construct a representative and store it in
the per-core virtual memory region so future invocations
will take the fast-path.

To construct a representative may require communica-
tion with other representatives either within the machine
or on other machines. EbbRT provides additional Ebb’s
and facilities that implement distributed hash tables and
attendant messaging services. These facilities that span
and enable communication between the EbbRT native and
hosted instances and utilize network communication as
needed. We omit discussion of these aspects since they
are not pertinent to the aspects of EbbRT we evaluate in
this paper.

Ebbs are both flexible and efficient. Previous systems
providing a partitioned object model either used relatively
heavy weight invocation across a distributed system, or
more efficient techniques constrained to a shared memory
system. Ebbs are unique in their ability to accommodate
both use cases. The fast-path cost of an Ebb invocation is
one predictable conditional branch and one unconditional
branch more than a normal C++ object dereference. Ad-
ditionally, our use of static dispatch (EbbRef’s are tem-
plated by the representative’s type) enables compiler op-
timizations such as function inlining. This makes Ebbs
suitable for components with high-performance demands
such as the memory allocator.

3.3.3 Memory Allocation

Memory allocation is a performance critical facet of many
cloud applications and our focus on short-lived events
puts increased pressure on the memory allocator to per-
form well. Here we present our default native memory
allocator. We highlight a number of aspects of the alloca-
tor which demonstrate the synergy of the EbbRT design.

The EbbRT memory allocation subsystem is similar to
that of Linux. The lowest-level allocator is the page al-
locator Ebb which allocates power of two sized pages
of memory. Our default implementation uses per-numa-
node buddy-allocators. On top of the page allocator are
slab allocators which can be used to allocate fixed size
objects. Our default slab allocator uses per-core and per-
numa-node representatives to store object free-lists and

5

partially allocated pages. This design is based on Linux’s
SLQB allocator [12]. The general purpose memory al-
locator (invoked via malloc), is implemented using many
slab allocators, each allocating objects of different sizes.
To serve a request, the slab allocator with the closest size
greater or equal to the requested size is invoked. Allo-
cations larger than the largest slab allocator size instead
allocate a virtual memory region and map in pages from
the page allocator.

All three allocators are defined using Ebbs which al-
low any one of the components to be replaced or modified
without impacting the others. In previous systems [25],
the overhead of a partitioned object model prevented its
use for high performance components such as the mem-
ory allocator. In contrast, Ebbs are lightweight enough to
be usable by our memory allocator. In fact, because our
implementation uses C++ templates for static dispatch,
the compiler is able to optimize calls across an Ebb in-
terface, something that previous partitioned object mod-
els prevented. Most calls to malloc pass a size which is
known at compile time. We noticed that these calls were
being optimized to directly invoke the correct slab alloca-
tor within the general purpose allocator.

The same general purpose allocator is used for system
level allocations (e.g. networking data structures) as well
as for application level allocations. A key property of the
allocator is that, except for very large allocations, alloca-
tions are serviced from identity mapped physical memory.
This allows application software to perform zero-copy I/O
with data allocated from the standard memory allocator
rather than needing to allocate memory specifically for
DMA.

Another property of the allocator is that, due to the lack
of preemption, most allocations can be serviced from a
per-core cache without any synchronization. Avoiding
atomic operations is so important that high performance
allocators like TCMalloc[20] and jemalloc[16] use per-
thread caches to do so. These allocators then require com-
plicated algorithms to balance the caching across a poten-
tially dynamic set of threads. In contrast, the number of
cores is typically static and generally not too large - sim-
plifying EbbRT’s balancing algorithm.

Facebook discovered that running applications using
TCMalloc for long periods of time caused the system to
begin paging out memory despite the application not in-
creasing its memory usage[15]. The culprit was TCMal-

loc’s per-thread caching. From the application’s perspec-
tive, memory had been freed, however from the kernel’s
perspective, the memory was still in use because the mem-
ory was cached in the user-level memory allocator and
had not been freed to the kernel. The root cause is that the
allocator lacks sufficient knowledge to know how much
it should cache. In contrast, the EbbRT page allocator
knows when there are few available pages and can upcall
the slab allocators to flush their caches. In fact, any soft-
ware can request to be upcalled when memory runs low
to clear their caches.

Our memory allocator demonstrates some of the advan-
tages provided by EbbRT’s design. First, we use Ebbs
to create per-core representatives for multi-core scalabil-
ity and also to provide encapsulation to enable the dif-
ferent allocators to be replaced. Second, the use of non-
preemptive events enables us to use the per-core represen-
tatives without synchronization. And third, the library OS
design enables tighter collaboration between system com-
ponents and application components - as exemplified by
the page allocator communicating memory pressure up to
higher-level caches.

3.4 Lambdas and Futures
One of the core principles of our design is mitigating
complexity. Critics of event-driven programming point
out several properties which place increased burden on
the developer. One concern is that event-driven program-
ming tends to obfuscate the control flow of the applica-
tion. Tasks usually invoke a function, passing in an event
handler to be invoked upon completion of some future
task (e.g. I/O). The event handler is invoked within a dif-
ferent context than the original function was invoked and
so it falls on the programmer to manually save and restore
state across invocations.

A new C++ feature, lambdas, allow programmers to
define anonymous functions inline. Lambdas can also
capture local state so that it can be referred to when the
lambda is invoked. This removes the burden of manually
saving and restoring state and also makes code easier to
follow. We use lambdas ubiquitously in EbbRT to con-
struct continuations.

Another concern with event-driven programming is that
error handling is much more complicated. The predomi-
nant mechanism for error handling in C++ is exceptions.

6

1 // Route and Send an Ethernet frame
2 Future<void> EthArpSend(uint16_t proto, const Ipv4Header& ip_header, MutableIOBuf buf) {
3 Ipv4Address local_dest = Route(ip_header.dst);
4 Future<MacAddr> future_macaddr = ArpFind(local_dest);
5 return future_macaddr.Then(
6 // Lambda definition
7 [buf = move(buf), proto](Future<EthAddr> f) {
8 auto& eth_header = buf->Get<EthernetHeader>();
9 eth_header.dst = f.Get();

10 eth_header.src = Address();
11 eth_header.type = htons(proto)
12 Send(move(buf));
13 });
14 }

Figure 3: Network code path to route and send and Ethernet frame.

When an error is encountered, an exception is thrown
and the stack unwound to the most recent try/catch block
which will handle the error. The automatic stack unwind-
ing skips intermediate code which may not know how
to handle the error. Because event-driven programming
splits one logical flow of control across multiple stacks,
exceptions must be handled at every event boundary. This
puts a burden on the developer to catch exceptions at addi-
tional points in the code and either handle them or forward
them to an error handling callback.

Our solution to this problem is our implementation of
monadic futures. Figure 3 illustrates a code path in the
EbbRT network stack. Line 4 issues a lookup into the
ARP cache to translate an IP address to the corresponding
MAC address. This may require an asynchronous ARP
request to complete the translation. The ArpFind func-
tion returns a Future<EthAddr>. A future cannot be
directly operated on. Instead, a function can be applied
to it using the Then method (line 5). This function is in-
voked once the value is produced. The function receives a
fulfilled future as a parameter and can use the Getmethod
(line 9) to retrieve the underlying value. In the event that
the MAC address translation is cached, this function is
invoked synchronously.

The Then method of a future returns a new future rep-
resenting the value to be returned by the applied func-
tion, hence the term monadic. This allows other software
components to chain further functions to be invoked on

completion. In this example, the EthArpSend method
returns a Future<void> which merely represents the
completion of some action, and provides no data.

Futures also aid in error processing. Each time Get is
invoked, the future may throw an exception representing a
failure to produce the value. If not explicitly handled, the
future returned by Then will hold this exception instead
of a value. The only invocation of Then that must han-
dle the error is the final one, any intermediate exceptions
will naturally flow to the first function which attempts to
catch the exception. This behavior mirrors the behavior
of exceptions in synchronous code. In this example, any
error in ARP resolution will be propagated to the future
returned by EthArpSend and handled by higher-level
code.

C++ has an implementation of futures in the standard
library. Unlike our implementation, it provides no Then
function, necessary for chaining callbacks. Instead users
are expected to block on a future (using Get). Other lan-
guages such as C# and Javascript do provide monadic fu-
tures similar to ours though we are not aware of any im-
plementation for a native environment.

Futures are used pervasively in interface definitions for
Ebbs we have developed and lambdas are used in place of
more manual continuation construction. Our experience
using lambdas and futures has been positive. Initially,
some members of our group had reservations about us-
ing these unfamiliar primitives as they hide a fair amount

7

of potentially performance sensitive behavior. As we have
gained more experience with these primitives, it has been
clear that the behavior they encapsulate is common to
many cases. Futures in particular encapsulate sometimes
subtle synchronization code around installing a callback
and providing a value (potentially concurrently). While
this code has not been without bugs, we have more confi-
dence in its correctness based on its use across EbbRT.

3.4.1 Network Stack

One advantage of the EbbRT design is that application
software can pass memory to and from hardware devices
without copying. This is possible because all of physical
memory is identity mapped and memory is never paged
out. This means that aside from application managed
regions of virtual memory, the address space is physi-
cally contiguous and pinned, a requirement for device
DMA. Additionally, there is no address space separation
between “system” components and “application” compo-
nents. This allows EbbRT to avoid expensive data copies
in cases where most systems must.

EbbRT includes a custom network stack for the na-
tive environment providing IPv4, UDP/TCP, and DHCP
functionality. The network stack is designed to pro-
vide an event-driven interface to applications and mini-
mize multi-core synchronization while enabling pervasive
zero-copy. The network stack does not provide a standard
BSD socket interface, but rather enables tighter integra-
tion with the application to manage the resources of a net-
work connection.

During the development of EbbRT we found it nec-
essary to create a common primitive for managing data
that could be received from or sent to hardware devices.
To support the development of zero-copy software, we
created the IOBuf primitive. An IOBuf is a descrip-
tor which manages ownership of a region of memory as
well as a view of a portion of that memory. Rather than
having applications explicitly invoke read with a buffer
to be populated, they install a handler which is passed
an IOBuf containing network data for their connection.
This IOBuf is passed synchronously from the device
driver through the network stack. The network stack does
not provide any buffering, it will invoke the application as
long as data arrives. Likewise, the interface to send data
accepts a chain of IOBufs which can use scatter/gather

interfaces.

Most systems have fixed size buffers in the kernel
which are used to pace connections (e.g. manage TCP
window size, cause UDP drops). In contrast, EbbRT al-
lows the application to directly manage its own buffering.
In the case of UDP, an overwhelmed application may have
to drop datagrams. For a TCP connection, an applica-
tion can explicitly set the window size to prevent further
sends from the remote host. Applications must also check
that outgoing TCP data fits within the currently advertised
sender window before telling the network stack to send it
or buffer it otherwise. This allows the application to de-
cide whether or not to delay sending to aggregate multiple
sends into a single TCP segment. Other systems typically
accomplish this using Nagle’s algorithm which is often
associated with poor latency. An advantage of EbbRT’s
approach to networking is the degree to which an appli-
cation can tune the behavior of its connections at runtime.
We provide default behaviors which can be inherited from
for those applications which do not require this degree of
customization.

One challenge with high-performance networking is
the need to synchronize when accessing connection
state [35]. EbbRT stores connection state in an RCU [30]
hash table which allows common connection lookup op-
erations to proceed without any atomic operations. Due to
the event-driven execution model of EbbRT, RCU is a nat-
ural primitive to provide. Because we lack pre-emption,
entering and exiting RCU critical sections have no cost.
Connection state is only manipulated on a single core
which is chosen by the application when the connection
is established. Therefore, common case network opera-
tions require no synchronization.

The EbbRT network stack is an example of the flexi-
bility our design enables by not pursuing complete com-
patibility with legacy interfaces. By involving the appli-
cation in network resource management, the networking
stack avoids significant complexity. Historically, network
stack buffering and queuing has been a significant factor
in network performance. EbbRT’s design does not solve
these problems, but instead enables applications to more
directly control these properties and customize the system
to their characteristics.

8

4 Evaluation
Our evaluation compares the performance of the native
EbbRT environment to Linux. We run our evaluations
on a server containing two 12-core Xeon E5-2690 pro-
cessors run at 2.6GHz with 120GB of RAM. For net-
worked evaluations, we run client applications on another
server containing a 20-core Xeon E5-2670 run at 2.5GHz
with 32GB of RAM. Both servers contain a 10GbE Intel
X520 network card (82599 chipset) directly connected to
each other. Both machines have been configured to dis-
able Turbo Boost and dynamic voltage frequency scaling.
Additionally, we disable IRQ balancing and explicitly pin
NIC IRQ affinity.

The EbbRT native library OS targets KVM guests. In
order to evaluate its performance we run EbbRT applica-
tions within a virtual machine. All Linux tests run a min-
imal ramdisk image [3] of Debian 8.0 (jessie) with Linux
kenel version 3.16. Unless state otherwise, Linux appli-
cations are similarly run within a virtual machine. Vir-
tual machines are deployed using QEMU verion 2.2.1 us-
ing the KVM kernel module with the virtio-net par-
avirtualized network card supported by the vhost kernel
module. We enable multiqueue receive flow steering for
multicore experiments. All Linux application threads are
pinned to a dedicated physical core and we avoid using
hyperthreads.

The evaluations are broken down into two parts; 1)
micro-benchmarks designed to quantify the base over-
heads of the primitives in our native environment and
2) macro-benchmarks that exercise EbbRT in the context
of two applications. While the hosted library is a criti-
cal component of our system it is not intended for high-
performance but rather to facilitate the integration of func-
tionality between a general purpose OS process and native
instances of EbbRT. Therefore we focus our evaluation on
the native environment.

4.1 Microbenchmarks
The first two micro-benchmarks evaluate the overheads
of Ebb invocation and memory allocation. We conclude
with a micro-benchmark that evaluates the latencies and
bandwidth of our network stack. This benchmark exer-
cises several of the system features including idle event
processing, lambdas and IOBuf mechanisms.

4.1.1 Ebb Invocation

Method Cycles

Inline 1052
No Inline 4047
Virtual 5038
Inline Ebb 1448

Table 1: Object dispatch costs

Table 1 shows the overhead of Ebb dispatch as com-
pared to standard C++ object dispatch. The microbench-
mark measures 1000 invocations of an object with an
empty function. The “Inline” row shows the cost of a
C++ inlinable method invocation. The “No Inline” row
shows the cost where inlining of the method is explicitly
disallowed. The “Virtual” row shows the cost when the
method is declared as virtual and compiler devirtual-
ization is disabled. The final row shows the cost of an Ebb
dereference and dispatch to an inlinable method.

These results demonstrate that Ebb usage does not sig-
nificantly hinder performance. They can be used to de-
clare components of arbitrary granularity without con-
cern. The usage of a virtual memory region to enable
lookup for per-core representatives as well as allowing in-
lining ensures the primitive is efficient.

We also measured the cost of invoking an Ebb within
our hosted environment which cannot use a virtual mem-
ory region and instead must do a lookup into a per-core
hash table. We found Ebb dereference and invocations
under Linux to be roughly 19 times the cost. This is not
a significant concern as the hosted environment is largely
used for compatibility and not performance-critical soft-
ware.

These results highlight an additional important bene-
fit of the EbbRT approach to library OSs. Unlike OSs
that provide an ABI and use runtime linking, EbbRT code
paths get statically integrated and optimized along with
the application code by the compiler; this allows the com-
piler to create higher quality end-to-end code paths. Un-
like library OS’s that purely target binary compatibility,
EbbRT enables developers to maximize the benefits of
customization.

9

4.1.2 Memory Allocation

Figure 4 shows per-core memory allocation throughput
of EbbRT’s default memory allocator as compared to the
Linux glibc 2.19 and jemalloc[15] 3.6.0 allocators. Each
core in parallel repeatedly measures the time to allocate
and free an 8B object ten times. We report the mean la-
tency of one million measurements per-core. In this test,
the Linux version of the memory allocation benchmark
runs unvirtualized.

1 2 4 8 12 24

Cores

0

1000

2000

3000

4000

5000

6000

7000

8000

Cy
cl
es

Genesis glibc jemallocEbbRT

Figure 4: Memory allocation microbenchmark

The EbbRT allocator demonstrates linear scalability up
to 24 cores. The glibc memory allocator exhibits poor
scalability, with mean latency 3.8x that of EbbRT at 24
cores. Meanwhile, the jemalloc memory allocator also
shows linear scalability but still 42% slower than the
EbbRT allocator.

The EbbRT memory allocator is defined as an Ebb us-
ing per-core representatives for locality. Due to the lack of
pre-emption, the per-core data does not require synchro-
nization. The performance achievable with this approach
demonstrates the value of the EbbRT design. Addition-
ally, the memory allocator design and Ebb interface al-
lows for applications to be deployed with their own, cus-
tomized allocators.

4.1.3 Network Stack

In order to compare the performance of the EbbRT net-
work stack to Linux’s, we ported the NetPIPE [38] bench-
mark to EbbRT. NetPIPE is a popular ping-pong bench-
mark where the client sends a fixed-size message to the
server which is echoed back after being completely re-
ceived. With small message sizes, this benchmark illus-
trates the latency of sending and receiving data over TCP,
whereas with large message sizes, the throughput of the
path is stressed. In all cases, we run the same system on
both ends.

Figure 5 shows the goodput achieved as a function of
message size. Two EbbRT servers achieve a one-way la-
tency of 9.7 µs for 64B message sizes and are able to at-
tain 4Gbps of goodput with messages as small as 64 kB.
In contrast, two Linux servers achieve a one-way latency
of 15.9 µs for 64B message sizes and are able to attain
4Gbps of goodput with messages as small as 384 kB.

With small messages, both systems suffer some ad-
ditional latency due to hypervisor processing involved
in implementing the paravirtualized NIC. However,
EbbRT’s short path from hardware to application and back
enable significantly lower latency. With large messages,
both systems must suffer a copy on packet reception due
to the hypervisor, but EbbRT does no further copies,
whereas Linux must copy to user-space and then again on
transmission. This explains the difference in throughput
until the network becomes the bottleneck.

Despite Linux having a highly optimized and mature
network stack EbbRT achieves a 60% improvement in la-
tency. The non-preemptive event-driven execution model
which EbbRT provides is ideally suited for this class of
applications. Additionally, the network stack implemen-
tation and low-level interface enables applications to at-
tain high throughput by avoiding copies.

4.2 Memcached Performance

We evaluated memcached[17], an in memory key-value
store. It has become a common benchmark in the ex-
amination and optimization of networked systems. Pre-
vious work has shown that memcached incurs significant
OS overhead[23], and hence is a natural target for OS
customization. Rather than port the existing memcached
and associated event-driven libraries to EbbRT, we re-

10

100k 200k 300k 400k 500k 600k 700k

Message Size (B)

2000

4000

6000

8000

Go
od

pu
t (

M
bp

s)

 Genesis Linux

0 2 4 6 8

1

2

3

EbbRT

Figure 5: NetPIPE performance as a function of message
size. Inset shows minimal message size region.

implemented memcached, writing it directly to the EbbRT
interfaces. Our memcached implementation is a simple,
multi-core application that supports the standard mem-
cached binary protocol. Process management and logging
is provided by a hosted process which then launches a
native environment within which the performance critical
network traffic handling occurs. Our implementation is
only 593 lines of original C++ code. To a developer with
knowledge of the EbbRT interfaces, this application can
be developed in a single afternoon.

Our implementation receives TCP data synchronously
from the network card. It is then passed through the net-
work stack and parsed in the application in order to con-
struct a response, which is then sent out synchronously.
Key-value pairs are stored in an RCU hash table to alle-
viate lock contention which is a common cause for poor
scalability in memcached.

We compare our implementation of memcached to the
standard implementation (version 1.4.22) running within
both a Linux virtual machine as well as Linux running na-
tively on our server. We run the mutilate[26] bench-
marking tool to place a particular load on the server
and measure response latency. We configure mutilate
to generate load representative of the Facebook ETC
workload[7] which has 20B–70B keys and most values
sized between 1B–1024B. All requests are issued as
separate memcached requests (no multiget) over TCP.

The client is allowed to pipeline up to four requests per
TCP connection.

50k 100k 150k 200k 250k 300k

Throughput (RPS)

200

400

600

800

La
te

nc
y

(u
s)

 EbbRT
 EbbRT 99%

 Linux
 Linux 99%

 Linux Native
 Linux Native 99%

 OSV
 OSV 99%

Figure 6: Memcached Single Core Performance

200k 400k 600k 800k 1000k

Throughput (RPS)

200

400

600

800

La
te

nc
y

(u
s)

 EbbRT
 EbbRT 99%

 Linux
 Linux 99%

 Linux Native
 Linux Native 99%

Figure 7: Memcached Multicore Performance

Our experimental infrastructure limits us to one ma-
chine to generate client load on the servers. This means
that, with relatively few TCP connections, we are un-
able to induce significant queueing delays on the servers
at very high throughput (when TCP retransmissions will
throttle the load). Therefore, latency measurements near
peak throughput may not be representative of a real work-
load.

11

Figures 6 and 7 present the mean and 99th percentile
latencies as a function of throughput for single core and
four core servers. We present Linux running virtualized
and natively (unvirtualized) in addition to EbbRT. At a
500 µs 99th percentile SLA, single core EbbRT is able to
attain a 58% higher throughput than Linux within a VM
and 11.7% higher than Linux native. At a 500 µs 99th
percentile SLA, four core EbbRT is able to attain a 58%
higher throughput than Linux within a VM and only 5%
lower than Linux native. However, EbbRT is able to at-
tain a higher peak throughput than Linux native. In fact,
our 20-core client machine is unable to generate sufficient
load to overwhelm the EbbRT server.

One of our goals of EbbRT is to not hinder access
to hardware interfaces. Our ability to implement mem-
cached so that it directly handles memory filled by the
device and can likewise send replies without copying. A
request is handled synchronously from the device driver
without pre-emption which enables significant perfor-
mance advantages. The EbbRT primitives allowed us to
achieve this with modest programmer effort. Many of the
components and primitives such as IOBufs and RCU
data structures were easily reused within the memcached
application.

4.3 Node.js
We evaluated node.js, a popular Javascript environment
for server-side applications. In comparison to mem-
cached, node.js uses many more features of an operat-
ing system including virtual memory mapping, file and
network I/O, periodic timers, etc. Often, systems can be
demonstrated to show good performance for simple ap-
plications such as memcached, but as they grow to sup-
port more full-featured applications, their performance
degrades. A key element of the EbbRT design is to pro-
vide an efficient base set of primitives on top of which
individual applications can be constructed.

Node.js links with several libraries to provide its event-
driven environment. In particular, the two libraries which
involved the most effort to port were V8[22], Google’s
JavaScript engine written in C++, and libuv[4], a library
written in C which abstracts OS functionality and callback
based event-driven execution. Porting V8 was relatively
straightforward as EbbRT supports the C++ standard li-
brary which V8 depends on. Additional OS dependent

functionality such as clocks, timers and virtual memory
are provided by the base Ebbs of the system.

Porting libuv required significantly more effort; there
are over one hundred functions in the libuv interface
which have OS specific implementations. We did not im-
plement all of these functions, only those that were in-
voked in the process of running various Node.js applica-
tions.

The most complex aspect of the port is mapping the
event loop to the underlying operating system. In EbbRT,
the fundamental challenge was matching the stack con-
ventions between EbbRT’s event loop and libuv’s expec-
tation to have all events processed on a single stack. This
involved constructing mechanisms for the necessary stack
and register management. While this did not involve a
significant amount of code, it was the majority of the in-
tellectual effort. Our approach allows the libuv callbacks
to be invoked directly from the hardware interrupt in the
same way that the memcached application was able to.

One of the key results of the node.js port was the mod-
est effort required to get it functional. And perhaps more
importantly reusing the same software and mechanisms
that we used to support memcached. This illustrates that
EbbRT can support a broader class of event driven soft-
ware beyond just hardware tuned network applications.

Finally, the port effort was significantly simplified by
exploiting EbbRT’s model of function offload. For ex-
ample, filesystem access was implemented by invoking a
FileSystem Ebb. Rather than implement a file system and
hard disk driver within the EbbRT library OS, the Ebb
offloaded calls to a representative running in a Linux pro-
cess. Our implementation of the FileSystem Ebb is naïve,
sending messages and incurring round trip costs for every
access rather than caching data on local representatives.
However, our simple approach allowed us to exploit func-
tionality provided by Linux in order to accelerate the port-
ing effort.

To compare the performance of our system to that of
Linux’s, We launched node.js running version 7 of the V8
JavaScript benchmark suite. This is a collection of pure
JavaScript benchmarks which perform no I/O and mea-
sure the performance of the V8 JavaScript engine. Fig-
ure 8 shows the benchmark scores. Scores are computed
by inverting the running time of the benchmark and scal-
ing it by the score of a reference implementation. The
total score is the geometric mean of the individual scores.

12

Crypto
DeltaBlue

EarleyBoyer

NavierStokes
RayTrace

RegExp
Richards

Splay
Overall

0.85

0.90

0.95

1.00

1.05

1.10

1.15

No
rm

al
iz

ed
 S

co
re

EbbRT Linux

Figure 8: Nodejs Bench

For clarity, we normalize each score to that of Linux’s.
EbbRT outperforms Linux on all benchmarks with a

4.09% improvement in total score. In particular, EbbRT is
able to attain a 13.9% improvement in the memory inten-
sive Splay benchmark. While we made no modifications
to the V8 implementation, EbbRT is still able to achieve
a noticeable improvement. We attribute this to better vir-
tual memory management and the lack of scheduling in-
terrupts. EbbRT aggressively maps in memory allocated
by V8 and therefore suffers no page faults. Additionally
our non-preemptive execution environment prevents un-
necessary timer interrupts and cache pollution due to OS
execution. Lastly, we evaluated a node.js webserver. The

Mean 99th Percentile

EbbRT 90.54 µs 123.00 µs
Linux 112.83 µs 199.00 µs

Table 2: Node.js Webserver Latency

webserver uses the builtin http module and responds to
each GET request with a small static response, totaling
148 bytes. We use the wrk[21] benchmark to place mod-
erate load on the server and measure mean and 99th per-
centile latencies. The results of running this benchmark
can be seen in Table 2. We see that the webserver run-
ning on top of Linux has a 24.61% higher mean latency

than the same webserver on top of EbbRT. Linux’s 99th
percentile latency is 61.78% higher than EbbRT’s.

Similar to our memcached evaluation, the ability for
node.js to serve requests directly from hardware inter-
rupts without context switching or pre-emption enables
greater performance. This allows unmodified node.js ap-
plications to directly gain performance advantages by run-
ning on top of EbbRT. We believe that our system also
enables future optimizations which we have not yet been
explored. For example, one could modify V8 to use di-
rect access to page tables to improve garbage collection.
While we expect greater performance can be achieved
via customization of the application, it is a significant re-
sult that we were able to support such a large applica-
tion within the same light-weight, high-performance envi-
ronment that was used for memcached. This encourages
reuse of various optimizations within a shared environ-
ment.

5 Related Work
While our work combines and builds on many aspects of
prior systems research, we are particularly influenced by
results from work in: hybrid structure, customizable sys-
tems, kernel toolkits, and OS bypass.

Our hybrid structure was influenced by CNK[31],
Libra[6] and Azul[39]. All three pursued a distributed ’2-
Kernel’ approach where a customized library OS is used
in conjunction with a general purpose OS. In the case of
Libra and Azul a library OS was constructed to support a
JVM and in the case of CNK a Linux MPI process. All
three systems exploited a process on the general purpose
system to acts as a proxy for the library OS instance. Sys-
tem calls and services not implemented by the library OS
are forwarded to the proxy via network exchanges. From
the perspective of the general purpose OS the proxy al-
lows the library OS instance to appear like a local applica-
tion process which is managed like other local processes.
EbbRT generalizes and advances this model. EbbRT give
a developer the ability to generate an application specific
hybrid structure. Ebbs allow a developer to off load func-
tion in a fine grain fashion and in both directions.

There has been a broad body of work that has ex-
plored system support for customization. Spin[9],
Exokernel[14], Vino[37], Synthesis[34], Cache

13

Kernel[11], and more generally microkernels such
as L4[27], all explored structuring and primitives for
composing and or tailoring system functionality for
applications. By taking a distributed library OS approach
in which a node is dedicated to one application function
EbbRT can take a more extreme approach to customiza-
tion. Having no protection or multiplexing concerns
application code can be hoisted all the way down into
hardware specific paths making that instance of EbbRT
customized in the extreme to the application. EbbRT does
not just blur the line between application and systems
code it enables its selective removal.

EbbRT also relies heavily on a toolkit model to com-
pose and specialize system functionality. In EbbRT, Ebbs
are the fundamental unit of encapsulating functionality.
Our goal like that of the Flux OSKit[18] is to have devel-
opers construct reusable components. We are, however,
equally interested in developers encapsulating highly spe-
cialized and performant function that need not conform
to a broader ontology of component. From this perspec-
tive Ebbs shares similarity to other systems that have used
components to encapsulate distributed structures such as
Globe[40], KTK[19] and K42[25] which not only allow
for composition but also encapsulate communications and
performance tradeoffs.

More recently library OS’s such as Mirage[28] and
OSv[24] explore two different models for exposing cus-
tomized system function to applications. The former ex-
ploits a language level managed runtime interface and the
later exposes the Linux ABI. In contrast, EbbRT provides
a low level C++ runtime and associated toolchain which
allows native code to be compiled directly to our sys-
tem. A library or application developer can freely mix and
match new and existing code when developing to EbbRT.
As demonstrated by our port of the Google V8 Javascript
engine, the base EbbRT software and be used to construct
managed runtimes. Our goal is to allow developers to ex-
plore varying constructions that meet their needs for com-
patibility while not precluding extreme customization.

The EbbRT work is not the first to observe that there
is an opportunity to improve performance by by-passing
kernel interfaces and protection. Most recently, and per-
haps most similar to EbbRT with respect to targeting dat-
acenter scale systems, Arrakis[32] and IX[8] both advo-
cate for exploiting hardware virtualization to allow appli-
cations directly access devices for their data path while

maintaining protected mechanisms for establishing this
access. EbbRT is able to provide comparable performance
in addition to a set of primitives and software structure to
enable development of new per-application optimizations.

6 Conclusion and Observations
We have presented an operating systems architecture de-
signed to encourage per-application customization with
modest programmer effort. Our evaluation demonstrates
the performance advantages that can be achieved with our
design. In addition, our hybrid architecture enabled rapid
application development by offloading non-performance
critical functionality.

To this point our work has been focused on supporting
entire cloud applications. However, a key aspect of the de-
sign is the ability to accelerate portions of a larger appli-
cation. With our approach a developer can use the hosted
library to stitch fine grain acceleration into an existing ap-
plication via Ebb calls. Our future work is focused on this
aspect.

We conclude with some observations about the novel
choices we made in the design and construction of EbbRT.

Inline-able Partitioned Objects: A key motivation for
our use of a partitioned object model for our com-
ponents was their known utility for encapsulating
multi-core and distributed optimizations. But un-
like prior approaches, we don’t have any boundaries
between systems and applications software and we
wanted to maximize the value of this. We wanted
to enable componentization on paths where the over-
head of a virtual dispatch could impact performance
– both because of its base cost but also due to the
fact that it can limit a compilers ability to inline and
optimize. This lead to an implementation in which
the gains due to locality can be achieved through
a single inlinable per-core data pointer dereference.
This proved to be a good decision as we could uti-
lize components on interrupt paths and the compiler
could optimize critical code all the way through the
system and up to application code.

Unified Partitioned Objects: While prior systems have
explored partitioned object models independently for
multi-core and distributed systems, our choice to

14

combine the two allows us to present the program-
mer the same language view for organizing struc-
tures within and across machines. This significantly
helped our programming effort as we often could
mix and match components that were internally dis-
tributed.

Lambdas and Futures: Event driven programming is
hard. The construction and management of continua-
tions is complicated and creates interface dependen-
cies across software layers. We chose to use lambdas
and futures to write systems paths to ensure better in-
tegration with user software. We were skeptical that
this approach would permit the same level of control
and optimization we were used to as systems pro-
grammers. This also proved to be a good decision
as high performance code was produced, complexity
was reduced and application and systems code could
easily be integrated though the language level sup-
port.

IOBuf Abstraction Given our desire to maximize the
advantages of a single address space we wanted ap-
plication code to directly operate on what would tra-
ditionally be systems IO buffers. We were cognizant
of the fact that each new pervasive abstraction that
we exposed to user software would add complexity.
We decided that a buffer abstraction was critical and
that it would serve to unify and standardize how ap-
plication and systems code would interoperate. This
proved to be true. While our IOBuf abstraction pro-
gressively became richer in function it served as the
foundation over which application software and sys-
tems software could interact and yet avoid memory
copies.

Network Stack At the onset we ported an off-the-shelf
network stack for EbbRT. As time went on, it became
clear that the advantages of a new network stack out-
weighed the development cost. This effort resulted
in a network stack that provides an event-driven in-
terface to applications, exploits per-core optimiza-
tion, and enabled resources such as protocol buffer-
ing to be managed by applications. Our use of sys-
tem primitives like Ebbs, and IOBufs permit high-
performance and integration of application software
and protocol processing. We were also able to en-

capsulate common usage into Ebbs so that an appli-
cation developer need not be initially burdened with
the details. Thus we get both high performance and
ease of development via customization and reuse.

References
[1] Boost C++. http://www.boost.org/.

[2] Boost.Asio. http://www.boost.org/doc/
libs/1_55_0/doc/html/boost_asio.
html.

[3] debirf. http://cmrg.fifthhorseman.
net/wiki/debirf.

[4] libuv. http://libuv.org.

[5] ADYA, A., HOWELL, J., THEIMER, M.,
BOLOSKY, W. J., AND DOUCEUR, J. R. Co-
operative Task Management Without Manual Stack
Management. In Proceedings of the General Track
of the Annual Conference on USENIX Annual
Technical Conference (Berkeley, CA, USA, 2002),
ATEC ’02, USENIX Association, pp. 289–302.

[6] AMMONS, G., APPAVOO, J., BUTRICO, M.,
DA SILVA, D., GROVE, D., KAWACHIYA, K.,
KRIEGER, O., ROSENBURG, B., VAN HENSBER-
GEN, E., AND WISNIEWSKI, R. W. Libra: A
Library Operating System for a Jvm in a Virtual-
ized Execution Environment. In Proceedings of the
3rd International Conference on Virtual Execution
Environments (New York, NY, USA, 2007), VEE
’07, ACM, pp. 44–54.

[7] ATIKOGLU, B., XU, Y., FRACHTENBERG, E.,
JIANG, S., AND PALECZNY, M. Workload anal-
ysis of a large-scale key-value store. In ACM
SIGMETRICS Performance Evaluation Review
(2012), vol. 40, ACM, pp. 53–64.

[8] BELAY, A., PREKAS, G., KLIMOVIC, A., GROSS-
MAN, S., KOZYRAKIS, C., AND BUGNION, E.
IX: A Protected Dataplane Operating System for
High Throughput and Low Latency. In 11th
USENIX Symposium on Operating Systems Design

15

http://www.boost.org/
http://www.boost.org/doc/libs/1_55_0/doc/html/boost_asio.html
http://www.boost.org/doc/libs/1_55_0/doc/html/boost_asio.html
http://www.boost.org/doc/libs/1_55_0/doc/html/boost_asio.html
http://cmrg.fifthhorseman.net/wiki/debirf
http://cmrg.fifthhorseman.net/wiki/debirf
http://libuv.org

and Implementation (OSDI 14) (Broomfield, CO,
Oct. 2014), USENIX Association, pp. 49–65.

[9] BERSHAD, B. N., CHAMBERS, C., EGGERS, S.,
MAEDA, C., MCNAMEE, D., PARDYAK, P., SAV-
AGE, S., AND SIRER, E. G. SPIN - an extensible
microkernel for application-specific operating sys-
tem services. ACM SIGOPS Operating Systems
Review 29, 1 (1995), 74–77.

[10] BRUN-COTTAN, G., AND MAKPANGOU, M.
Adaptable Replicated Objects in Distributed Envi-
ronments. Research Report RR-2593, 1995. Projet
SOR.

[11] CHERITON, D. R., AND DUDA, K. J. A caching
model of operating system kernel functionality.
In Proceedings of the 1st USENIX conference
on Operating Systems Design and Implementation
(1994), USENIX Association, p. 14.

[12] CORBET, J. SLQB - and then there were four.
http://lwn.net/Articles/311502, Dec.
2008.

[13] DAVID, T., GUERRAOUI, R., AND TRIGO-
NAKIS, V. Everything You Always Wanted to
Know About Synchronization but Were Afraid to
Ask. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles (New
York, NY, USA, 2013), SOSP ’13, ACM, pp. 33–48.

[14] ENGLER, D. R., KAASHOEK, M. F., AND
O’TOOLE, JR., J. Exokernel: An Operating System
Architecture for Application-level Resource Man-
agement. In Proceedings of the Fifteenth ACM
Symposium on Operating Systems Principles (New
York, NY, USA, 1995), SOSP ’95, ACM, pp. 251–
266.

[15] EVANS, J. jemalloc Tech Talk. https:
//www.facebook.com/jemalloc/posts/
189179837775115, January 2011.

[16] EVANS, J. Scalable memory allocation us-
ing jemalloc. http://www.canonware.com/
jemalloc/, 2011.

[17] FITZPATRICK, B. Distributed caching with mem-
cached. Linux J. 2004, 124 (Aug. 2004), 5–.

[18] FORD, B., BACK, G., BENSON, G., LEP-
REAU, J., LIN, A., AND SHIVERS, O.
The Flux OSKit: A substrate for kernel and language research,
vol. 31. ACM, 1997.

[19] GHEITH, A., MUKHERJEE, B., SILVA, D., AND
SCHWAN, K. KTK: Kernel support for configurable
objects and invocations. In Configurable Distributed
Systems, 1994., Proceedings of 2nd International
Workshop on (1994), IEEE, pp. 92–103.

[20] GHEMAWAT, S., AND MENAGE, P. Tc-
malloc: Thread-caching malloc. http:
//goog-perftools.sourceforge.net/
doc/tcmalloc.html, 2009.

[21] GLOZER, W. wrk: Modern HTTP benchmarking
tool. https://github.com/wg/wrk, 2014.

[22] GOOGLE. V8 javascript engine.

[23] KAPOOR, R., PORTER, G., TEWARI, M.,
VOELKER, G. M., AND VAHDAT, A. Chronos:
Predictable Low Latency for Data Center Applica-
tions. In Proceedings of the Third ACM Symposium
on Cloud Computing (New York, NY, USA, 2012),
SoCC ’12, ACM, pp. 9:1–9:14.

[24] KIVITY, A., LAOR, D., COSTA, G., ENBERG,
P., HAR’EL, N., MARTI, D., AND ZOLOTAROV,
V. OSv—Optimizing the Operating System for Vir-
tual Machines. In 2014 USENIX Annual Technical
Conference (USENIX ATC 14) (Philadelphia, PA,
June 2014), USENIX Association, pp. 61–72.

[25] KRIEGER, O., AUSLANDER, M., ROSENBURG,
B., WISNIEWSKI, R. W., XENIDIS, J., DA SILVA,
D., OSTROWSKI, M., APPAVOO, J., BUTRICO,
M., MERGEN, M., WATERLAND, A., AND UH-
LIG, V. K42: building a complete operating system.
In Proceedings of the 1st ACM SIGOPS/EuroSys
European Conference on Computer Systems 2006
(New York, NY, USA, 2006), EuroSys ’06, ACM,
pp. 133–145.

16

http://lwn.net/Articles/311502
https://www.facebook.com/jemalloc/posts/189179837775115
https://www.facebook.com/jemalloc/posts/189179837775115
https://www.facebook.com/jemalloc/posts/189179837775115
http://www.canonware.com/jemalloc/
http://www.canonware.com/jemalloc/
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
https://github.com/wg/wrk

[26] LEVERICH, J. Mutilate: High-Performance Mem-
cached Load Generator. https://github.
com/leverich/mutilate, 2014.

[27] LIEDTKE, J. Improving IPC by Kernel Design. In
Proceedings of the Fourteenth ACM Symposium on
Operating Systems Principles (New York, NY, USA,
1993), SOSP ’93, ACM, pp. 175–188.

[28] MADHAVAPEDDY, A., MORTIER, R., ROTSOS, C.,
SCOTT, D., SINGH, B., GAZAGNAIRE, T., SMITH,
S., HAND, S., AND CROWCROFT, J. Uniker-
nels: Library Operating Systems for the Cloud.
SIGPLAN Not. 48, 4 (Mar. 2013), 461–472.

[29] MAKPANGOU, M., GOURHANT, Y., LE NARZUL,
J.-P., AND SHAPIRO, M. Fragmented
Objects for Distributed Abstractions. In
Readings in Distributed Computing Systems, T. L.
Casavant and M. Singhal, Eds. IEEE Computer
Society Press, 1994, pp. 170–186.

[30] MCKENNEY, P. E., APPAVOO, J., KLEEN,
A., KRIEGER, O., RUSSELL, R., SARMA,
D., AND SONI, M. Read-Copy Update. In
Ottawa Linux Symposium (July 2001). Avail-
able: http://www.linuxsymposium.org/
2001/abstracts/readcopy.php http:
//www.rdrop.com/users/paulmck/
rclock/rclock_OLS.2001.05.01c.pdf
[Viewed June 23, 2004].

[31] MOREIRA, J., BRUTMAN, M., CASTAÑOS, J., EN-
GELSIEPEN, T., GIAMPAPA, M., GOODING, T.,
HASKIN, R., INGLETT, T., LIEBER, D., MC-
CARTHY, P., MUNDY, M., PARKER, J., AND
WALLENFELT, B. Designing a Highly-Scalable
Operating System: The Blue Gene/L story. In
Proceedings of the 2006 ACM/IEEE conference on
Supercomputing (New York, NY, USA, 2006), SC
’06, ACM.

[32] PETER, S., LI, J., ZHANG, I., PORTS, D. R. K.,
WOOS, D., KRISHNAMURTHY, A., ANDERSON,
T., AND ROSCOE, T. Arrakis: The Operating
System is the Control Plane. In 11th USENIX
Symposium on Operating Systems Design and

Implementation (OSDI 14) (Broomfield, CO, Oct.
2014), USENIX Association, pp. 1–16.

[33] PROVOS, N., AND MATHEWSON, N. libevent - an
event notification library. http://libevent.
org/, 2003.

[34] PU, C., MASSALIN, H., AND IOANNIDIS, J. The
Synthesis Kernel. Computing Systems 1, 1 (1988),
11–32.

[35] RHEE, I., BALAGURU, N., AND ROUSKAS, G. N.
MTCP: Scalable TCP-like congestion control for re-
liable multicast. Computer networks 38, 5 (2002),
553–575.

[36] SHAPIRO, M., GOURHANT, Y., HABERT, S.,
MOSSERI, L., RUFFIN, M., AND VALOT, C. SOS:
An object-oriented operating system - assessment
and perspectives. Computing Systems 2 (1991),
287–337.

[37] SMALL, C., AND SELTZER, M. Vino: An Inte-
grated Platform for Operating Systems and Database
Research. Tech. rep., Citeseer, 1994.

[38] SNELL, Q. O., MIKLER, A. R., AND GUSTAFSON,
J. L. Netpipe: A Network Protocol Independent
Performance Evaluator. In IASTED International
Conference on Intelligent Information Management
and Systems (1996), vol. 6, Washington, DC, USA).

[39] TENE, G., IYENGAR, B., AND WOLF, M. C4:
The Continuously Concurrent Compacting Collec-
tor. In Proceedings of the International Symposium
on Memory Management (New York, NY, USA,
2011), ISMM ’11, ACM, pp. 79–88.

[40] VAN STEEN, M., HOMBURG, P., AND TANEN-
BAUM, A. S. Globe: A Wide-Area Distributed Sys-
tem. IEEE concurrency 7, 1 (1999), 70–78.

[41] WHEELER, D. A. generated using david a.
wheeler’s ’sloccount’.

17

https://github.com/leverich/mutilate
https://github.com/leverich/mutilate
http://www.linuxsymposium.org/2001/abstracts/readcopy.php
http://www.linuxsymposium.org/2001/abstracts/readcopy.php
http://www.rdrop.com/users/paulmck/rclock/rclock_OLS.2001.05.01c.pdf
http://www.rdrop.com/users/paulmck/rclock/rclock_OLS.2001.05.01c.pdf
http://www.rdrop.com/users/paulmck/rclock/rclock_OLS.2001.05.01c.pdf
http://libevent.org/
http://libevent.org/

	Introduction
	System Design
	Heterogeneous Distributed Structure
	Modular System Structure
	Non-preemptive Event-driven Execution Environment

	Implementation
	Challenges
	Software Structure Overview
	Details
	Events
	Elastic Components
	Memory Allocation

	Lambdas and Futures
	Network Stack

	Evaluation
	Microbenchmarks
	Ebb Invocation
	Memory Allocation
	Network Stack

	Memcached Performance
	Node.js

	Related Work
	Conclusion and Observations

