
1

Chapter 1

Understanding the Cloud 
Computing Landscape

Lamia Youseff, Dilma M. Da Silva,
Maria Butrico, and Jonathan Appavoo

Contents
1.1 Introduction ...2
1.2 Cloud Systems Classifications ..2
1.3 SPI Cloud Classification ...2

1.3.1 Cloud Software Systems ...3
1.3.2 Cloud Platform Systems ..3
1.3.3 Cloud Infrastructure Systems ...4

1.4 UCSB-IBM Cloud Ontology ...4
1.4.1 Applications (SaaS) ...5
1.4.2 Cloud Software Environment (PaaS) ..7
1.4.3 Cloud Software Infrastructure ..8
1.4.4 Software Kernel Layer ...9
1.4.5 Cloud Hardware/Firmware ...9

1.5 Jackson’s Expansion on the UCSB-IBM Ontology10
1.6 Hoff’s Cloud Model ...11
1.7 Discussion ..13
References ...14

2  ◾  Cloud Computing and Software Services

1.1  Introduction
The goal of this chapter is to present an overview of three different structured
views of the cloud computing landscape. These three views are the SPI cloud clas-
sification, the UCSB-IBM cloud ontology, and Hoff’s cloud model. Each one of
these three cloud models strives to present a comprehension of the interdependency
between the different cloud systems as well as to show their potential and limita-
tions. Furthermore, these models vary in the degree of simplicity and comprehen-
siveness in describing the cloud computing landscape. We find that these models
are complementary and that by studying the three structured views, we get a gen-
eral overview of the landscape of this evolving computing field.

1.2  Cloud Systems Classifications
The three cloud classification models present different levels of details of the cloud
computing landscape, since they emerged in different times of evolution of this
computing field. Although they have different objectives—some are for academic
understanding of the novel research area, while others target identifying and ana-
lyzing commercial and market opportunities—they collectively expedite compre-
hending some of the interrelations between cloud computing systems. Although
we present them in this chapter in a chronological order of their emergence—
which also happens to reflect the degree of details of each model—this order does
not reflect the relative importance or acceptance of one model over the other. On
the other hand, the three models and their extensions are complementary, reflect-
ing different views of the cloud. We first present the SPI model in Section 1.2,
which is the oldest of the three models. The second classification is the UCSB-
IBM ontology, which we detail in Section 1.3. We also present a discussion of a
recent extension to this ontology in Section 1.4. The third classification is Hoff ’s
cloud model, which we present in Section 1.5. We discuss the importance of these
classifications and their potential impact on this emerging computing field in
Section 1.6.

1.3  SPI Cloud Classification
As the area of cloud computing was emerging, the systems developed for the cloud
were quickly stratified into three main subsets of systems: Software as a Service
(SaaS), Platform as a Service (PaaS), and Infrastructure as a Service (IaaS). Early
on, these three subsets of the cloud were discussed by several cloud computing
experts, such as in [24,30,31]. Based on this general classification of cloud systems,
the SPI model was formed and denotes the Software, Platform, and Infrastructure
systems of the cloud, respectively.

Understanding the Cloud Computing Landscape  ◾  3

1.3.1 Cloud Software Systems
This subset of cloud systems represents applications built for and deployed for the
cloud on the Internet, which are commonly referred to as Software as a Service
(SaaS). The target user of this subset of systems is the end user. These applications,
which we shall refer to as cloud applications, are normally browser based with pre-
defined functionality and scope, and they are accessed, sometimes, for a fee per a
particular usage metric predefined by the cloud SaaS provider. Some examples of
SaaS are salesforce customer relationships management (CRM) system [33], and
Google Apps [20] like Google Docs and Google SpreadSheets.

SaaS is considered by end users to be an attractive alternative to desktop applica-
tions for several reasons. For example, having the application deployed at the pro-
vider’s data center lessens the hardware and maintenance requirements on the users’
side. Moreover, it simplifies the software maintenance process, as it enables the soft-
ware developers to apply subsequent frequent upgrades and fixes to their applications
as they retain access to their software service deployed at the provider’s data center.

1.3.2 Cloud Platform Systems
The second subset of this classification features the cloud platform systems. In this
class of systems, denoted as Platform as a Service (PaaS), the provider supplies a
platform of software environments and application programming interfaces (APIs)
that can be utilized in developing cloud applications. Naturally, the users of this
class of systems are developers who use specific APIs to build, test, deploy, and tune
their applications on the cloud platform. One example of systems in this category is
Google’s App Engine [19], which provides Python and Java runtime environments
and APIs for applications to interact with Google’s runtime environment. Arguably,
Microsoft Azure [26] can also be considered a platform service that provides an API
and allows developers to run their application in the Microsoft Azure environment.

Developing an application for a cloud platform is analogous to some extent to
developing a web application for the old web servers model, in the sense that devel-
opers write codes and deploy them in a remote server. For end users, the final result is
a browser-based application. However, the PaaS model is different in that it can pro-
vide additional services to simplify application development, deployment, and exe-
cution, such as automatic scalability, monitoring, and load balancing. Furthermore,
the application developers can integrate other services provided by the PaaS sys-
tem to their application, such as authentication services, e-mail services, and user
interface components. All that is provided through a set of APIs is supplied by the
platform. As a result, the PaaS class is generally regarded to accelerate the software
development and deployment time. In turn, the cloud software built for the cloud
platform normally has a shorter time-to-market. Some academic projects have also
emerged to support a more thorough understanding of PaaS, such as AppScale [5].

4  ◾  Cloud Computing and Software Services

Another feature that typifies PaaS services is the provision of APIs for meter-
ing and billing information. Metering and billing permits application developers
to more readily develop a consumption-based business model around their appli-
cation. Such a support helps integrate and enforce the relationships between end
users, developers, PaaS, and any lower-level providers, while enabling the economic
value of the developers and providers.

1.3.3 Cloud Infrastructure Systems
The third class of systems, according to the SPI classification model, provides infra-
structure resources, such as compute, storage, and communication services, in a
flexible manner. These systems are denoted as Infrastructure as a Service (IaaS).
Amazon’s Elastic Compute Cloud (EC2 [8]) and Enomalism elastic computing
infrastructure [10] are arguably the two most popular examples of commercial sys-
tems available in this cloud category.

Recent advances in operating system (OS) Virtualization have facilitated the
implementation of IaaS and made it plausible on existing hardware. In this regard,
OS Virtualization technology enables a level of indirection with respect to direct
hardware usage. It allows direct computer usage to be encapsulated and isolated in
the container of a virtual machine (VM) instance. As a result, OS Virtualization
enables all software and associated resource usage of an individual hardware user
to be treated as a schedulable entity that is agnostic to the underlying physical
resources that it is scheduled to use. Therefore, OS Virtualization allows IaaS
providers to control and manage efficient utilization of the physical resources by
enabling the exploitation of both time division and statistical multiplexing, while
maintaining the familiar and flexible interface of individual standard hardware
computers and networks for the construction of services using existing practices
and software. This approach is particularly attractive to IaaS providers given the
underutilization of the energy-hungry, high-speed processors that constitute the
infrastructure of data centers. Amazon’s infrastructure service, EC2, is one exam-
ple of IaaS systems, where users can rent computing power on their infrastructure
by the hour. In this space, there are also several academic open-source cloud proj-
ects, such as Eucalyptus [14] and Virtual Workspaces [38].

1.4  UCSB-IBM Cloud Ontology
The UCSB-IBM cloud ontology emerged through a collaboration effort between
academia (University of California, Santa Barbara) and industry (IBM T.J. Watson
Research Center) in an attempt to understand the cloud computing landscape. The
end goal of this effort was to facilitate the exploration of the cloud computing area
as well as to advance the educational efforts in teaching and adopting the cloud
computing area.

Understanding the Cloud Computing Landscape  ◾  5

In this classification, the authors used the principle of composability from a
Service-Oriented Architecture (SOA) to classify the different layers of the cloud.
Composability in SOA is the ability to coordinate and assemble a collection of ser-
vices to form composite services. In this sense, cloud services can also be composed
of one or more of other cloud services.

By the principle of composability, the UCSB-IBM model classified the cloud
in five layers. Each layer encompasses one or more cloud services. Cloud services
belong to the same layer if they have an equivalent level of abstraction, as evident
by their targeted users. For example, all cloud software environments (also known
cloud platforms) target programmers, while cloud applications target end users.
Therefore, cloud software environments would be classified in a different layer than
cloud applications. In the UCSB-IBM model, the five layers compose a cloud stack,
where one cloud layer is considered higher in the cloud stack if the services it pro-
vides can be composed from the services that belong to the underlying layer. The
UCSB-IBM cloud model is depicted in Figure 1.1.

The first three layers of the UCSB-IBM cloud are similar to the SPI classifica-
tion, except that the authors break the infrastructure layer into three components.
The three components that compose the UCSB-IBM infrastructure layer are com-
putational resources, storage, and communications. In the rest of this section, we
explain in more detail this ontology’s components.

1.4.1 Applications (SaaS)
Similar to the SPI model, the first layer is the cloud application layer. The cloud
application layer is the most visible layer to the end users of the cloud. Normally,
users access the services provided by this layer through the browser via web

Cloud applications
(e.g., SaaS)

Cloud software environments
(e.g., PaaS)

Cloud software infrastructures

Computational
resources (IaaS)

Storage
(DaaS)

Communications
(CaaS)

Software kernels & middleware

Firmware/hardware (HaaS)

Figure 1.1  UCSB-IBM Cloud Computing Classification Model depicted as five 
layers, with three constituents to the cloud infrastructure layer.

6  ◾  Cloud Computing and Software Services

portals, and are sometimes required to pay fees to use them. This model has been
recently proven to be attractive to many users, as it alleviates the burden of soft-
ware maintenance and the ongoing operation and support costs. Furthermore,
it exports the computational work from the users’ terminal to the data centers
where the cloud applications are deployed. This in turn lessens the hardware
requirements needed at the users’ end, and allows them to obtain superb perfor-
mance for some of their CPU-intensive and memory-intensive workloads with-
out necessitating large capital investments in their local machines. Arguably,
the cloud application layer has enabled the growth of a new class of end-user
devices in the form of “netbook” computers, which are less expensive end-user
devices that rely on network connectivity and cloud applications for functional-
ity. Netbook computers often have limited processing capability with little or
no disk drive-based storage, relying on cloud applications to meet the needs for
both.

As for the providers of cloud applications, this model simplifies their work with
respect to upgrading and testing the code, while protecting their intellectual prop-
erty. Since a cloud application is deployed at the provider’s computing infrastruc-
ture (rather than at the users’ desktop machines), the developers of the application
are able to roll smaller patches to the system and add new features without disturb-
ing the users with requests to install updates or service packs. The configuration
and testing of the application in this model is arguably less complicated, since the
deployment environment, i.e., the provider’s data center becomes restricted. Even
with respect to the provider’s profit margin, this model supplies the software pro-
vider with a continuous flow of revenue, which might be even more profitable on
the long run. This SaaS model conveys several favorable benefits for the users and
providers of the cloud application. The body of research on SOA has numerous
studies on composable IT services, which have a direct application to providing
and composing SaaS.

The UCSB-IBM ontology illustrates that the cloud applications can be devel-
oped on the cloud software environments or infrastructure components (as
discussed in Sections 1.3.2 and 1.3.3). In addition, cloud applications can be com-
posed as a service from other services, using the concepts of SOA. For example, a
payroll application might use another accounting system’s SaaS to calculate the
tax deductibles for each employee in its system without having to implement this
service within the payroll software. In this respect, the cloud applications targeted
for higher layers in the stack are simpler to develop and have a shorter time-to-
market. Furthermore, they become less error prone, since all their interactions with
the cloud are through pretested APIs. However, being developed for a higher stack
layer limits the flexibility of the application and restricts the developers’ ability to
optimize its performance.

Despite all the advantageous benefits of this model, several deployment issues
hinder its wide adoption. Specifically, the security and availability of the cloud

Understanding the Cloud Computing Landscape  ◾  7

applications are two of the major issues in this model, and they are currently
addressed by the use of lenient service-level agreements (SLAs). Furthermore, cop-
ing with outages is a realm that users and providers of SaaS have to tackle, especially
with possible network outage and system failures. Additionally, the integration of
legacy applications and the migration of the users’ data to the cloud are slowing the
adoption of SaaS. Before they can persuade users to migrate from desktop applica-
tions to cloud applications, cloud applications’ providers need to address end-users’
concerns about security and safety of storing confidential data on the cloud, users’
authentication and authorization, uptime and performance, as well as data backup
and disaster recovery.

1.4.2 Cloud Software Environment (PaaS)
The second layer in the UCSB-IBM cloud ontology is the cloud software envi-
ronment layer (also dubbed the software platform layer). The users of this layer
are cloud applications’ developers, implementing their applications and deploy-
ing them on the cloud. The providers of the cloud software environments supply
the developers with a programming-language-level environment of well-defined
APIs to facilitate the interaction between the environments and the cloud applica-
tions, as well as to accelerate the deployment and support the scalability needed
by cloud applications. The service provided by cloud systems in this layer is com-
monly referred to as Platform as a Service (PaaS). Section 1.2 mentioned Google’s
App Engine and Microsoft Azure as examples of this category. Another example is
SalesForce’s Apex language [2] that allows the developers of the cloud applications
to design, along with their applications’ logic, their page layout, workflow, and
customer reports.

Developers reap several benefits from developing their cloud application for a
cloud programming environment, including automatic scaling and load balanc-
ing, as well as integration with other services (e.g., authentication services, e-mail
services, and user interface) supplied to them by the PaaS provider. In such a way,
much of the overhead of developing cloud applications is alleviated and is handled
at the environment level. Furthermore, developers have the ability to integrate other
services to their applications on demand. This makes the development of cloud
applications a less complicated task, accelerates the deployment time, and mini-
mizes the logic faults in the application. In this respect, a Hadoop [21] deployment
on the cloud would be considered a cloud software environment, as it provides
its applications’ developers with a programming environment, namely, the Map
Reduce [7] framework for the cloud. Yahoo Research’s Pig [28] project, a high-
level language to enable processing of very large files in the Hadoop environment,
may be viewed as an open-source implementation of the cloud platform layer. As
such, cloud software environments facilitate the development process of cloud
applications.

8  ◾  Cloud Computing and Software Services

1.4.3 Cloud Software Infrastructure
The third layer in the USCB-IBM ontology is the cloud software infrastructure
layer. It is here that this ontology more distinctly departs from the SPI ontology.
The USCB-IBM ontology takes a finer-grain approach to distinguishing the roles
and components that provide the infrastructure to support SPI ontology’s PaaS
layer. Specifically, it breaks the infrastructure layer down into a software layer that
is composed of three distinct parts and places these on top of two additional layers.
The three components, computational resources, storage, and communications, com-
posing the cloud software infrastructure layer are described below.

 a. Computational resources: VMs are the most common form for providing
computational resources to cloud users at this layer. OS Virtualization is the
enabler technology for this cloud component, which allows the users unprec-
edented flexibility in configuring their settings while protecting the physical
infrastructure of the provider’s data center. The users get a higher degree of
flexibility since they normally get super-user access to their VMs that they
can use to customize the software stack on their VM for performance and
efficiency. Often, such services are dubbed IaaS.

 b. Storage: The second infrastructure resource is data storage, which allows users
to store their data at remote disks and access them anytime from any place.
This service is commonly known as Data-Storage as a Service (DaaS), and it
facilitates cloud applications to scale beyond their limited servers. Examples
of commercial cloud DaaS systems are Amazon’s S3 [32] and EMC Storage
Managed Service [9].

 c. Communication: As the need for guaranteed quality of service (QoS) for net-
work communication grows for cloud systems, communication becomes a
vital component of the cloud infrastructure. Consequently, cloud systems are
obliged to provide some communication capability that is service oriented,
configurable, schedulable, predictable, and reliable. Toward this goal, the con-
cept of Communication as a Service (CaaS) emerged to support such require-
ments, as well as network security, dynamic provisioning of virtual overlays
for traffic isolation or dedicated bandwidth, guaranteed message delay limits,
communication encryption, and network monitoring. Although this model
is currently the least discussed and adopted cloud service in the commercial
cloud systems, several research papers and articles [1,11,13] have investigated
the various architectural design decisions, protocols, and solutions needed to
provide QoS communication as a service. One recent example of systems that
belong to CaaS is the Microsoft Connected Service Framework (CSF) [25].
Voice over IP (VoIP) telephone systems, audio and video conferencing, as
well as instant messaging are candidate cloud applications that can be com-
posed of CaaS and can in turn provide composable cloud solutions to other
common applications.

Understanding the Cloud Computing Landscape  ◾  9

In addition to the three main layers of the cloud, the UCSB-IBM model includes
two more layers: the software kernel and the firmware/hardware layer.

1.4.4 Software Kernel Layer
It provides the basic software management for the physical servers that compose
the cloud. Unlike the SPI ontology, the UCSB-IBM ontology explicitly identifies
the software used to manage the hardware resources and its existing choices instead
of focusing solely on VM instances and how they are used. Here, a software kernel
layer is used to identify the systems software that can be used to construct, man-
age, and schedule the virtual containers onto the hardware resources. At this level, a
software kernel can be implemented as an OS kernel, hypervisor, VM monitor, and/
or clustering middleware. Customarily, grid computing applications were deployed
and run on this layer on several interconnected clusters of machines. However, due
to the absence of a virtualization abstraction in grid computing, jobs were closely
tied to the actual hardware infrastructure, and providing migration, check-pointing,
and load balancing to the applications at this level was always a complicated task.

The two most successful grid middleware systems that harness the physical
resources to provide a successful deployment environment for grid applications are,
arguably, Globus [15] and Condor [36]. The body of research in grid computing
is large, and several grid-developed concepts are realized today in cloud comput-
ing. However, additional grid computing research can potentially be integrated to
cloud research efforts. For example, grid computing microeconomics models [12]
are possible initial models to study the issues of pricing, metering, and supply–
demand equilibrium of the computing resources in the realm of cloud computing.
The scientific community has also addressed the quest of building grid portals and
gateways for grid environments through several approaches [4,6,16,17,34,35]. Such
approaches and portal design experiences may be very useful to the development
of usable portals and interfaces for the cloud at different software layers. In this
respect, cloud computing can benefit from the different research directions that
the grid community has embarked for almost a decade of grid computing research.

1.4.5 Cloud Hardware/Firmware
The bottom layer of the cloud stack in the UCSB-IBM ontology is the actual physi-
cal hardware and switches that form the backbone of the cloud. In this regard, users
of this cloud layer are normally big enterprises with large IT requirements in need
of subleasing Hardware as a Service (HaaS). For this, the HaaS provider operates,
manages, and upgrades the hardware on behalf of its consumers for the lifetime of
the sublease. This model is advantageous to the enterprise users, since often they
do not need to invest in building and managing data centers. Meanwhile, HaaS
providers have the technical expertise as well as the cost-effective infrastructure
to host the systems. One of the early HaaS examples is Morgan Stanley’s sublease

10  ◾  Cloud Computing and Software Services

contract with IBM in 2004 [27]. SLAs in this model are stricter, since enterprise
users have predefined business workloads with strict performance requirements.
The margin benefit for HaaS providers materializes from the economy of scale of
building data-centers with huge floor space, power, cooling costs, as well as opera-
tion and management expertise.

HaaS providers have to address a number of technical challenges in operating
their services. Some major challenges for such large-scale systems are efficiency,
ease, and speed of provisioning. Remote, scriptable boot loaders is one solution
to remotely boot and deploy a complete software stack on the data centers. PXE
[29] and UBoot [37] are examples of remote bootstrap execution environments
that allow the system administrator to stream a binary image to multiple remote
machines at boot time. Other examples of challenges that arise at this cloud layer
include data center management, scheduling, and power and cooling optimiza-
tion. IBM Kittyhawk [3] is an example of a research project that targets the hard-
ware cloud layer. This project exploits novel integrated scalable hardware to address
the challenges of cloud computing at the hardware level. Furthermore, the project
attempts to support many of the software infrastructure features at the hardware
layer, thus permitting a more direct service model of the hardware. Specifically, it
provides an environment in which external users can obtain exclusive access to raw
metered hardware nodes in an on-demand fashion, similar to obtaining VMs from
an IaaS provider. The system allows the software to be loaded and network con-
nectivity to be under user control. Additionally, the prototype Kittyhawk system
provides users with UBoot access, allowing them to script the boot sequence of the
potentially thousands of Blue Gene/P nodes they may have allocated.

1.5  Jackson’s Expansion on the UCSB-IBM Ontology
The UCSB-IBM model was adapted by several computing experts to facilitate the
discussions and conversations about other aspects of the cloud. One of these aspects
was the cloud security. With a focus on supporting cloud computing for govern-
mental agencies, Jackson [23] adapted the original UCSB-IBM model and extended
on it with the goal of supporting a more detailed view of the security aspects of the
cloud computing field. By adding several additional layers to support cloud access
management, workflow orchestration, application security, service management,
and an explicit connectivity layer, Jackson highlighted several particulars of the
security challenges for this emerging computing field. Specifically, he modified the
original ontology to add the following three sets of layers:

 1. Access management layer: This new layer is added above the cloud application
layer and is intended to provide access management to the cloud applications
implementing SaaS. In the form of different authentication techniques, this
layer can provide a simplified and unified, yet efficient, form of protection. In

Understanding the Cloud Computing Landscape  ◾  11

turn, this can simplify the development and usage of the SaaS applications
while addressing the security concerns for these systems. In this way, one of
the security risks in the cloud could simply be contained and addressed in one
high-level layer, thereby confining one of the main risk factors in the cloud
applications.

 2. Explicit SOA-related layers: This set of layers offers several SOA features in
a more explicit form that simplifies their utilization. Jackson added this set
of layers between the application (Saas) and platform (Paas) layers in the
original UCSB-IBM ontology. For example, one of the layers in this set is
the workflow orchestration layer, which provides services for managing and
orchestrating business-workflow applications in the cloud. Another layer in
this set is the service discovery layer, which also facilitates the discovery of
services available to an application and potentially simplifies its operation and
composition of other services.

 3. Explicit connectivity Layers: The third set of layers in this extension was mainly
added to support explicit networking capability in the cloud. Realizing that
network connectivity in the cloud is an important factor in addressing the
security of data, Jackson extended the model by adding extra network secu-
rity layers. These additional layers were placed between the cloud software
infrastructure layers and their components. By analyzing the security of the
“data in motion” and “data at rest,” Jackson’s model covered the security
aspects of the data in the cloud at the network level as well.

1.6  Hoff’s Cloud Model
Inspired by the SPI model and the UCSB-IBM cloud ontology, Christofer Hoff [22]
organized an online collaboration and discussion between several cloud computing
experts to build an ontology upon the earlier models. Hoff’s Model, as shown in
Figure 1.2, presented a new cloud ontology in more detail.

This model focused on analyzing the three main cloud services: IaaS, PaaS,
and SaaS. The model dissects the IaaS layer to several other components. Data
center facilities, which include power and space, is the first component. Hardware
is the second component in the IaaS layer, which consists of compute node, data
storage, and network subcomponents. Abstraction is the next component, which
abridges the hardware through systems like VM monitors, grid, and cluster utili-
ties. The next component is the core connectivity and delivery, which provides the
various services supporting the systems utilizing the IaaS layer, such as authenti-
cation services and DNS services. In this model, the abstraction component and
the connectivity and delivery component are interleaving, since they are closely
interdependent on each other’s services. The API component presents the manage-
ment services as well as a simplified interface to the next layer in the cloud. One
system, for example, that implements this API sub-layer is the GoGrid CloudCenter

12  ◾  Cloud Computing and Software Services

API [18]. This next layer in Hoff’s model, which is the PaaS, is composed of one
sub-layer that provides the integration services in the cloud. This sub-layer provides
several services, such as authentication, database, and querying services.

The SaaS layer in Hoff’s model is also further broken down into several sub-
layers and components. The cloud application data sub-layer is shown to consist of
the actual data, the metadata describing the real data, and its content, which can
be in a structured or unstructured form. The application component in the SaaS
layer is categorized into three categories: native applications, web applications,
and embedded applications. A native application can be a desktop application
that uses a cloud service. A web application is a cloud application that is accessed
via the web browser. Finally, an embedded application is a cloud application that
is embedded into another application. The final two sub-layers in the SaaS layer
in Hoff’s model are the applications’ API and the presentation sub-layers. Hoff’s
model further decomposed the presentation sub-layers into data presentation,
video presentation, and voice presentation, recognizing the different forms of
cloud data presentations.

Network

Security

Auth.

Embedded

Voice

Space

Storage

Grid utility

Auth.

Querying

Unstructured

Web

VideoData

Native

Structured

DB

Mgnt

DNS

VMM

Compute

Power

Sa
aS

Pa
aS

Ia
aS

Facilities

Hardware

Abstraction

Core connectivity
and delivery

API

Integration and middleware

Data Metadata Content

Applications

API

Presentation
modality

Presentation
platform

Re
so

ur
ce

s
In

fra
st

ru
ct

ur
e

G
ov

er
na

nc
e,

pr
ov

isi
on

in
g,

 o
rc

he
st

ra
tio

n,
 au

to
no

m
ic

s,
se

cu
rit

y c
om

pl
ia

nc
e

m
on

ito
rin

g,
 S

LA
 m

an
ag

em
en

t,
an

d
bi

lli
ng

Figure  1.2  Hoff’s  cloud  ontology,  which  emerged  as  an  online  collaboration 
and discussion between different cloud computing experts to further analyze the 
cloud components.

Understanding the Cloud Computing Landscape  ◾  13

As portrayed in Figure 1.2, Hoff’s model addresses more details of the compo-
sition of the cloud. The increased detail reveals additional aspects and challenges
to cloud computing; however, it comes at the cost of simplicity. Nevertheless, the
three cloud models presented in this chapter are regarded complementary and rep-
resent different viewpoints of the new emerging cloud computing field.

1.7  Discussion
As the cloud computing technology continues to emerge, more cloud systems are
developed and new concepts are introduced. In this respect, a fundamental under-
standing of the extent to which cloud computing inherits its concepts from various
computing areas and models is important to understand the landscape of this novel
computing field and to define its potentials and limitations. Such comprehension
will facilitate further maturation of the area by enabling novel systems to be put
in context and evaluated in the light of existing systems. Particularly, an ontologi-
cal, model-based approach encourages new systems to be compared and contrasted
with existing ones, thus identifying more effectively their novel aspects. We con-
tend that this approach will lead to more creative and effective cloud systems and
novel usage scenarios of the cloud. With this in mind, our approach has been to
determine the different layers and components that constitute the cloud, and study
their characteristics in light of their dependency on other computing fields and
models.

An ontology of cloud computing allows better understanding of the interrela-
tions between the different cloud components, enabling the composition of new
systems from existing components and further recomposition of current systems
from other cloud components for desirable features like extensibility, flexibility,
availability, or merely optimization and better cost efficiency. We as well postulate
that understanding the different components of the cloud allows system engineers
and researchers to deal with hard technological challenges. For example, compre-
hending the relationship between different cloud systems can accentuate opportu-
nities to design interoperable systems between different cloud offerings that provide
higher-availability guarantees. Although high availability is one of the fundamental
design features of every cloud offering, failures are not uncommon. Highly avail-
able cloud applications can be constructed, for example, by deploying them on two
competitive cloud offerings, e.g., Google’s App Engine [19] and Amazon’s EC2 [8].
Even in the case that one of the two clouds fails, the other cloud will continue to
support the availability of the applications. In brief, understanding the cloud com-
ponents may enable creative solutions to common cloud system problems, such as
availability, application migration between cloud offerings, and system resilience.
Furthermore, it will convey the potential of meeting higher-level implementation
concepts through interoperability between different systems. For example, the
high-availability requirement may be met by formulating an inter-cloud protocol,

14  ◾  Cloud Computing and Software Services

which enables migration and load balancing between cloud systems. Resilience in
the cloud, for example, can also be met through concepts of self-healing and auto-
nomic computing. The broad objective of this classification is to attain a better
understanding of cloud computing and define key issues in current systems as well
as accentuate some of the research topics that need to be addressed in such systems.

Not only can an ontology impact the research community, but it also can sim-
plify the educational efforts in teaching cloud computing concepts to students and
new cloud applications’ developers. Understanding the implications of developing
cloud applications against one cloud layer versus another will equip developers with
the knowledge to make informed decisions about their applications’ expected time-
to-market, programming productivity, scaling flexibility, as well as performance
bottlenecks. In this regard, an ontology can facilitate the adoption of cloud com-
puting and its evolution. Toward the end goal of a thorough comprehension of the
field of cloud computing, we have introduced in this chapter three contemporary
cloud computing classifications that present cloud systems and their organization
at different levels of detail.

References
 1. J. Hofstader. Communications as a service. http://msdn.microsoft.com/en-us/library/

bb896003.aspx
 2. Apex: Salesforce on-demand programming language and framework. http://developer.

force.com/
 3. J. Appavoo, V. Uhlig, and A. Waterland. Project kittyhawk: Building a global-scale

computer: Blue Gene/P as a generic computing platform. SIGOPS Oper. Syst. Rev.,
42(1):77–84, 2008.

 4. M. Chau, Z. Huang, J. Qin, Y. Zhou, and H. Chen. Building a scientific knowledge
web portal: The nanoport experience. Decis. Support Syst., 42(2):1216–1238, 2006.

 5. N. Chohan, C. Bunch, S. Pang, C. Krintz, N. Mostafa, S. Soman, and R. Wolski.
AppScale: Scalable and Open AppEngine application development and deployment.
Technical Report TR-2009-02, University of California, Santa Barbara, CA, 2009.

 6. M. Christie and S. Marru. The LEAD portal: A teragrid gateway and application
service architecture: Research articles. Concurr. Comput. Pract. Exp., 19(6):767–781,
2007.

 7. J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clusters.
Proceedings of the Sixth Symposium on Operating System Design and Implementation
(OSDI), San Francisco, CA, pp. 137–150, 2004.

 8. Amazon Elastic Compute Cloud. http://aws.amazon.com/ec2/
 9. EMC Managed Storage Service. http://www.emc.com/
 10. Enomalism elastic computing infrastructure. http://www.enomaly.com
 11. A. Hanemann et al. PerfSONAR: A service oriented architecture for multi-domain

network monitoring. In B. Benatallah et al., editors, ICSOC, Amsterdam, the
Netherlands, Lecture Notes in Computer Science, vol. 3826, pp. 241–254. Springer,
Berlin, Germany, 2005.

http://msdn.microsoft.com/en-us/library/bb896003.aspx
http://msdn.microsoft.com/en-us/library/bb896003.aspx
http://developer.force.com/
http://developer.force.com/

Understanding the Cloud Computing Landscape  ◾  15

 12. R. Wolski et al. Grid resource allocation and control using computational econo-
mies. In F. Berman, G. Fox, and A. J. G. Hey, editors, Grid Computing: Making the
Global Infrastructure a Reality, pp. 747–772. John Wiley & Sons, Chichester, U.K.,
2003.

 13. W. Johnston et al. Network communication as a service-oriented capability. In
L. Grandinetti, editor, High Performance Computing and Grids in Action, Advances in
Parallel Computing, vol. 16, IOS Press, Amsterdam, the Netherlands, March 2008.

 14. Eucalyptus. http://eucalyptus.cs.ucsb.edu/
 15. I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit. Int. J.

Supercomput. Appl., 11(2):115–128, 1997.
 16. D. Gannon et al. Building grid portal applications from a web-service component

architecture. Proc. IEEE (Special Issue on Grid Computing), 93(3):551–563, March
2005.

 17. D. Gannon, B. Plale, M. Christie, Y. Huang, S. Jensen, N. Liu, S. Marru, S. Pallickara,
S. Perera, and S. Shirasuna. Building grid portals for e-science: A service oriented archi-
tecture. High Performance Computing and Grids in Action. IOS Press, Amsterdam, the
Netherlands, 2007.

 18. GoGrid Cloud Center API. http://www.gogrid.com/how-it-works/gogrid-API.php
 19. Google App Engine. http://code.google.com/appengine
 20. Google Apps. http://www.google.com/apps/business/index.html
 21. Hadoop. http://hadoop.apache.org/
 22. C. Hoff. Christofer hoff blog: Rational survivability. http://rationalsecurity.typepad.

com/blog/
 23. K. L. Jackson. An ontology for tactical cloud computing. http://kevinljackson.

blogspot.com/
 24. M. Crandell. Defogging cloud computing: A taxonomy, June 16, 2008. http://refresh.

gigaom.com/2008/06/16/defogging-cloud-computing-a-taxonomy/
 25. Microsoft Connected Service Framework. http://www.microsoft.com/serviceprovid-

ers/solutions/connectedservicesframework.mspx
 26. Microsoft Azure. http://www.microsoft.com/azure
 27. M. Stanley. IBM ink utility computing deal. http://news.cnet.com/2100-7339-

5200970.html
 28. C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig latin: A not-so-

foreign language for data processing. In SIGMOD ’08: Proceedings of the 2008 ACM
SIGMOD International Conference on Management of Data, Vancouver, Canada, pp.
1099–1110, 2008. ACM, New York.

 29. Preboot Execution Environment (PXE) Specifications, Intel Technical Report,
September 1999.

 30. R. W. Anderson. Cloud services continuum, July 3; 2008. http://et.cairenenet/
2008/07/03/cloud-services-continuum/

 31. R. W. Anderson. The cloud services stack and infrastructure, July 28, 2008. http://
et.cairene.net/2008/07/28/the-cloud-services-stack-infrastructure/

 32. Amazon Simple Storage Service. http://aws.amazon.com/s3/
 33. Salesforce Customer Relationships Management (CRM) system. http://www.

salesforce.com/
 34. T. Severiens. Physics portals basing on distributed databases. In IuK, Trier, Germany,

2001.

http://www.salesforce.com/
http://www.salesforce.com/
http://rationalsecurity.typepad.com/blog/
http://rationalsecurity.typepad.com/blog/
http://kevinljackson.blogspot.com/
http://kevinljackson.blogspot.com/
http://refresh.gigaom.com/2008/06/16/defogging-cloud-computing-a-taxonomy/
http://refresh.gigaom.com/2008/06/16/defogging-cloud-computing-a-taxonomy/
http://et.cairenenet/2008/07/03/cloud-services-continuum/
http://et.cairenenet/2008/07/03/cloud-services-continuum/
http://www.gogrid.com/cloud-hosting/
http://www.microsoft.com/serviceproviders/solutions/connectedservicesframework.mspx
http://www.microsoft.com/serviceproviders/solutions/connectedservicesframework.mspx

16  ◾  Cloud Computing and Software Services

 35. P. Smr and V. Novek. Ontology acquisition for automatic building of scientific portals.
In J. Wiedermann, G. Tel, J. Pokorný, M. Bieliková, and J. Stuller, editors, SOFSEM
2006: Theory and Practice of Computer Science: 32nd Conference on Current Trends
in Theory and Practice of Computer Science, pp. 493–500. Springer Verlag, Berlin/
Heidelberg, Germany, 2006.

 36. D. Thain, T. Tannenbaum, and M. Livny. Distributed Computing in Practice:
The Condor Experience. Concurrency and Computation: Practice and Experience,
17(2–4):323–356, 2005.

 37. Das U-Boot: The universal boot loader. http://www.denx.de/wiki/U-Boot/WebHome
 38. Virtual Workspaces Science Clouds. http://workspace.globus.org/clouds/

	1. Understanding the Cloud Computing Landscape
	1.1 Introduction
	1.2 Cloud Systems Classifications
	1.3 SPI Cloud Classification
	1.3.1 Cloud Software Systems
	1.3.2 Cloud Platform Systems
	1.3.3 Cloud Infrastructure Systems

	1.4 UCSB-IBM Cloud Ontology
	1.4.1 Applications (SaaS)
	1.4.2 Cloud Software Environment (PaaS)
	1.4.3 Cloud Software Infrastructure
	1.4.4 Software Kernel Layer
	1.4.5 Cloud Hardware/Firmware

	1.5 Jackson's Expansion on the UCSB-IBM Ontology
	1.6 Hoff's Cloud Model
	1.7 Discussion
	References

