

Panel:

Safety-Critical, High-Assurance Software Systems

Ken Birman, Cornell Assaf Kfoury, Boston University *Engin Kirda, Northeastern University* Rami Melhem, University of Pittsburgh

Overview of Panel

- This panel is on safety-critical, high-assurance systems
 - I am a systems security person hence, this is not necessarily my main area of research ;)
 - However, the security of critical systems is increasingly gaining focus and attention
 - There have been documented, high-profile attacks against critical systems (e.g., Stuxnet)
- This panel aims to discuss
 - Promising research directions
 - Current research challenges
 - How we can foster more collaboration

Background: Critical Systems

- Critical systems *control public resources* such as electricity, water, telecommunications, banks, etc.
- The consequences of any disruption of service are severe and may result in loss of human life
- Such systems must often consider different types of constraints compared with regular computer systems (e.g., real time)
- Interdependencies between subsystems may lead to cascading effects that are difficult to foresee
- There is an *emphasis on safety* and less understanding of computer security in this domain (and vice versa)

Examples of Critical Systems

• "Traditional" critical infrastructures

- electricity, water, telecommunications, etc.

SCADA systems

- Used in almost all critical infrastructures
- Efforts are already ongoing to protect such systems
- *Financial systems* are critical infrastructures
 - Many access points
 - Availability to many and diverse users

"Emerging" Critical Systems

- Data centers are becoming common and these can be seen as CIs in that they provide data necessary for more traditional CIs
- web services

- In-vehicle automation with remote diagnostics and software updates for vehicles
- Embedded (automobile) systems connected to open networks.
- Some of the problems related to any embedded system are also valid for the *connected car*

Safety takes priority over security

- Problem: In the domain of critical systems, both safety and security are important, but in certain scenarios, safety takes priority
 - If the underlying process is about to become critical, security should not block or delay appropriate remedies or counteractions
- We need an integrated view on safety and security, since a breach in security could provoke a breach in safety

Unforeseen cascading effects

- **Problem:** Interconnected systems are difficult to model properly, and interdependencies between the subsystems, can lead to cascading effects that are difficult to foresee
- We need to develop appropriate models for the domain, and an overall better architecture with a security baseline

Use of new technology

- Problem: Critical systems also use new types of technology to add functionality
 - e.g., wireless communication for remote sites and internal enterprise communication. Critical control communication will be wireless within 10 years
- There is a tradeoff between the advantages gained with a technology versus the security risk
 - This trade-off must be carefully modeled and analyzed

The Human Factor

- **Problem:** The human is probably the weakest point in a critical system
 - The roles include operators in control rooms, engineers taking technical decisions, managers and decision-makers for future strategy development
 Adversarial problem: Insiders with experience of and knowledge about the system
- Important issues:
 - Education and training, raising awareness of security risks; sound and evolving security policy; modeling the user ("cognitive modeling") and user-interface properties.
 Effective strategies for discovering an "insider" is an open research question.

The Next Challenge: Cyberwar

- Stuxnet, Duqu, Flame
 - Government-sponsored malware attacks against other nations
 - How can we secure existing critical systems?

