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Abstract

Effective engineering of the Internet is predicated upon a detailed understanding of is-
sues such as the large-scale structure of its underlying physical topology, the manner in
which it evolves over time, and the way in which its constituent components contribute to
its overall function. Unfortunately, developing a deep understanding of these issues has
proven to be a challenging task, since it in turn involves solving difficult problems such
as mapping the actual topology, characterizing it, and developing models that capture its
emergent behavior. Consequently, even though there are a number of topology models, it
is an open question as to how representative the topologies they generate are of the actual
Internet. Our goal is to produce a topology generation framework which improves the state
of the art and is based on design principles which include representativeness, inclusive-
ness, and interoperability. Representativeness leads to synthetic topologies that accurately
reflect many aspects of the actual Internet topology (e.g. hierarchical structure, degree
distribution, etc.). Inclusiveness combines the strengths of as many generation models as
possible in a single generation tool. Interoperability provides interfaces to widely-used sim-
ulation and visualization applications such as ns and SSF. We call such a tool a universal
topology generator.

In this paper we discuss the design, implementation and usage of the BRITE universal
topology generation tool that we have built. We also describe the BRITE Analysis Engine,
BRIANA, which is an independent piece of software designed and built upon BRITE design
goals of flexibility and extensibility. The purpose of BRIANA is to act as a repository of
analysis routines along with a user–friendly interface that allows its use on different topology
formats.

Keywords: topology generation, graph models, network topology, growth models, annotated
topologies, simulation environments.
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1 Introduction

To effectively engineer the Internet, crucial issues such as the large scale structure of its underlying physical
topology, its time evolution and the contribution of its individual components to its overall function need to
be well understood.

During the design phase of an Internet-based technology, extensive simulations are usually performed
to assess its feasibility, in terms of efficiency and performance. In general, Internet studies and simulations
assume certain topological properties or use synthetically generated topologies. If such studies are to give
accurate guidance as to Internet–wide behavior of the protocols and algorithms being studied, the chosen
topologies must exhibit fundamental properties or invariants empirically found in the actual extant structure
of the Internet. Otherwise, correct conclusions cannot be drawn.

Unfortunately, achieving a deep understanding of the topology of the Internet has proven to be a very
challenging task since it involves solving difficult problems such as mapping the actual topology, character-
izing it, and developing generation models that capture its fundamental properties. In addition, the topology
of the Internet is a target that is constantly evolving, and it is controlled by a set of autonomous authorities
that are not often willing to exchange low-level connectivity information [21].

There are several synthetic topology generators available to the networking research community [25,
8, 5, 16, 13, 1]. Many of them differ significantly with respect to the characteristics of the topologies they
generate. A researcher is faced with the question of which topology generator to use for a specific simulation
study. The answer may be to use a specific generator, or perhaps to use several topologies generated by
different generators. More challenging yet, a completely new generator may be required if the existing
generation models do not address specific issues of importance to a particular study. Furthermore, existing
topology generators fail to produce complete representations of the Internet since they focus primarily on
network connectivity or structural characteristics only, and do not attempt to model other properties of the
network such as link bandwidths and delays.

Our objective caters to two groups of researchers. On the one hand, there are researchers investigating
Internet protocols and algorithms who need topology generation tools to obtain good synthetic topologies
that are the base of their simulations. On the other hand, there are researchers (like us) investigating the
challenges associated with generating accurate synthetic topologies. For both groups it would be very useful
to have topology generation tools that allow them to easily evaluate the pros and cons of new generation
models.

An attractive scenario is to have a topology generation tool that provides a researcher with a wide
variety of generation models, as well as the ability to easily extend such a set by combining existing models
or adding new ones. In this paper we discuss the design and implementation of BRITE, the Boston university
Representative Internet Topology gEnerator, which is a tool designed to realize this scenario.

This paper is organized as follows. In Section 2 we discuss the challenges that must be tackled to gen-
erate accurate synthetic topologies, what are the characteristics of an ideal generation tool and the approach
taken to achieve these. In Section 3 we describe the general design of BRITE and some implementation
details. In Section 4 we describe the graphical user interface (GUI) that can be used as a front-end to
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BRITE. In Section 5 we provide a walk-through of generating a topology using BRITE. Section 6 explains
how to extend BRITE by adding a new generation model. Section 7 briefly describes the BRITE Analysis
Engine. Section 8 presents some results obtained using BRITE as the generation tool. Section 9 presents
concluding remarks. In the Appendices we describe several technical issues of interest to BRITE users. Ap-
pendix A discusses the issue of including heavy-tailed distributions in several aspects of BRITE. Appendix
B gives a summary of the parsing support routines provided by BRITE. Finally, Appendix C describes how
to download and install BRITE.

2 Wish List for a Topology Generator

An ideal topology generator should enable the use and development of generation models that produce
accurate representations of Internet topologies. Thus, it should include features that appeal to the researcher
who is in need of accurate synthetic topologies for studying the correctness and performance of protocols
and algorithms, as well as to the researcher who is in search for better and more powerful generation models.
The following is a list of desirable characteristics for a topology generator.

1. Representativeness. Produces accurate synthetic topologies. Accuracy should be reflected in as many
aspects of the actual Internet topology as possible (e.g. hierarchical structure, degree distribution char-
acteristics, etc.).

2. Inclusiveness. Combines the strengths of as many generation models as possible in a single generation
tool.

3. Flexibility. Generates topologies over a wide range of sizes. Restrictions such as minimum and maxi-
mum number of nodes should be reasonably avoided.

4. Efficiency. Generates large topologies (e.g. number of nodes> 100; 000) with reasonable CPU and
memory consumption.

5. Extensibility. Provides mechanisms that allow the user to easily extend its capabilities by adding new
generation models.

6. User–friendliness. Follows the usage principles of standard user interfaces. The user should learn the
mechanics of the generation tool only once. For each generation model incorporated in the tool, she
should only need to learn the functionality associated with the new model.

7. Interoperability. Provides interfaces to main simulation and visualization applications. It should be
possible to generate topologies that can be processed by widely used simulators such asns [18] andSSF
[22].

8. Robustness. Does not sacrifice robustness in the name of efficiency and includes extensive error detec-
tion capabilities.
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In Section 2.1 we describe the main topology generators and generation models available, in Section
2.2 we discuss some challenges that must be overcome to develop a universal generation tool satisfying our
wish list, and in Section 2.3 we argue about a possible approach to tackling those challenges.

2.1 Available Topology Generators

There are several topology generators available to the research community. Some of them mainly aim to
generate random topologies [25], others aim to imitate the hierarchical properties of the Internet [5, 8], and
still others aim to reproduce degree-related properties of the Internet [16, 13, 1]. Each of these generators
implement a different set of generation models. Selecting one for a particular study depends on several
factors [26], including the nature of the study to be performed, the size of the required generated topology,
the weight certain characteristics of the generated topologies may have (e.g. structural properties such as
hierarchical structure, or connectivity properties such as the distribution of outdegrees of the nodes), etc. A
brief description of the main topology generators available follows.

Waxman [25] developed one of the first topology generators. This generator produces random graphs
based on the Erd̈os-Renyi [4] random graph model, but it includes network–specific characteristics such as
placing the nodes on a plane and using a probability function to interconnect two nodes in the Waxman
model which is parameterized by the distance that separates them in the plane.

One of the most popular generators available is GT-ITM [5]. The main characteristic of GT-ITM is
that it provides the Transit-Stub (TS) model, which focuses on reproducing the hierarchical structure of
the topology of the Internet. In the TS model, a connected random graph is first generated (e.g. using the
Waxman method or a variant of it). Each node in that graph represents an entireTransit domain. Each transit
domain node is expanded to form another connected random graph, representing the backbone topology of
that transit domain. Next, for each node in each transit domain, a number of random graphs are generated
representingStub domains that are attached to that node. Finally, some extra connectivity is added, in the
form of “back-door” links between pairs of nodes, where a pair of nodes consists of a node from a transit
domain and another from a stub domain, or one node from each of two different stub domains. GT-ITM also
includes about five flavors of flat random graphs.

Another generator that implements models trying to imitate the structure of the Internet is Tiers [8].
The generation model of Tiers is based on a three-level hierarchy aimed at reproducing the differentiation
between Wide-Area, Metropolitan-Area and Local-Area networks comprising the Internet.

BRITE 1.0 [16] is the precursor to the universal generation tool we are presenting in this paper. BRITE
1.0 implements a single generation model that has several degrees of freedom with respect to how the nodes
are placed in the plane and the properties of the interconnection method to be used. Under certain configu-
ration of the parameters, BRITE 1.0 generation model is equivalent to Waxman. Under other configuration
of parameters, BRITE 1.0 implements the Barabási-Albert model proposed in [2] in which a network grows
incrementally and the nodes interconnect with preference towards higher degree nodes.

Inet [13] and PLRG [1] are two generators aimed at reproducing the connectivity properties of Internet
topologies as reported in [9]. These generators initially assign node degrees from a power-law distribution
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and then proceed to interconnect them using different rules. Inet first determines whether the resulting
topology will be connected, forms a spanning tree using nodes of degree greater than two, attaches nodes
with degree one to the spanning tree and then matches the remaining unfulfilled degrees of all nodes with
each other. PLRG works similarly to Inet in that it takes as an argument the number of nodes to be generated
and exponent value�. This exponent value is the parameter of a power-law distribution which is used to
assign a priori degrees to the nodes of the topology. For any given noden with degreedv, n is cloneddv
times and then the resulting nodes are randomly interconnected.

Another set of topologies for which special generators are not required areregular topologies such as
the mesh, star, tree, ring, lattice, etc. These topologies have the advantage that they are very simple, and
are generally used for simplicity or to simulate specific scenarios such as LANs or other shared communi-
cation media. Finally we note that not all existing topology generation models have been implemented in a
generator — the “small-world” model of [24] is one such example.

As we can see, there are a wide variety of generators available. Most of them differ in fundamental ways.
For example, Waxman is concerned only with general random networks, GT-ITM and Tiers are concerned
with the hierarchical properties of the Internet, BRITE 1.0, Inet and PLRG are concerned with resemblance
to Internet topologies in terms of connectivity properties, and regular topologies are concerned only with
specific and restricted scenarios. Furthermore, generators such as Inet and PLRG can be characterized as
causality–oblivious since they do a fairly good job reproducing for example the outdegree distribution of
Internet topologies but their corresponding generation models do not provide insights into why such proper-
ties arise in the Internet in the first place. GT-ITM and Tiers are concerned with more specific hierarchical
properties which are related to how the Internet is organized. However, the fact that they fail to reproduce
properties of the Internet [9] suggests that the generation models they implement are lacking some funda-
mental characteristics. BRITE 1.0 could be characterized as acausality–aware generator since its main
model is aimed to trace back the origin of the power laws in Internet topologies [16]. Note that this situation
does not imply that one category of models is “better” than the other. However, a unified model that con-
siders both hierarchical properties, degree distributions and connectivity properties, and incorporates causal
models has not yet been developed.

2.2 Challenges for a Universal Generation Tool

Having so many independent generation models and topology generators is disadvantageous in many re-
spects. A researcher in need of synthetic topologies to investigate the correctness and performance of pro-
tocols and algorithms is forced to learn the nuances of many of these models/generators. Consequently she
may be forced to use the most popular one, the one supported in the simulation environment used, or the
easiest one. As we mentioned before, different generators produce topologies that are aimed to be used in
different contexts and with different goals. For example, it does not make too much sense to use BRITE
1.0, Inet or PLRG to generate 20-node topologies for simulations. Similarly, if the AS-level connectivity
properties (e.g. degree-related characteristics) are an important consideration, then using GT-ITM may not
be appropriate. The result is that the researcher may end up having to use more than one generator or use one
that does not offer important properties in the generated topologies (hierarchy in some cases, power-laws in
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others). Analogously, for a researcher investigating the challenges of topology generation and looking for
better and more powerful generation models, having so many generators available makes comparative analy-
ses of different models significantly more difficult. For example, in order to perform a thorough comparative
study one may have to learn to use GT-ITM, BRITE 1.0, Inet, PLRG and others, as well as to understand
the different output formats, write different filtering routines for different output files, etc. Furthermore, if a
new generation model is envisioned, a researcher has two options. Either a new generator is developed or an
existing one is extended. Clearly, developing a new generator is cumbersome and available generators are
not designed to be easily extended or even modified.

These difficulties are in addition to the inherently hard problems encountered when developing models
that accurately capture fundamental properties of the Internet topology. Such a model is usually developed
based on actual topological information that is not completely accurate. Such lack of accuracy is mainly
due to the fact that mapping the Internet topology is a very challenging task [11, 23]. At the Autonomous
System (AS) level, available information is richer because it can be obtained or inferred from BGP tables
[17, 10]. In contrast, accurate router-level topological information is hard to obtain and until now inferring
router-level connectivity has been done by using traceroute or traceroute-like probing mechanisms [11, 6].
Identifying the actual fundamental properties of topologies at the router-level is still an open research ques-
tion [26]. Most Internet topology studies have approached topology modeling relying only on physical
connectivity. However, routing in the Internet is determined by a policy–based routing protocol (BGP) and
consequently physical connectivity does not always implies reachability. Customer–provider and peering
relationships play a deciding role in determining whether or not traffic can flow between connected nodes.
As an example, consider a customer AS that is connected to two provider ASs, AS–1 and AS–2. In general,
a customer AS does not provide transit between its providers. So, even though there is a path from provider
AS–1 to provider AS–2, they may not actually exchange traffic via the customer AS. Hence the connec-
tivity of a topology alone does not completely characterize the structural properties of the corresponding
routing topology [10]. Even if we knew the actual relationships between ASs, such relationships are con-
tinuously changing. Therefore, in order to generate accurate representative topologies the invariants of such
relationships across time and size must be discovered.

In short, research in topology generation is in its infancy. New models will be developed as research
will expose new and more powerful mechanisms to accurately characterize the topology of the Internet.
topologies. Our challenges can be concisely put into two issues:

1. How can we develop an adapting and evolving generation tool that constitutes an interface between
general Internet research and pure topology generation research? Through this interface, representative
topologies developed by the topology generation research community, can be made readily available to
the Internet research community at large.

2. How to design such a tool so that it also achieves the goal of facilitating pure topology generation
research? A researcher that devises a new and clever generation model should be able to test it readily
without having to develop a topology generator from scratch.

6



2.3 How to Approach the Design of a Universal Generation Tool

We address the challenges described above by establishing a differentiation betweenmodel-oriented (i.e.
specific) topology generators, and auniversal topology generation tool.Model-oriented generators are those
generators designed and implemented with a specific set of models in mind. All the generators described
above fall in this category. In contrast, auniversal generator should not be tied to a specific model or set of
models. Instead, this generator should beextensible, allowing the addition of new models in an easy way.
This characteristic makes a universal topology generatorflexible andadaptable, generatingrepresentative
topologies to be used in different simulation scenarios. In addition a universal topology generator should be
robust. It must be asefficient as possible without sacrificing robustness. Finally, a universal generation tool
must integrate to existing network simulation tools and be user–friendly.

3 Design and Implementation of BRITE

BRITE was designed to be a flexible topology generator, not restricted to any particular way of generating
topologies. As such, it supports multiple generation models. In this section we describe how this design
goal was approached and how BRITE is implemented. Figure 1 depicts a schematic view of the structure of
BRITE as it is being used at Boston University. The different components are labeled (1)–(4).

BRITE
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Figure 1: Schematic structure of BRITE

BRITE reads the generation parameters from a configuration file (1) that can be either hand written
by the user or automatically generated by BRITE’s GUI (described in Section 4). BRITE provides the
capability of importing topologies (2) generated by other topology generators (GT-ITM [5], Inet [13], Tiers
[8], BRITE 1.0 [16]) or topological data gathered directly from the Internet (NLANR [17], Skitter [6]). Note
that we include BRITE in the “ imported” fi le formats, because it is possible to generate topologies using
BRITE and then reusing them to generate other topologies by combining them with BRITE models or other
imported formats. In the current distribution BRITE produces a topology in its own file format (3), and

7



output capabilities for producing topologies that can be used directly by the Network Simulator (NS [18])
and the Scalable Simulation Framework (SSF [22]) simulators are currently being developed.

We developed a piece of software, separate from BRITE’s generation tool, and we call it the BRITE
Analysis Engine or BRIANA (4). BRIANA takes advantage of the flexible design approach of BRITE. The
idea of BRIANA is to provide a set of analysis routines that may be applied to any topology that can be
imported into BRITE. If we need to analyze a new topology, we just add a parsing procedure to BRITE for
that new format, and once that is done, the set of analysis routines can be used on the new topology. Section
7 summarizes BRIANA’s features.

3.1 BRITE’s Architecture

Figure 2 depicts the main components of a topology as seen by BRITE. In BRITE, a topology is represented
by a class Topology. This class contains a Model (1) and a Graph (2) as data members, and among others, a
set of exporting methods and function members (3).

Topology

Model Graph

Model 1 Model 2 EdgesNodesModel n

(2)

members

deriving

(3)
(1)

Brite NS SSF

Export
Methods

Figure 2: A Topology as seen by BRITE

The Model class is an abstract base class from which multiple specific generation models are derived.
Each specific topology generated by BRITE can use a single instance of one of the available generation
models if the generated topology is flat, or more than one instance if the topology is a combined hierarchical
topology. (Section 3.2). The Graph data member (2) is a Graph class with the minimal functionality required
by the generation models. Should more capabilities from the Graph component be required, this class may
be extended or replaced with minimum effects on the remaining code. Finally, the general architecture
shows a set of export methods which output BRITE topologies into specific formats.

3.2 How BRITE Works

The specific details regarding how a topology is generated depend on the specific generation model being
used. We can think of the generation process as divided into a four-step process:

1. Placing the nodes in the plane
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2. Interconnecting the nodes

3. Assigning attributes to topological components (delay and bandwidth for links, AS id for nodes, etc.)

4. Outputting the topology to a specific format.

This of course is not a clear-cut division that will fit every generation model but conceptually reflects
what happens when a topology is being generated. Also, several models may share specific steps during the
generation process, while other models differ significantly on the individual steps. In the next section we
will discuss these steps in the context of particular models provided in the current distribution of BRITE.

3.3 Models

BRITE’s architecture is centered around the Model class. Figure 3 depicts the current status of the model
class and the specific models deriving from it.

Imported
File
GT-ITM

Imported
File
NLANR

Imported
File
Models

Imported
File
SKITTER

Model

Router
Waxman

Router AS
Waxman

AS
Barabasi

Imported
File BRITE

Flat
Router
Models

Flat
AS
Models

Hierarchical
Top-dowm
Model

Hierarchical
Bottom Up
Model

Imported
File InetBarabasi

Figure 3: Model class and its deriving classes

As we can see in Figure 3, the current distribution of BRITE contains eight different generation models.
Some of them are very similar and share implementation code, and others are completely different and
share no functionality. Every model has a Generate method which returns a graph containing the generated
topology. In the next subsections, we describe each of the available models.

3.4 Flat Router-level Models

BRITE contains a class RouterModel derived from the Model class. The idea of having such a class is to sep-
arate models that generate router-level topologies, from models specific to other environments (AS, LANs,
etc). Keep in mind that the intrinsic details of any of the provided models do not represent a limitation with
respect to the flexibility offered by BRITE. If none of the available individual models satisfy the require-
ments of a specific simulation environment, one could combine existing models or create a completely new
model and integrate it into BRITE.
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The router-level models currently provided with BRITE are called RouterWaxman (Section 3.4.3) and
RouterBarabasiAlbert (3.4.4). These models share certain functionality. Specifically, both models place
the nodes in the same way into the plane, and once the topology has been fully generated, they both assign
bandwidth attributes to the links in the same way. They mainly differ in the network growth model and the
node interconnection method used.

3.4.1 Placing the Nodes

BRITE separates the placement of the nodes from the process of growing the topology and interconnecting
the nodes. By placing a node we mean just selecting a location in the plane for it and creating and initializing
the data structures for the node in the graph. This phase does not mean that the nodes already belong to the
topology because the specific joining time of a node to the topology will depend on the growth model
employed.

The class RouterModel provides a method called PlaceNodes that places the nodes on the plane in
one of two ways: randomly or heavy tailed. The motivation behind providing heavy-tailed distributions is
explained in Appendix A. When node placement is random, each node is placed in a randomly selected
location of the plane. When the placement is heavy-tailed, BRITE divides the plane into squares (the size of
the plane and the size of the squares is controlled by parameters passed to BRITE. See Section 3.8). Each
of these squares is assigned a number of nodes drawn from a heavy-tailed distribution. Once that value is
assigned, then that many nodes are placed randomly in the square. Again, this placement mechanism can be
modified or overridden by particular models.

Figure 4: Snapshot of random node placement (left) and heavy-tailed node placement (right)

Figure 4 shows the difference between random and heavy-tailed node placement. The clustering pro-
vided by heavy-tailed placement can be used for specific generation models [16].

3.4.2 Assigning Bandwidths

Once the topology has been completely generated, both router-level models invoke the AssignBandwidth
method of the RouterModel class. New router-level models can override this method or choose not to call it
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at all.

BRITE assigns bandwidths to links according to one of four possible distributions. The user specifies
in the configuration file passed to BRITE, which distribution is going to be used (BWdist), along with
a minimum (BWmin) and maximum (BWmax) values for possible bandwidths that can be assigned.
BRITE assigns a bandwdith to each link that is either:

1. Constant: the value specified by BWmin (equal for all links in the topology).

2. Uniform: a value uniformly distributed between BWmin and BWmax.

3. Exponential: a value exponentially distributed with mean BWmin.

4. Heavy-tailed: a value heavy-tailed distributed (Pareto with shape 1.2) with minimum value BWmin

and maximum value equal to BWmax.

Note that the user’s choice of BWdist, BWmin and BWmax drives BRITE’s bandwidth assignment.
BRITE treats bandwidth values as unitless. Users interpret the meaning of bandwidth units according to
their needs. See Section 3.8 for more details on parameter choice and values.

3.4.3 Router Waxman

RouterWaxman basically refers to a generation model for a random topology using Waxman’s probability
model for interconnecting the nodes of the topology, which is given by:

P (u; v) = � e�d=(�L) (1)

where 0 < �; � � 1, d is the Euclidean distance from node u to node v, and L is the maximum distance
between any two nodes.

RouterWaxman only differs from the ASWaxman model in that the nodes of a RouterWaxman topology
represent routers rather than ASs.

3.4.4 Router BarabasiAlbert (Barabási-Albert model)

BRITE provides a RouterBarabasiAlbert model deriving from the Model class. It is called RouterBarabasiAl-
bert because it implements a model proposed by Barabási and Albert [2]. This model suggests two possible
causes for the emergence of a power law in the frequency of outdegrees in network topologies: incremental
growth and preferential connectivity. Incremental growth refers to growing networks that are formed by
the continual addition of new nodes, and thus the gradual increase in the size of the network. Preferential
connectivity refers to the tendency of a new node to connect to existing nodes that are highly connected or
popular.
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RouterBarabasiAlbert interconnects the nodes according to the incremental growth approach. When a
node i joins the network, the probability that it connects to a node j already belonging to the network is
given by:

P (i; j) =
dj

P
k2V dk

(2)

where dj is the degree of the target node, V is the set of nodes that have joined the network and
P

k2V dk
is the sum of outdegrees of all nodes that previously joined the network.

3.5 Flat AS-level Models

For the current distribution of BRITE, the provided AS-level models are very similar to the models provided
for generating router-level topologies. The main difference between these router-level and AS-level models
is the fact that AS models place AS nodes in the plane and these have the capability of containing associated
topologies. Note that this does not mean that there are no AS-level and router-level models that differ
substantially from each other. The idea of separating router-level from AS-level from the beginning is to
allow for the flexibility of developing independent models for each scenario. The two AS-level models
provided with the initial distribution of BRITE are ASWaxman and ASBarabasiAlbert.

3.5.1 Placing the Nodes and Assigning Bandwidths

The functionality required by the two provided AS-level models with respect to placing nodes and assigning
bandwidths if similar to the router-level case. We did not combine both models for the reasons stated above.
Similarly, we did not put the PlaceNodes method at the Model level because there are models that may not
require placement of nodes in a plane at all.

3.6 Hierarchical Topologies

Generation models such as Transit-stub [5] and Tiers [8], are centered around reproducing structural prop-
erties of the Internet. In particular, Transit-stub has a well-defined hierarchy representing transit and stub
autonomous systems in the Internet. Tiers is based on a three-level hierarchy of the Internet as represented
by wide-area, metropolitan-area and local-area networks.

Producing synthetic topologies that possess similar structural characteristics to the Internet is important
since such properties reflect how the Internet is engineered. On the other hand, achieving hierarchical
similarities should not be accomplished at the expense of accuracy with respect to other properties such
as degree distributions. There must be a generation model that strikes a good balance between structural
properties and degree-related properties. However, it has yet to be developed.

BRITE currently supports generation of two-level hierarchical topologies. The two-level limit might
be overcome by recursively generating a 2n–level topology in n “phases” . However, two-level hierarchical
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topologies are in concordance to the two level routing hierarchy that has persisted in the Internet since
ARPANET evolved into a network of networks interconnecting multiple autonomous systems. We plan to
extend BRITE to natively support more than two levels if we find that it would allow for the generation of
topologies that actually reflect real-world scenarios.

3.6.1 Top-down Hierarchical Topologies

Top-down is one of the approaches used by BRITE to generate hierarchical topologies. Figure 5 depicts
the structure of the top-down approach for generating hierarchical topologies. The main steps are labeled
(1)–(3).

AS-level Topology

Router Level 

Edge
Connection
Method

Topologies

(1)

(2)

(3)

AS Nodes

Figure 5: Top-down Approach for Generating Hierarchical Topologies

Top-down means that BRITE generates first an AS-level topology (1) according to one of the available
flat AS-level models (e.g. Waxman, Imported File, etc.). Next, for each node in the AS-level topology
BRITE will generate a router-level topology (2) using a different generation model from the available flat
models that can be used at the router-level. BRITE uses an edge connection mechanism to interconnect
router-level topologies as dictated by the connectivity of the AS-level topology. Performing this intercon-
nection of router-level topologies in a representative way is an open research question. BRITE provides
four edge connection mechanisms, borrowed from the popular GT-ITM [5] topology generator. The idea is
to gradually increase the set of edge connection methods with models that reflect what actually happens in
Internet topologies.

The basic edge connection methods provided with BRITE operate as follows. If (i; j) is a link in the
AS-level topology, then pick a node u from the router-level topology associated with AS node i, RT (i), and
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a node v from the router-level topology associated with the AS node j, RT (j), such that:

� Random: u is picked randomly from RT (i) and v randomly from RT (j)

� Smallest degree: u and v are nodes with the smallest degrees in RT (i) and RT (j), respectively.

� Smallest degree non-leaf: u and v are nodes of smallest degree in RT (i) and RT (j) respectively but
are not leaves.

� Smallest k-degree: u and v are nodes of degree greater that or equal to k in RT (i) and RT (j) respec-
tively.

The final topology is obtained by flattening the hierarchical topology into a router-level topology com-
posed of the individual topologies associated with each node at the AS-level.

Note that we are implicitly assuming that the topology being manipulated is represented by an undi-
rected graph. BRITE internal data structures do not restrict the graph associated with a topology to be
undirected. However, some of BRITE functionality, such as importing a topology from a file in BRITE’s
output format, assumes that the corresponding topology has undirected links. Increasing BRITE’s flexibility
by explicitly distinguishing between directed and undirected topologies is straightforward and it is part of
our ongoing work.

The configuration file used by BRITE to generate a top-down topology contains parameters control-
ling the bandwidth distribution for inter- and intra-domain links. These parameters override the specific
parameters for the AS- and router-level topologies. Bandwidths for the generated AS-level topology will
be assigned according to the inter-domain distribution. Furthermore, bandwidths for each generated router-
level topology are assigned according to the intra-domain distribution. During the flattening process, the
links established between different router-level topologies will have assigned the bandwidth associated with
the corresponding AS-AS link. This bandwidth–assignment method represents just one possible mechanism.
Different models can be implemented and added to BRITE.

3.6.2 Bottom-up Hierarchical Topologies

Another viable approach to generate hierarchical topologies is the bottom-up approach. The accuracy of this
approach with respect to generating representative Internet topologies has yet to be validated. Nonetheless,
we believe it is an alternative mechanism to generate hierarchical topologies. The interesting question to be
answered with this approach is: how can we infer topological characteristics at the AS-level from known
topological information at the router-level. BRITE provides a model that generates hierarchical topologies
following this approach.

In this model, BRITE first generates a router-level topology using any of the available models (router
Waxman, imported file, etc.). Once this topology has been constructed, BRITE assigns to each AS node
(level-2 node) a number of routers according to an assignment type specified by the user. With this number
of assigned routers to an AS node, BRITE groups that many nodes from the router topology following a
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grouping method specified also by the user as a parameter to BRITE. The next two subsections describe the
assignment types and grouping mechanisms provided as a base bottom-up model by BRITE.

Assignment Types: The set of parameters associated with the Bottom-up model include NumAS, the
number of ASs requested by the user. BRITE then assigns router-nodes to ASs in one of the following
ways:

� Constant: Assign each AS an equal number of router-level nodes, i.e. NumNodes=NumAS, where
NumNodes is the number of nodes in the router-level topology.

� Uniform: Pick a value uniformly distributed in [1; NumNodes].

� Exponential: Pick a value exponentially distributed with mean NumNodes
NumAS .

� Heavy-tailed: Pick a value from a truncated heavy-tailed distribution between 1 and NumNodes.

Grouping Mechanisms. Once the number of nodes for an AS has been assigned, BRITE assigns this
number of router nodes to a single AS. BRITE does this step in one of two ways:

� Random pick: Pick randomly one node at a time and assign it to AS i until it reaches its size. Repeat
for all ASs.

� Random walk: Perform a random walk through the graph, where each step in the walk corresponds to
choosing a random neighbor from a given vertex. Each visited node is assigned AS i until it reaches its
size. Repeat for all ASs.

The random walk mechanism is slightly more complicated than random pick for two reasons. First, we
need to keep track of which nodes has been visited (assigned). After finishing with a given AS, BRITE picks
a not-yet-visited router node and starts the random walk for the next AS. Second, it can happen that a random
walk can not be completed for an intermediate AS (not the first one) because the random-walk algorithm
cannot continue walking the graph any further through not-yet-visited router nodes.1 In this approach the
parameter NumAS provided by the user is used as a guideline for BRITE. As many nodes as possible, up
to the value assigned to the corresponding AS, will be picked from the set of nodes during a random walk.
Certain number of ASs may get less nodes than initially assigned to them. BRITE reports the actual number
of ASs assigned, which may exceed the parameter NumAS.

We emphasize that the Bottom-Up approach is an experimental model for generating hierarchical
topologies. Providing several ways to group nodes into ASs is aimed at facilitating the process of experi-
mentation. However, there is no analysis supporting the use of random pick over random-walk or vice-versa.
One could implement an assignment mechanism of routers to ASs that mimics the assignment procedure
proposed in [12] to compute an AS overlay on top of a measured router-level topology. This and other
assignment/grouping mechanisms is the subject of ongoing research.

1Such a random walk is called self-avoiding.
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3.7 Imported File Model

As we mentioned before, one of the design goals of BRITE was to combine strengths of available models
into a single tool. BRITE incorporates an ImportedFileModel class deriving from the base abstract class
Model. Figure 6 shows the current structure of the ImportedFileModel.

Imported
File
GT-ITM

Imported
File
NLANR

Imported
File
SKITTER

Imported
File
Models

Imported
File Inet

Imported
File BRITE

Figure 6: Imported File Model: parsing topologies in other formats

The Generate method associated with a model derived from ImportedFileModel will be in charge of
parsing a file in the format of the corresponding imported topology, and it will load it into BRITE Graph data
structures. Once such a topology has been parsed and loaded, it can be used as a native BRITE topology. We
have applied this approach to combine topologies from existing generators with topologies generated with a
variety of other models. There are many useful scenarios where a researcher may benefit from having such a
capability. For example, we could generate a top-down hierarchical topology, where the AS-level topology
has been imported from NLANR topological data, and the router-level corresponds to Waxman topologies
or topologies generated by the GT-ITM generator. It is also possible to generate hierarchical topologies
with more than two levels. For example, a four-level topology may be obtained by recursively generating a
top-down hierarchical topology where the AS-level corresponds to a Transit-Stub topology generated using
GT-ITM and the router level topologies correspond to a top-down topology generated using BRITE. Thus,
BRITE’s architecture allows a researcher to combine topologies incorporating diverse research themes, as
well as to create new models specific to certain scenarios.

The available models in this category are:

� Imported BRITE Topology

� Imported GT-ITM Topology (flat and Transit-Stub)

� Imported NLANR Topology

� Imported Inet Topology

We are currently working on importing topological data from the CAIDA project, such as the data
gathered by Skitter [6].
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3.8 BRITE’s Parameters

Tables 1, 2, 3 and 4 describe the meaning of the parameters of the models provided with the current distri-
bution of BRITE. Parameters used by more that one model, are mentioned only once.

Parameter Meaning Values

HS Size of one side of the plane int � 1

LS Size of one side of a high-level square int � 1

N Number of nodes int 1 � N � HS �HS

Model model id int � 1

alpha Waxman-specific exponent 0 < � � 1; � 2 R

beta Waxman-specific exponent 0 < � � 1; � 2 R

Node Placement how nodes are placed in the plane 1: Random, 2: HT
m Number of links per new node int � 1

Growth Type how nodes join the topology 1: Incremental, 2: Random
BWdist bandwidth assignment to links 1: Const, 2: Unif, 3: Exp, 4: HT

MaxBW, MinBW min, max link bandwidth values float > 0

Table 1: Flat Topology (AS Only or Router Only) Parameters.

Parameter Meaning Values

Edge Connection method for interconnecting 1: Random node

router topologies 2: Smallest degree,
3: Smallest degree non-leaf

4: k-Degree
Intra BWdist Intra-domain bandwidth 1: Constant

assignment distribution 2: Uniform
3: Exponential

4: Heavy-tailed
Intra BWMax/Min min, max bandwidth values float > 0

for intra-domain links
Inter BWdist inter-domain bandwidth 1: Constant

assignment distribution 2: Uniform
3: Exponential

4: Heavy-tailed
Inter BWMax/Min min, max bandwidth values float > 0

for inter-domain links

Table 2: Top-down Hierarchical topology Parameters.

3.8.1 Parsing Support

The C++ version of BRITE provides its own parsing routines. When building a parsing routine for the
parameters of a new model, or for parsing a new Imported File Model, the user can benefit from the func-
tionality provided by the parsing routines (Parser.h) summarized in Appendix B. The Java version uses the
functionality of the StreamTokenizer class found in java.io.StreamTokenizer.
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Parameter Meaning Values

AssignType assignment of routers to ASs 1: Constant
2: Uniform

3: Exponential
4: Heavy-tailed

NumAS number of ASs “desired” int > 0

Grouping Method how routers are grouped into ASs 1: Random pick

2: Random Walk

Inter BWdist inter-domain bandwidth 1: Constant
assignment distribution 2: Uniform

3: Exponential
4: Heavy-tailed

Inter BWMax/Min min, max link bandwidth values float > 0

Table 3: Bottom-Up topology Parameters.

Parameter Meaning Values

Format File format to be imported 1: BRITE
2: GT-ITM
3: NLANR

4: SKITTER
5: GT-ITM Transit-Stub

6: Inet
File file pathname valid file name
HS, LS Plane dimensions same as above
BWdist Bandwidth distribution 1: Constant

2: Uniform
3: Exponential

4: HT
BWmin, BWmax min, max link bandwidth values float > 0

Table 4: Imported File topology Parameters.
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4 BRITE Interface Design and Implementation

BRITE has two input interfaces: a Java based graphical interface and a command line interface. All topology
generation parameters are specified in a configuration file, which can either be generated automatically by
the GUI or manually created.

At present, BRITE has only a single output interface: a BRITE format topology file. Visualization
output and export to simulation environments such as NS and SSF are in development.

In the following sections, we discuss the input interfaces of BRITE: the graphical interface, the com-
mand line interface and finally the BRITE configuration file format. Next, we describe the output interface
of BRITE: the BRITE topology file format.

4.1 BRITE’s GUI

One of our design goals was to make BRITE easy to learn and use. To this end, we built a cross platform
GUI front-end to the BRITE generation engine. Although the graphical interface is written in Java, it can be
used as a front-end to the C++ version without any performance loss. This is achieved by divorcing the GUI
from the topology generation engine. All interaction between the GUI and the generation engine takes place
through a configuration file. Once a user specifies desired parameters, the GUI generates a corresponding
configuration file, GUI GEN.conf. It then spawns a new C++ or Java process and runs the generation engine
with this configuration file as input. Figure 7 illustrates this interaction between the GUI and the generation
engine.

4.2 The command line interface

The command line interface directly invokes the BRITE generation engine. It must receive as input a
configuration file, a location for an export file, and a seed file. BRITE uses pseudo-random numbers at
different points during the generation process. For example, nodes are placed randomly in the plane, nodes
are interconnected according to certain probability function, etc. The seed file contains seeds to initialize
the pseudo-random number generator independently each time it is required. BRITE updates the seed file
with new seeds in such a way that it can be used to generate independent topologies on subsequent runs.
Also, the seed file for the current run is saved into a backup file named last seed file to allow reproducing
topologies in different runs.

To use the command line interface, go to the BRITE directory and at the command prompt, type:

$ brite my-config.conf my_export.brite seed-file (C++)

$ java Main.BRITE my_config.conf my_export.brite seed-file (Java)
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Topology: ( 10000 Nodes, ....)
Model: ....

Status Window

spawn new
process

User Input

Done

BRITE GUI BriteConfig

BeginModel
Name = 3
N = 10000
....
EndModel

GUI Behind the Scenes

file: GUI_GEN.conf

$ java Main.Brite GUI_GEN.conf export.brite

$ brite GUI_GEN.conf export.brite

file: export.brite

output
topology 
to file

update

update

create
config file

or

Figure 7: Interaction between GUI and BRITE Generation Engine

4.3 Configuration Files

All BRITE configuration files must begin with the BriteConfig keyword. Listing 4.1 shows a configuration
file for generating an AS-level topology using the Waxman model. A BRITE configuration file is a simple
Key-Value text file. A Key is an alpha-numeric string and a Value must be a numeric value. The Key and
Value must be separated by a ’=’ character. The BeginModel and EndModel keywords are delimiters for
each single–level model parameters. The ’#’ character serves as a comment character. The following is a
sample of a single–level ASWaxman configuration file.

The Key-Value parameters are unique for each model. Suppose, for instance that we were interested
in importing an NLANR file as a BRITE AS-level topology. Listing 4.2 shows a configuration file that
achieves this.

A number of sample configuration files are included in both versions of BRITE in the conf files/ direc-
tory.
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Listing 4.1 Configuration file for AS Waxman Model

BriteConfig

BeginModel

Name = 3 #Router Waxman = 1, AS Waxman = 3

N = 10000 #Number of nodes in graph

HS = 1000 #Size of main plane

LS = 100 #Size of inner planes

NodePlacement = 2 #Random = 1, Heavy Tailed = 2

GrowthType = 2 #Incremental = 1, All = 2

m = 2 #Number of neighboring nodes for each new node

alpha = 0.19 #Waxman Parameter

beta = 0.2 #Waxman Parameter

BWDist = 2 #Const = 1, Uniform = 2, HT = 3, Exp = 4

BWMin = 10.0

BWMax = 1024.0

EndModel

BeginOutput

Brite = 1 # 0/1: Save/Don’t save in BRITE’s format

Otter = 0 # 0/1: Save/Don’t save in Otter’s format

EndOuput

Listing 4.2 Configuration file for importing an NLANR (ASConnList) topology

BriteConfig

BeginModel

Name = 8 #AS File = 8, Router File = 7

Format = 3 #BRITE = 1, GT-ITM = 2, NLANR = 3, SKITTER = 4, GT-ITM(TS) = 5

File = 19980101.nlanr #NLANR (ASConnlist) data

HS = 1000 #Size of main plane

LS = 100 #Size of inner planes

BWDist = 1 #Constant = 1, Uniform = 2, HeavyTailed = 3, Exponential = 4

BWMin = 10.0 #Min bandwidth value

BWMax = 1024.0 #Max bandwidth value

EndModel

BeginOutput

Brite = 1 # 0/1: Save/Don’t save in BRITE’s format

Otter = 0 # 0/1: Save/Don’t save in Otter’s format

EndOuput
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4.4 The BRITE Output Format

A BRITE-formatted output file contains three sections:

1. Model information: information about the topology contained in the file. Includes number of nodes and
edges, and information specific to the model used to generate the topology.

2. Nodes: for each node in the graph, a line is written into the output file with the following format :

NodeId xpos ypos indegree outgdegree ASid type

The meaning of each field is described in Table 5.

Field Meaning

NodeId Unique id for each node
xpos x-axis coordinate in the plane
ypos y-axis coordinate in the plane

indegree Indegree of the node
outdegree Outdegree of the node

ASid id of the AS this node belongs to (if hierarchical)
type Type assigned to the node (e.g. router, AS)

Table 5: BRITE Output format: Nodes section

3. Edges: for each edge in the graph, a line with the following format is written in the output file:

EdgeId from to length delay bandwidth ASfrom ASto type

The meaning of each field is described in Table 6.

Field Meaning

EdgeId Unique id for each edge
from node id of source
to node id of destination

length Euclidean length
delay propagation delay

bandwidth bandwidth (assigned by AssignBW method)
ASfrom if hierarchical topology, AS id of source node
ASto if hierarchical topology, AS id of destination node
type Type assigned to the edge by classification routine

Table 6: BRITE Output format: Edges section

As an example, the output file shown in Listing 4.3 corresponds to a Waxman topology of 5 nodes and 8
edges, which was generated using the model RouterWaxman (Model number 1). Since it is a flat router-level
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topology, nodes do not have a corresponding AS id and therefore the ASid field contains �1. For the same
reason, the ASfrom and ASto fields for the edges contain �1 values. The final field for both nodes and
edges, correspond to a type assigned to them by a classification routine. BRITE provides a classification
routine based on a classification method proposed in [3]. The classification routine is not called by default
and hence both nodes and edges are unclassified (NONE type).

Listing 4.3 Output format: Flat router-level topology, 5 nodes, 8 edges

Topology: ( 5 Nodes, 8 Edges )

Model ( 1 ): 5 1000 100 1 1 2 0.15 0.2 1 10 1024

Nodes: (5)

0 216.00 663.00 3 3 -1 RT_NONE

1 347.00 333.00 3 3 -1 RT_NONE

2 384.00 926.00 3 3 -1 RT_NONE

3 27.00 309.00 4 4 -1 RT_NONE

4 212.00 187.00 3 3 -1 RT_NONE

Edges: (8):

0 2 0 312.08 1.04 10.00 -1 -1 E_RT_NONE

1 2 1 594.15 1.98 10.00 -1 -1 E_RT_NONE

2 3 1 320.90 1.07 10.00 -1 -1 E_RT_NONE

3 3 2 712.84 2.38 10.00 -1 -1 E_RT_NONE

4 4 0 476.02 1.59 10.00 -1 -1 E_RT_NONE

5 4 3 221.61 0.74 10.00 -1 -1 E_RT_NONE

6 0 3 401.29 1.34 10.00 -1 -1 E_RT_NONE

7 1 4 198.85 0.66 10.00 -1 -1 E_RT_NONE

5 BRITE Topology Generation Process Walk-through

We now provide step-by-step instructions on creating a topology using the BRITE GUI.

The first step is to start the GUI by typing the following command at the prompt:

\$ startGUI

A window as shown in Figure 8 will pop up.

To create a new Topology, select in Topology Type the kind of topology that you’d like to create first.
You may select one of the options shown in Figure 9, namely, Flat Router–Level only, Flat AS–Level only
or Hierarchical topologies. Although the interface shows the parameters available for other models as well,
only those applicable to the selected model type will be enabled.

Next, specify the topology parameters. A complete description of these parameters is given in Section
3.8. BRITE comes with two models: Waxman and BarabásiAlbert for both AS-level and router-level topolo-
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Figure 8: Main window of BRITE’s GUI

gies. You may select one of these. You may also import an existing topology file and use it in combination
with other topologies in a Hierarchical Model. To do this click on the Import button and a window will pop
up from which you will be able to select the desired file to import.

Once you have selected a model, you may edit the default model–specific parameters. In Figure 8 the
selected topology type is flat AS-level and the parameters in the middle section of the window are parameters
passed to the ASWaxman model.

In the Export file section of the window, specify the file and format you want to export the generated
topology to. In the current distribution of BRITE only BRITE’s output format is supported but soon there
will be exporting capabilities for NS and SSF formats. See Section 4.3 for details on BRITE’s output format.

Finally, select the version of the BRITE generation engine to use: C++ or Java. Click Build Topology.
A status window, as shown in Figure 10, should appear that will detail the topology generation process.
You may at a later time modify the configuration file that the GUI generates, GUI GEN.conf, and generate
similar topologies.
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Figure 9: Topology types available

Figure 10: Status window showing generation progress

6 Extending BRITE

One design goal of BRITE was to easily allow researchers to incorporate new models for specific scenarios.
In this section we describe with a reasonable level of detail, the necessary steps that must be taken in order
to extend BRITE by incorporating new generation models to its framework. Since there are two very similar
implementations of BRITE (Java and C++), we present a separate section with extension guidelines for each
version.

6.1 Extending BRITE’s C++ Version

We have to worry mainly about two things regarding a new model: passing parameters to BRITE required
by the new model, and implementing the generation functionality that’s specific to the new model.
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6.1.1 Passing parameters to the new Model

Passing of parameters is done in BRITE via a configuration file. This file must be parsed and its contents
must be put in a parameter data structure associated with the specific model we are implementing. BRITE
provides a base class called ModelPar which is the base class for parameter classes for the models provided
with BRITE.

For example, C++ excerpt 1 shows the declaration of the RouterWaxPar class which is the parameter
class associated to the Router Waxman model. This class contains data members for all parameters required
by the Router Waxman model.

C++ excerpt 1 Class associated to router-level Waxman Model

class RouterWaxPar : public ModelPar{

public:

RouterWaxPar(int n, int hs, int ls, int np,

int ig, int m_edges, double a, double b,

int bw, double bw_min, double bw_max);

int GetN() { return N; }

int GetNP() { return NP; }

int GetIG() { return IG; }

int GetM() { return m; }

double GetA() { return alpha; }

double GetB() { return beta; }

int GetBW() { return BW; }

double GetBWMin() { return BWmin; }

double GetBWMax() { return BWmax; }

void SetBW(int bw) { BW = bw; }

void SetBWMin(double bw_min) { BWmin = bw_min; }

void SetBWMax(double bw_max) { BWmax = bw_max; }

private:

int N; // Size

int NP; // Node placement strategy

int IG; // Growth type

int m; // Number of edges per newly added node

double alpha, beta; // Waxman parameters

int BW; // Bandwidth distribution

double BWmin;

double BWmax;

};

There is a single entry point to the parsing of configuration files, which is the method:
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ModelPar* Parse::ParseConfigFile();

The method ParseConfigFile, which is invoked from BRITE’s main routine, will determine the type of
model that must be parsed and then it will invoke the specific method in charge of parsing parameters for
the corresponding model. As an example, let’s suppose that ParseConfigFile is parsing a configuration file
for generating a Waxman topology. Listing 6.1 shows such a configuration file.

Listing 6.1 Configuration file for Router Waxman Model

BriteConfig

BeginModel

Name = 1 #Router Waxman = 1, AS Waxman = 3

N = 100 #Number of nodes in graph

HS = 1000 #Size of main plane (number of squares)

LS = 100 #Size of inner planes (number of squares)

NodePlacement = 1 #Random = 1, Heavy Tailed = 2

GrowthType = 1 #Incremental = 1, All = 2

m = 2 #Number of neighboring node per each new node.

alpha = 0.15 #Waxman Parameter

beta = 0.2 #Waxman Parameter

BWDist = 1 #Const = 1, Uniform =2, HT = 3, Exp =4

BWMin = 10.0

BWMax = 1024.0

EndModel

BeginOutput

Brite = 1 # 0/1: Save/Don’t save in BRITE’s format

Otter = 0 # 0/1: Save/Don’t save in Otter’s format

EndOuput

Upon parsing the field Name = 1, ParseConfigFile will determine that it must parse parameters for the
RouterWaxman model and will invoke the appropriate parsing procedure, ParseRouterWaxman in this case.
Excerpt 2 shows this logic.

ParseRouterWaxman, shown in code excerpt 3, will parse the parameters associated with the Waxman
model.

At this point, ParseConfigFile returns to BRITE’s main routine the data structure with the parameters
just parsed. Next, BRITE instantiates an object of the model class we are creating, and uses it to create the
corresponding topology. Code excerpt 4 shows the logic for the last step.

In summary with respect to parameter passing, when we are adding a new model we must create a
parameter class, NewModelPar, which will contain the parameters for the new model. In addition, we must
provide parsing procedure such as ParseRouterWaxman for our new model. Finally, we have to modify the
following parts of the code:
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C++ excerpt 2 Parsing logic for a RouterWaxman configuration file

...

/* Name for first model */

ParseIntField("Name", model);

switch (model) {

case RT_WAXMAN:

rt_wax_par = ParseRouterWaxman();

return rt_wax_par;

break;

...

C++ excerpt 3 Parsing routine for Router Waxman model

RouterWaxPar* Parse::ParseRouterWaxman() {

...

RouterWaxPar* rt_wax_par;

ParseIntField("N", n);

ParseIntField("HS", hs);

ParseIntField("LS", ls);

ParseIntField("NodePlacement", np);

ParseIntField("GrowthType", ig);

ParseIntField("m", m);

ParseDoubleField("alpha", a);

ParseDoubleField("beta", b);

ParseIntField("BWDist", bw);

ParseDoubleField("BWMin", bw_min);

ParseDoubleField("BWMax", bw_max);

ParseStringField("EndModel");

...

rt_wax_par = new RouterWaxPar(...);

return rt_wax_par;

}
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C++ excerpt 4 Parsing routine for Router Waxman model

...

/* Parse configuration file */

par = p.ParseConfigFile();

switch (par->GetModelType()) {

case RT_WAXMAN:

rt_wax_model = new RouterWaxman((RouterWaxPar*)par);

topology = new Topology(rt_wax_model);

break;

...

}

1. Add a new model id to the enum type ModelType in Model.h

2. Add the code for the new parsing routine in Parser.cc

3. Modify ParseConfigFile in Parser.cc to check for the new model type and invoke the new parsing
routine.

4. Modify BRITE’s main routine in BriteMain.cc to check for the type of the new model and invoke the
constructor for the new model class.

6.1.2 Generation Functionality

Extending the functionality is done basically by adding a new model class to BRITE. As described in Section
3.3, BRITE architecture’s is centered around the Model class (see Figure 3). If we wanted to add a new
router-level model to BRITE, we could create a new class, NewRouterModel deriving from RouterModel.
Code excerpt 5 shows the declaration of such a class.

Note that the NewRouterModel class contains two public methods that are a fundamental part of its
interface: Generate and toString. Every model in BRITE, including the models for imported files, have a
Generate method which is in charge of generating the graph for the constructed topology according to the
model. Also, the toString method is used when exporting a BRITE topology into a file.

In BRITE, a new topology is generated by instantiating an object of the class Topology. The constructor
for the class Topology receives a pointer to a Model as an argument. Next, the Topology constructor popu-
lates its model member with the received pointer, and populates its Graph member by invoking the Generate
method of the received model. Once this is done, the topology has been created. Code excerpt 6 from file
Topology.cc, shows the actions of the Topology constructor.

The Generate method of every new model should return a pointer to a Graph, containing the topology
created. As an example, let’s take a look at the code excerpt 7 which shows the Generate method of the
RouterWaxmanModel class, taken from the file RouterWaxmanModel.cc.
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C++ excerpt 5 Model class for new router-level model

class NewRouterModel : public RouterModel {

public:

NewRouter(NewRouterModelPar* par);

˜NewRouterModel() { }

Graph* Generate();

string ToString();

...

protected:

void InterconnectNodes(Graph *g);

...

private:

/* private data/function members */

double ProbFunc(Node* src, Node* dst);

...

};

C++ excerpt 6 Topology class constructor

Topology::Topology(Model* model)

{

m = model;

g = m->Generate();

}
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C++ excerpt 7 Generate method for Router Waxman model

Graph* RouterWaxman::Generate() {

Graph* graph;

graph = new Graph(size);

/* Place nodes into plane */

PlaceNodes(graph);

/* Build topology graph using Waxman */

InterconnectNodes(graph);

/* Assign bandwidths to edges */

AssignBW(graph);

return graph;

}

As we can see, this Generate method performs the required steps to generate the topology. The first step
is to place the nodes into the plane. The specific functionality associated with model RouterWaxman is in
particular encapsulated inside the method InterconnectNodes. Finally, the AssignBW method, which in this
case is not overridden by the RouterWaxman class, is invoked to assign bandwidths to the links according
to certain bandwidth distribution. Thus, for the new model, we must provide a Generate method with the
appropriate functionality to produce topologies according to the new model.

6.2 Extending BRITE’s Java Version

The Java version of BRITE is very similar to the C++ version in design. However, there are few implemen-
tation differences between the two versions. This section details the process of adding your own generation
models to the Java version of BRITE.

Like the C++ version, adding a new model in the Java version requires: 1) Extending the parameter
passing method to handle parameters that are unique to the new model, and 2) implementing the generation
functionality of this model.

6.2.1 Passing Parameters to the new model

All parameter passing is done in BRITE via a configuration file. As such, creating your own model first re-
quires modifying the configuration file parser (located at Main/ParseConfFile.java) to handle the parameters
of your model. You do not need to write your own parsing routines. The Parse method of the configuration
file parser stores all parsed attribute-value pairs of a model in a Hash-table, params. All you need to do is
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interpret the keys and values in this Hash-table according to the semantics of your model, create your model
and return it to the caller. For instance, the RouterWaxman interprets the Hash-table parameters as shown in
code excerpt 8.

Java excerpt 8 Parsing routine for RouterWaxman model

private static Model ParseWaxman(Hashtable params) {

...

int N = params.get("N");

int HS = params.get("HS");

int LS = params.get("LS");

int np = params.get("NodePlacement");

int m = params.get("m");

int bwDist = params.get("BWDist");

float bwMax = params.get("BWMax");

float bwMin = params.get("BWMin");

...

return new RouterWaxman(N, HS, LS, ...);

}

The Model object is then returned to the main caller (usually the main entry point to BRITE, Main/Main.java),
which in turn creates a Topology instance with this newly created model. See code excerpt 9 extracted from
Main/Main.java.

Java excerpt 9 Model-parameter parsing and Topology instantiation logic

//create a model according to the parameters in the BriteConfig file:

Model m = ParseConfFile.Parse(filename);

//now create the topology with this model:

Topology t = new Topology(m);

6.2.2 Overriding the Generate method

Like in the C++ version, the Generate method is the entry point to creating a topology Graph for all models.
Generation of flat topologies is usually a three step process: 1) Placing the nodes on a plane, 2) adding edges
between the nodes, and 3) assigning weights to these edges (representing bandwidth, delay and so forth).
Code excerpt 10, shows as an example, the Generate method for the RouterWaxman model.

The parent class for RouterWaxman, RouterModel implements the node placement functionality and
is used unmodified by RouterWaxman. You may use the functionality provided in the existing models by
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Java excerpt 10 Generate method for Router Waxman model

public Graph Generate() {

//create a new graph of size N:

Graph g = new UndirectedGraph(N);

//1) Place router nodes on our plane:

PlaceNodes(g, ModelConstants.ROUTER_NODE);

//2) Connect Edges following Waxman:

ConnectNodes(g);

//3) Assign bandwidth to our edges:

AssignBW(g.getEdgesArray());

return g;

}

deriving your model from one (or more) of these models and overriding unwanted methods.

6.3 An example of adding a new model to BRITE

One interesting topology generator that was recently made publicly available is Inet [13] developed at the
University of Michigan at Ann Arbor.

Let’s imagine a scenario in which BRITE is used as a framework to develop a new topology generation
model. We illustrate this scenario by incorporating a simplified version of Inet’s generation model into
BRITE’s framework. We provide the guidelines and pseudo-code in the context of the C++ version. Adding
a new model to the Java version is similar. The actual Inet generator is much more complex than what we
are conveying in this example but its actual interface is concise and clean which facilitates its use as an
example.

As was explained in Section 6.1, we need to consider mainly two issues: the passing of parameters and
the generation functionality.

Inet basically receives the following parameters (we ignore the rest):

1. n: topology size

2. d: fraction of nodes of degree one

3. p: plane size

Therefore we create a ToyInetPar class deriving from ModelPar, as shown in code excerpt 11.
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C++ excerpt 11 ToyInet model Parameter structure

class ToyInetPar : public ModelPar{

public:

ToyInetPar(int n, double d, int p);

int GetN() { return n; }

int GetD() { return d; }

int GetP() { return p; }

private:

int n; // size

int d; // fraction of degree-one nodes

int p; // plane size

};

BRITE will be instructed to generate a topology according to the new ToyInet model, by specifying the
model type along with the required parameters in a configuration file as shown in Listing 6.2.

The next step is to provide a parsing routine specific for the Inet model. Such a parsing routine, built
using the basic parsing facilities of BRITE, is shown in code excerpt 12.

Now we have the parameter passing done. The next step is to add the generation functionality according
to the Inet model. We can do that by creating a new InetModel class derived directly from the base Model
class and overriding its Generate method. This is shown in code excerpt 13.

7 BRIANA: The BRITE Analysis Engine

The BRITE Analysis Engine, BRIANA, is a piece of software developed at Boston University which is
fully integrated with BRITE but that at the same time can be used independently. The purpose of BRIANA
is to serve as a repository of routines for analysis of topological data. BRIANA takes advantage of the
functionality implemented in BRITE’s generation tool by reusing a fair amount of BRITE’s code. If a
significant change needs to be done to one of the parsing routines for the ImportedFileModel, a single
change will update both BRITE and BRIANA simultaneously. On the other hand, this synchronization is
nice but not required. BRIANA can be compiled and run completely independently of BRITE, that is, it is
not needed to generate a topology or import it using BRITE in order to analyze it.

The command line execution for BRIANA is, with respect to the set of analysis routines implemented
at the time of this writing, is shown in Listing 7.1.
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Listing 6.2 Configuration file for ToyInet model

#

# Configuration file for ToyInet model

#

BriteConfig

BeginModel

Name = 8 # new model id (Model.h)

N = 10000 # topology size

D = 0.1 # fraction of degree-one nodes

P = 1000 # plane size

EndModel

BeginOutput

Brite = 1 # 0/1: Save/Don’t save in BRITE’s format

Otter = 0 # 0/1: Save/Don’t save in Otter’s format

EndOuput

C++ excerpt 12 Parsing routine for ToyInet model

InetPar* Parse::ParseInet() {

...

InetPar* in_par;

ParseIntField("N", n);

ParseDoubleField("D", d);

ParseIntField("P", p);

ParseStringField("EndModel");

...

in_par = new InetPar(...);

return in_par;

}
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C++ excerpt 13 ToyInet new model class and Generate methods

class ToyInetModel : public Model {

public:

ToyInetModel(ToyInetPar* par);

Graph* Generate();

private:

void generate_degrees(/* args */);

void place_nodes(/* args */);

void connect_nodes(/* args */);

int n;

double d;

int p;

}

Graph* ToyInetModel::Generate() {

Graph* graph = new Graph(n);

generate_degrees();

place_nodes(graph);

connect_nodes(graph);

return graph;

}

Listing 7.1 BRIANA command-line interface

briana <config_file> [-o drf] [-i drf] [-h dr] [-c] [-p] [-m]

where:

-o: outdegree (d: distribution, r: rank, f: frequency)

-i: indegree (d: distribution, r: rank, f: frequency)

-h: neighborhood size (d: distribution, r: rank)

-c: clustering coefficient

-p: path length distribution

-m: min-hop path distribution

-l: link-utilization analysis
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8 A Comparative Study of Generation Models Using BRITE

Now that we know the design goals and the relevant implementation details of BRITE, in this section we
provide a symbolic comparative study of some generation models. The idea of doing this comparison is to
illustrate the design principles of BRITE in a “ real-world” environment.

Recent empirical studies [9] have shown that Internet topologies exhibit power-laws of the form y = x�

for, among other properties, (P1) the outdegree of a node versus rank, and (P2) frequency of an outdegree
versus outdegree. The seeming invariance of these properties with respect to size and time suggests they are
fundamental properties of Internet topologies. After this discovery, the question to be asked, do the currently
used topology generators generate topologies that satisfy this property? [16].

Using BRITE, we generated topologies according to the RouterWaxman and RouterBarabasiAlbert
models. In addition, we used the ImportFileModel to import GT-ITM flat, GT-ITM Transit-Stub, and
NLANR topologies and output them into BRITE’s format. In order to do the analysis intended here, it
is not needed to import the GT-ITM and NLANR topologies since they can be read directly by BRIANA.
For each topology, we plot two types of plots for property (P1) and property (P2).

For the (P1) property, we plot outdegree versus rank in a log-log plot. For the (P2) property, we plot the
frequency of outdegrees versus outdegrees as done in [9].

Figures 11 and 12 show the results for two of the data sets used in [9].
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Figure 11: Rank-outdegree (left) and frequency-outdegree (right) for NLANR (11/1997) topology

Figures 13 and 14 show the results for one GT-ITM flat topology and one GT-ITM Transit-Stub topol-
ogy, respectively.

Figures 15 and 16 show the results for the BRITE topologies using the RouterWaxman and Router-
BarabasiAlbert models, respectively.

The goal of this section is not to make conclusive remarks with respect to the differences between
the involved models/generators. However, we can see that when the Internet properties analyzed are the
rank and frequency of node outdegrees [9], we can establish clear differences between generators aimed
at reproducing degree-related properties (e.g. BRITE/BarabasiAlbert) and generators aimed at reproducing
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Figure 12: Rank-outdegree (left) and frequency-outdegree (right) for NLANR (04/1998) topology
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Figure 13: Rank-outdegree (left) and frequency-outdegree (right) for GT-ITM flat topology

hierarchical properties (e.g. GT-ITM). In Figures 11 and 12 we observe the same type of results obtained
in [9]. In Figures 13 and 14 we can observe that GT-ITM models lack some characteristic that would allow
them to strike a balance between hierarchical properties and degree-related properties. Figure 15 shows that
the Waxman model implemented in BRITE, aimed at generating random networks, fails in reproducing the
outdegree distribution properties of the Internet topologies. Finally, Figure 16 shows that the BarabasiAlbert
model implemented in BRITE does a fairly good job in reproducing the outdegree properties of Internet
topologies [16].

We want to emphasize that this symbolic comparative study was performed in about 20 minutes using
BRITE and BRIANA. Even when the goal was not to reach conclusions from the comparisons, this exercise
illustrates how the principles of BRITE and BRIANA translate into an increased efficiency and productivity
in the generation and analysis of topologies.
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Figure 14: Rank-outdegree (left) and frequency-outdegree (right) for GT-ITM TS topology
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Figure 15: Rank-outdegree (left) and frequency-outdegree (right) for BRITE (Waxman) topology

9 Conclusions

Internet research requires good topology generation models that reproduce fundamental properties of the
topology of the Internet. It is also a requirement to be able to use such models in simulations in an easy and
effective way. In this paper, we have described BRITE, a universal topology generation tool. Furthermore,
BRITE’s is aimed at facilitating research in the area of topology generation by providing a generation tool
that is inclusive, flexible, extensible and efficient. We also described the BRITE Analysis Engine, BRIANA,
which is an independent piece of software designed and built upon BRITE design goals. The goal for
BRIANA is to act as a repository of analysis routines along with a user–friendly interface that allows its use
on different topology formats.

The main characteristics of BRITE are summarized as follows:

1. Inclusiveness. BRITE supports multiple generation models including models for flat AS, flat Router
and hierarchical topologies. Models can be enhanced by assigning link attributes such as bandwidth
and delay.
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Figure 16: Rank-outdegree (left) and frequency-outdegree (right) for BRITE (BarabasiAlbert) topology

2. Flexibility. Generates topologies over a wide range of sizes. Restrictions such as minimum and maxi-
mum number of nodes should be reasonably avoided.

3. Extensibility. Object-oriented architecture makes BRITE extensible providing the researcher with the
ability to add new models of generation, and the ability to import from or export to custom topology
files.

4. Ease of use. Specifying topology generation parameters is simple via a GUI or a configuration file.

5. Interoperability. BRITE allows importing topologies from other topology generators and extend them
or combine them with topologies generated according to other models.

6. Robustness. BRITE have been implemented to be tolerant to wrong inputs and extreme scenarios pro-
viding error detection and reporting capabilities.

7. Efficiency. BRITE is capable of generating large topologies (more than 100,000 nodes) using reasonable
amounts of resources. However, it must be clear that the amount of resources used by BRITE will
ultimately depend on the specific model being used.

8. Portability. Implemented in Java and C++.

The work presented in this paper constitutes the first release of BRITE. The success of a software tool
could be said to be successful when it is used for purposes undreamed of by its authors. Furthermore, we
hope to measure BRITE’s and BRIANA’s success by the number of suggestions, ideas and (hopefully not
too many) bugs that we receive as a result of researchers embracing and benefiting from them.

We will continue improving the design of BRITE to include multiple inheritance, further import/export
formats, increased GUI capabilities for BRITE, etc. In the current implementation, the GUI is not extensible
in the sense that newly added models to BRITE are not easily incorporated into the GUI. In the front of BRI-
ANA there is also a good deal of work waiting to be done. The design goals of BRIANA promise to increase
the productivity of research on generation models for representative synthetic topologies. However, further
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improvements in some aspects of its design include increased extensibility, as well as some implementation
details such as the generation of plot files in a more refined “standard” format and a versatile GUI front-end.

In summary, topology generation is an exciting research topic along other Internet research (protocols,
traffic characterization, etc.). We hope that new research will shape BRITE and BRIANA and that future
releases will be carved by many in the networking research community.

A Appendix: Heavy-tailed Distributions

Heavy-tailed distributions (also known as power-law distributions) have been observed in many natural phe-
nomena including both physical and sociological phenomena. One example is the geographic distribution
of people around the world. Most places in the world are completely empty or barely populated, while there
are a relatively small number of geographical locations which are very densely populated.

A distribution is said to have a heavy-tail if:

P [X > x] � x��; as x !1; 0 < � < 2

This means that regardless of the distribution for small values of the random variable, if the asymptotic
shape of the distribution is hyperbolic, it is heavy-tailed [7]. The simplest heavy-tailed distribution is the
Pareto distribution which is hyperbolic over its entire range and has probability mass function:

p(x) = �k�x���1; �; k > 0; x � k:

and its cumulative distribution function is given by:

F (x) = P [X � x] = 1� (k=x)�

where k represents the smallest value the random variable can take.

Heavy-tailed distributions have properties that are qualitatively different to commonly used (memory-
less) distributions such as the exponential, normal or Poisson distribution.

In the Internet, heavy-tailed distributions have been observed in the context of traffic characterization
and in the context of topological properties. In the area of traffic characterization, evidence indicates
that Ethernet traffic exhibits self–similar properties [14]; also WAN traffic exhibits self-similar properties
[20], as is the case for traffic specifically associated with WWW transfers [7]. The main implication of
such discoveries is that most previous analytic work done in Internet studies adopted assumptions such as
exponentially–distributed packet interarrivals. Conclusions reached under such exponentiality assumptions
may be misleading or incorrect in the presence of heavy-tailed distributions.

In the context of topological properties, recent empirical studies [9] have shown that Internet topologies
exhibit power laws of the form y = xa for the following relationships: (P1) outdegree of node (domain or

41



router) versus rank, (P2) number of nodes versus outdegree, (P3) number of node pairs within a neighbor-
hood versus neighborhood size (in hops), and (P4) eigenvalues of the adjacency matrix versus rank. Prior to
this discovery, most Internet studies and analyses had been done using underlying topologies that lack such
properties (e.g. random networks). Several possible causes and plausible analytical models that explain the
appearance of these properties in Internet topologies have been proposed. However, the area of topology
characterization has not been explored so extensively and causes for the appearance of such power laws
have not been convincingly given. In [2] the authors indicate that two possible causes are (F1) preferential
connectivity and (F2) incremental growth. In [16] the authors examine these two factors in the formation of
Internet topologies, plus (F3) distribution of nodes in space, and (F4) locality of edge connections.

There is agreement in that heavy-tailed distributions are ubiquitous in the Internet. To the best of
our knowledge, node placement and the distribution of bandwidth and delays have not been conclusively
established, although Paxson observed wide variability in path characteristics such as losses, round-trip
times and bandwidth [19], and high variability is one of the landmarks of heavy-tailed distributions. BRITE
incorporates heavy-tails in the topology generation for some models. In particular, for models such as
Waxman and BarábasiAlbert, the user can select to place the nodes in the plane according to a heavy-tailed
distribution. Furthermore, for all the models provided, included the Imported file model, the user can select
a heavy-tailed distribution of bandwidths to links. The idea is to generate annotated graphs with bandwidth
information to study the effect that such distributions may have on the performance of certain protocols and
algorithms. Finally, for the experimental generation model Bottom-up hierarchical, the user can select to
assign routers to ASs according to a heavy-tailed distribution.

B Appendix: Parsing Support Routines (C++ Version)

In order to parse files such as the configuration files for a given model, the programmer will make use of the
parsing functionality provided by BRITE. First it is neccesary to create an instance object of the Parse class.
The corresponding constructor takes as an argument the name of the file that will be parsed. Following is a
summary of the parsing routines provided in the C++ version of BRITE.

� int GetNextTokenList(vector<string>& toks): Returns the set of string tokens in the vector toks,
corresponding to the next line in the file being parsed.

� int GetNextTokenList(string& from, int& pos, vector<string>& toks): Same as the previous rou-
tine but the tokens are extracted from a string instead of a file.

� void ParseIntField(char* f, int& v): Used to parse configuration files. It parses an integer value which
is preceded by a label represented by f. The parsed value is returned in v.

� void ParseIntField(int& v): Used to parse imported files. It parses the next integer value. The parsed
value is returned in v.

� void ParseDoubleField(char* f, double& v): Used to parse configuration files. It parses a double
value which is preceded by a label represented by f. The parsed value is returned in v.
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� void ParseDoubleField(double& v): Used to parse imported files. It parses the next double value. The
parsed value is returned in v.

� void ParseStringField(char* f): Parses a string from a file. It does not return any value because it is
used to verify that the file being parsed is written in the right format.

� void ParseStringField(char* f, string& s): Used to parse configuration files. Parses the next string
field which is preceded by a label represented by f. The string field parsed is returned in s.

� int FileSize(): Used when parsing imported files (e.g. NLANR data). Returns the size of the file being
parsed (in number of lines).

� bool IsDelim(char ch): The Parse class contains an array of delimiters. Given a characters ch it returns
whether or not the character is a delimiter.

� bool IsComment(char ch): Used when parsing configuration files. Returns true if ch matches character
’#’ .

C Appendix: Downloading and Installing BRITE

In this section we describe how to generate topologies using BRITE. The current distribution of BRITE
provides two versions of the generation tool: a Java implementation and a C++ implementation. Both
implementations are very similar since both were implemented following the same design goals. There are
some minor implementation differences though we will not discuss here.

C.1 Download

BRITE can be downloaded from [15]. Currently we have two almost identical versions of BRITE, one
implemented in Java and the other implemented in C++. You can use either one. We plan to provide an
applet that will allow generating BRITE topologies without downloading and installing it in the near future.

C.2 Installing and Running the Java version

Download the Java version at [15]. Once downloaded, follow these instructions to get BRITE up and
running. Please note that you must have Java 2 (JDK1.3) installed in order to do so.

1. Unzip the downloaded file:

$ gunzip BRITE_JAVA.tar.gz

$ tar xvf BRITE_JAVA.tar
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Directory/File Contents

Model/ Model-related source files
Graph/ Graph-related source files
Import/ Import file formats
Export/ Export file formats
../GUI/ GUI source files
Util/ Miscellaneous utility functions
Main/ Entry point

conf files/ Sample configuration files
Makefile Makefile

Table 7: Contents of Java version’s directory

2. Directory structure of Java version

The contents of the directory where the Java version is untarred is shown in Table 7.

3. Change to the directory created when the Java distribution file is untarred. Assuming it is called BRITE,
we change to that directory and compile:

$ cd BRITE

$ make java

4. Running BRITE from the GUI:

$ startGUI

5. Running BRITE from the command line (No Java required):

$ cd Java

$ java Main.BRITE <config_file.conf> <output_file> <seed_file>

C.3 Installing and Running the C++ version

Once downloaded, follow these instructions to get BRITE up and running.

1. Unzip the downloaded file:

$ gunzip BRITE_CPP.tar.gz

$ tar xvf BRITE_CPP.tar

2. Directory structure of C++ version

The contents of the directory where the C++ version is untarred is shown in Table 8.
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Directory/File Contents

Models/ Source files for all supported models
Util.h, Util.cc Utility functions

Topology.h, Topology.cc Topology class
Graph.h, Graph.cc Graph class
Node.h, Node.cc Node class (graph)
Edge.h, Edge.cc Edge class (graph)

Parse.h, Parse.cc Parsing class
BriteMain.cc Entry point
conf files/ Sample configuration files
Makefile Makefile

Table 8: Contents of C++ version’s directory

3. Change to the directory created when the C++ distribution file is untarred. Assuming it is called BRITE,
we change to that directory and compile:

$ cd BRITE

$ make c++

4. Running BRITE from the GUI (Java is required since the GUI is implemented in Java):

$ startGUI

5. Running BRITE from the command line (No Java required):

$ cd C++

$ brite <config_file.conf> <output_file> <seed_file>
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