
CS 111: Final Exam Extra Practice Problems
As we get closer to the exam, solutions will be posted under Other Content on Blackboard.

Question #1
What is the output of each of the following programs?

Part A

 num = 30
 if num > 20:
 print("do")
 if num < 15:
 print("go")
 print("no")
 elif num < 0:
 print("lo")
 if num == 30:
 print("mo")
 elif num // 3 == 10:
 print("so")
 if num > 5:
 print("to")

Part B

 x = 15
 y = x
 z = x // 2

w = x / 2
x = x + 2
print(x, y, z, w)

Part C

 for i in range(3, 5):
 for j in range(2, i):

 print(i, j)
 print(i + j)
print(i * j)

Part D

 def foo(a, b):
 while b > 0:

 a += 1
 b -= 1
 print(a, b)
 return a

a = 7
b = 3
foo(b, a)
print(a, b)

Question #2
Part A
Use a loop to write a Python function is_prime(n), which takes in an integer n and returns True
if n is prime and False if n is composite. You may assume that n will be greater than 1.

Part B
Use recursion (no loops!) to write a Python function add_primes(vals), which takes in a list
vals of integers (each of which will be greater than 1) and it returns the sum of only the prime
numbers in the list vals. Hint: Use the function you wrote for Part A!

Question #3
Consider the following recursive function:

def foo(n):
 if n < 2:
 return 1
 else:
 result1 = foo(n-1)
 result2 = foo(n-2)
 return result1 + result2

If you were to evaluate the following at the Python prompt:
>>> foo(5)
result: 8

How many times would foo be called in this evaluation of foo(5)?

Question #4
Use recursion (no loops!) to write a Python function uniquify(vals) that takes in any list vals
and returns a list of the distinct elements in the list vals. The order of the elements may be
preserved, but they do not have to be. For example:

>>> uniquify([42, 'spam', 42, 5, 42, 5, 'spam', 42, 5, 5, 5])
result: ['spam', 42, 5]

>>> uniquify([0, 1, 2, 3, 0, 1, 2])
result: [3, 0, 1, 2]

Hint: Your function may make use of the in operator.

Question #5
Write a recursive Python function named merge that will merge two sorted lists of integers and return
the merged sorted list. For example:

>>> merge([1, 4, 7, 11, 14], [2, 3, 6, 11, 13, 17])
result: [1, 2, 3, 4, 6, 7, 11, 11, 13, 14, 17]

Question #6
Your managers at Acme Composite Materials have decided to implement primality-checking in
hardware with digital circuits. They've asked you to prototype a 4-bit primality tester:

Part A
Create a truth table with four bits of input (the binary representation of the values from 0 to 15, inclusive).
For each of these sixteen possible inputs, indicate the appropriate output: 1 in the cases that the input is
prime, and 0 in the cases that the input is composite. Acme Composites does not consider 0 or 1 to be
primes.

Part B
Using the minterm expansion principle, sketch a circuit that implements the truth table from Part A.

Question #7
Write a Python function symmetric(grid), which takes in a 2-D list of numbers, grid. You
should assume that grid is a square array, with an equal number of rows and columns. Then,
symmetric should return True if the values of grid are symmetric across the NW-SE diagonal—
i.e., if the values "mirror" each other on either side of the diagonal going from the upper-left corner to
the lower-right corner (see below)—and should return False if the values of grid are not symmetric
across the NW-SE diagonal.

>>> symmetric([[1]])
result: True

>>> symmetric([[1, 2], # is symmetric because the 2s match
 [2, 5]])
result: True

>>> symmetric([[1, 2], # not symmetric because 1 != 2
 [1, 1]])
result: False

>>> symmetric([[1, 2, 3], # is symmetric because 2s, 3s and 5s match
 [2, 4, 5],
 [3, 5, 6]])
result: True

Question #8
Below is the start of a Matrix class that initializes each object's data to a 2-D list of all zeros:

class Matrix:
 def __init__(self, nrows, ncols):
 self.nrows = nrows
 self.ncols = ncols
 self.data = [[0]*ncols for r in range(nrows)]

Write a method max(self, other) that takes in a second Matrix object other. This method
should return a matrix with as many rows as are found in the shorter of self and other, and with as
many columns as are found in the narrower of self and other. Each entry of the returned matrix
should be the larger (the max) of the corresponding entries in self and other. Neither self nor
other should change.

Question #9
Construct a finite state machine that accepts exactly those input strings of 0’s and 1’s that have at most
two consecutive bits that are identical. Input strings with three or more consecutive identical bits
should be rejected. For example, “0”, “1”, “00”, “11”, “01”, “10”, “010”, and “00100110” should all
be accepted. However, “111”, “000”, “01110”, and “10101000” should all be rejected.

