
CS 111: Final Exam Extra Practice

Answers will be posted as we get closer to the exam.

Question #1

What is the output of each of the following programs?

Part A

 num = 30

 if num > 20:

 print("do")

 if num < 15:

 print("go")

 print("no")

 elif num < 0:

 print("lo")

 if num == 30:

 print("mo")

 elif num // 3 == 10:

 print("so")

 if num > 5:

 print("to")

Part B

 x = 15

 y = x

 z = x // 2

w = x / 2

x = x + 2

print(x, y, z, w)

Part C

 for i in range(3, 5):

 for j in range(2, i):

 print(i, j)

 print(i + j)

print(i * j)

Part D

 def foo(a, b):

 while b > 0:

 a += 1

 b -= 1

 print(a, b)

 return a

a = 7

b = 3

foo(b, a)

print(a, b)

Question #2
Part A

Use a loop to write a Python function is_prime(n), which takes in an integer n and returns True

if n is prime and False if n is composite. You may assume that n will be strictly greater than 1.

Part B

Use recursion (no loops!) to write a Python function add_primes(lst), which takes in a list lst

of integers (all integers will be at least 2) and it returns the sum of only the prime numbers in the list

lst. Hint: Use the function you wrote for Part A!

Question #3

Consider the following function that returns the nth Fibonacci number, where the zeroth Fibonacci

number is 1 and the first Fibonacci number is also 1:

def fib(n):

 if n < 2:

 return 1

 else:

 return fib(n-1) + fib(n-2)

If you were to evaluate the following at the Python prompt:

>>> fib(5)

8

How many times was fib called in this evaluation of fib(5)?

Question #4

Use recursion (no loops!) to write a Python function uniquify(lst), which takes in any list lst

and returns a list of the distinct elements in the list lst. The order of the elements may be preserved,

but they do not have to be. For example,

inpu
>>> uniquify([42, 'spam', 42, 5, 42, 5, 'spam', 42, 5, 5, 5])

['spam', 42, 5]

>>> mylist = range(4) + range(3)

>>> uniquify(mylist)

[3, 0, 1, 2]

Hint: Your function may make use of the in operator.

Question #5

Write a recursive Python function named merge that will merge two sorted lists of integers and return

the merged sorted list. For example:

>>> a = [1, 4, 7, 11, 14]

>>> b = [2, 3, 6, 11, 13, 17]

>>> c = merge(a, b)

>>> print('c is', c)

c is [1, 2, 3, 4, 6, 7, 11, 11, 13, 14, 17]

Question #6

Part A

Consider the Hmmm assembly-language program below. It reads in a single integer – you should

assume the input will be strictly positive. After some computation, it prints a single integer before

halting.

00 read r1 # r1 is our input, it will be > 0

01 setn r9 0 # r9 is our "answer"

02 copy r2 r1 # r2 = r1; r2 is our "loop index"

03 nop

04 nop

05 nop

06 jeqz r2 14

07 div r3 r1 r2 # r3 = r1//r2; r3 is a "scratch pad"

08 mul r3 r2 r3 # r3 = r2*r3

09 sub r3 r1 r3 # r3 = r1-r3

10 jgtz r3 12

11 addn r9 1

12 addn r2 -1

13 jumpn 06

14 write r9

15 halt

Try (by hand) at least two inputs and indicate what would be printed out at the end in each case. In a

sentence or two, what is this program computing? Hints: The div operator performs integer division

(i.e., it is equivalent to the // operator in Python.) Therefore, lines 7-9 compute r1 % r2.

Part B

Imagine that we removed the last two statements from the above program (lines 14 and 15). Below,

write the assembly-language statements that could replace those lines (and add subsequent lines) so

that the resulting program will print a 1 in the case that the original input was a composite number, but

will print a 0 in the case that the original input was a prime number. You should consider the integer 1

itself to be a composite number for this problem.

Question #7

Your managers at Acme Composite Materials have decided to implement primality-checking in

hardware with digital circuits. They've asked you to prototype a 4-bit primality tester:

Part A

Create a truth table with four bits of input (the binary representation of the values from 0 to 15,

inclusive). For each of these sixteen possible inputs, indicate the appropriate output: 1 in the cases that

the input is prime, and 0 in the cases that the input is composite. Acme Composites does not consider 0

or 1 to be primes.

Part B

Using the minterm expansion principle, sketch a circuit that implements the truth table from Part A.

Question #8

Write a Python function symmetric(grid), which takes in a 2-D list of numbers, grid. You

should assume that grid is a square array, with an equal number of rows and columns. Then,

symmetric should return True if the values of grid are symmetric across the NW-SE diagonal—

i.e., if the values "mirror" each other on either side of that diagonal (see below)—and should return

False if the values of grid are not symmetric across the NW-SE diagonal. (Start by solving this

problem using iteration – i.e.,one or more loops. For an optional extra challenge, try writing this

function using recursion, list comprehensions, and slicing with no loops at all!)

>>> symmetric([[1]])

True

>>> symmetric([[1, 2], # is symmetric because the 2s match

 [2, 5]])

True

>>> symmetric([[1, 2], # not symmetric because 1 != 2

 [1, 1]])

False

>>> symmetric([[1, 2, 3], # is symmetric because 2s, 3s and 5s match

 [2, 4, 5],

 [3, 5, 6]])

True

Question #9

Below is the start of a Matrix class that initializes each object's data to a 2-D list of all zeros:

class Matrix:

 def __init__(self, nrows, ncols):

 self.nrows = nrows

 self.ncols = ncols

 self.data = [[0]*ncols for r in range(nrows)]

Write a method max(self, other) that takes in a second Matrix object other. This method

should return a matrix with as many rows as are found in the shorter of self and other, and with as

many columns as are found in the narrower of self and other. Each entry of the returned matrix

should be the larger (the max) of the corresponding entries in self and other. Neither self nor

other should change.

Question #10

Construct a finite state machine that accepts exactly those input strings of 0’s and 1’s that have at most

two consecutive bits that are identical. Input strings with three or more consecutive identical bits

should be rejected. For example, “0”, “1”, “00”, “11”, “01”, “10”, “010”, and “00100110” should all

be accepted. However, “111”, “000”, “01110”, and “10101000” should all be rejected.

