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Biologically Inspired 
Computing

D espite the relentless, 
breathtaking advances 
in comput ing a nd 
related technologies, 

we continue to be humbled by the 
variety, adaptability, and sophisti-
cation of the natural world around 
us. From the beginning, computing 
has been inspired by nature: Alan 
Turing asked whether computers 
could think like us, while John von 
Neumann, armed only with pencil 
and paper, sketched out an automa-
ton that could self-replicate.

Since then, a divide has grown 
between computational scientists on 
whether to continue creating faster, 
more efficient algorithms and hard-
ware that exhibit centralized control 
or to place less emphasis on speed 
and efficiency than on robustness, 
adaptability, and emergent organi-
zation from the interaction of many 
loosely coupled processes. These latter 
approaches have come to be known as 
biologically inspired computing, which 
is not so much a field as a philosophy 
that links various disciplines such as 
artificial intelligence, evolutionary 
computation, biorobotics, artificial life, 
and agent-based systems.

One argument against bio-inspired 
computing is that large-scale systems 
cannot emerge from blind, bottom-up 
processes. However, one study found 
that Wikipedia, with little centralized 
editorial control, is nearly as accurate 
as Encyclopedia Britannica (G. Giles, 
“Internet Encyclopedias Go Head to 
Head,” Nature, 15 Dec. 2005, pp. 900-
901). Social-networking platforms, 
peer-to-peer networks, and user-
generated content sites—although 
not strictly bio-inspired—have like-
wise demonstrated that such systems 
can grow, organize, and improve 
themselves with little direction from 
above. 

Bio-inspired computing has passed 
in and out of vogue during the past 

few decades, mostly due to the claim 
that it does not embody true computer 
science in the sense of delivering guar-
anteed performance in clearly defined 
domains. But bio-inspired algorithms 
can exhibit strength through flexibil-
ity, or strength in numbers: They often 
work well even when the desired task 
is poorly defined, adapt to unforeseen 
changes in the task environment, 
or achieve global behavior through 
interaction among many, simply pro-
grammed agents.

Body and Brain
AI in particular has suffered 

numerous “winters” in which hype 
and overly optimistic promises have 
led to unfulfilled expectations and 
collapses in funding. It has gradually 
been recovering since its last ice age 
in the early 1990s for many reasons, 
one of which was Rodney Brooks’ 
argument that intelligent systems 
must have access to a body to interact 
with and thus learn from the environ-
ment (“Elephants Don’t Play Chess,” 
Designing Autonomous Agents: Theory 
and Practice from Biology to Engineer-
ing and Back, P. Maes, ed., MIT Press, 
1991, pp. 3-15).

This flew in the face of much AI 
work, which emphasized build-
ing ever  more complex a nd 
elegant algorithms that, although 
inspired by what psychologists and  

Evolutionary algorithms and robotics hold great promise as 
integrated design and modeling tools.
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neuroscientists believed at the time 
was occurring in the human mind, 
were rarely exposed directly to the 
messiness of the physical world.

Brooks and, later, many others 
contended that what initially seemed 
to be difficult problems, such as play-
ing a masterful game of chess, are 
actually relatively straightforward to 
solve with a powerful-enough algo-
rithm that performs the same basic 
operation trillions of times. However, 
seemingly simple tasks such as walk-
ing over uneven ground while keeping 
one’s balance require orchestration. 
A walking robot needs not only real-
time control but also flexible ankles, 
sensors to detect tipping, and arms to 
swing to keep tipping from becoming 
falling.

Evolutionary roBotics
Brooks’ revolution has raised 

many interesting questions in 
robotics and AI that remain to be 
answered. One of the most engag-
ing is that if both body and brain 
affect a robot’s chances to exhibit 
useful behavior, how do we go about 
designing not only the robot’s control 
algorithm but its body as well? After 
all, Mother Nature does not optimize 
the body plan for a given species and 
then optimize its behavior, but rather 
both body and brain gradually adapt 
to suit the demands of a species’ eco-
logical niche.

Enter the field of evolutionary 
robotics. ER combines evolutionary 
computation and autonomous robot-
ics in an attempt to automate the 

process of robot design. Evolutionary 
computation refers to a collection of 
machine learning techniques that 
draw inspiration from the blind pro-
cess of natural selection:

generate a population of random •	
solutions to a given problem; 
apply each solution to the •	
problem; 
delete poorly performing solu-•	
tions from the population; 
make copies of those solutions •	
that survive; 
introduce small, random changes •	
into the copies; 
apply these new solutions to the •	
problem; 
repeat the process until you find •	
a satisfactory solution.

…

…

…

…

…

Figure 1. Evolutionary robotics. ER designers use software to breed virtual robots so that they evolve to carry out the desired 
task—in this case, picking up a block.
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In evolutionary robotics, the “prob-
lem” is the task that the robot must 
carry out, such as finding objects in 
its environment and carrying them 
to a central location. “Solutions” are 
either controllers for an existing robot 
or blueprints that describe both a 
robot body plan and a controller to 
go along with it. 

As Figure 1 shows, ER designers  
use software to breed the bodies and 
brains of virtual robots so that they 
evolve to carry out the desired task. 
As rapid prototyping technologies 
mature, the hope is that manufactur-
ing one of these automatically created 
robot designs will become relatively 
straightforward.

This method adheres to the bot-
tom-up philosophy of bio-inspired 
computing in that there is no central 
designer; rather, a collection of solu-
tions compete against one another in 
an attempt to solve the given problem, 
and through the process of natural 
selection, good solutions tend to 
bubble to the top—at least some of 
the time.

Industry is just beginning to adopt 
evolutionary computation and related 
algorithms. For example, the major 
Swiss supermarket chain Migros uses 
bio-inspired algorithms to optimize 
its goods distribution.

However, much work remains to 
be done to improve the automated 
design aspects of evolutionary com-
putation and ER. A major challenge is 
that evolutionary algorithm designers 
often spend so much time studying 
the problem and determining a for-
mula for measuring the quality of any 
given solution that they can then usu-
ally come up with a better one on their 
own, rather than evolving one (A.L. 
Nelson, G.J. Barlow, and L. Doitsidis, 
“Fitness Functions in Evolutionary 
Robotics: A Survey and Analysis,” 
Robotics and Autonomous Systems, 
doi:10.1016/j.robot.2008.09.009).

rEsiliEnt MachinEs
ER promises to be useful not just 

for designing robots but also for 

enabling them to adapt, an ability that 
machines lack yet animals possess 
in abundance. For example, Figure 2 
shows a robot that is resilient: It can 
recover from unanticipated events 
for which it was not preprogrammed, 
one important aspect of adaptation 
(J. Bongard, V. Zykov and H. Lipson, 
“Resilient Machines through Continu-
ous Self-Modeling,” Science, 17 Nov. 
2006, pp. 1118-1121).

The robot uses three separate 
evolutionary algorithms to achieve 
resiliency. The first builds several 
models that describe the robot’s body 
(Figure 2a), which may change as a 
result of damage. The second algo-

rithm finds a new action for the robot 
to perform (Figure 2b). This action 
is designed to help the robot dis-
cover which among its current set of 
models are incorrect. The robot then 
replaces these inaccurate models with 
modified copies of the more accurate 
models. Finally, once the robot can no 
longer find a better model, it selects 
the most accurate of them and uses it 
to evolve a walking strategy (Figures 
2c and 2d). 

If the robot suffers some injury that 
reduces it from four legs to three, the 
models re-evolve to reflect this. The 
robot then uses one of these new 
models to find a walking strategy 

Figure 2. Using evolutionary algorithms to achieve resilience in a robot. The robot 
uses (a) one algorithm to build several models that describe its body and (b) another 
algorithm to find a new action to perform to discover which among its current set 
of models are incorrect. The robot replaces these inaccurate models with modified 
copies of the more accurate models (c and d) and uses the most accurate of them to 
evolve a walking strategy.

(b)(a)

(c)(d)

?



comPuteR 4

AI  REDUX

more formal methods to combine 
the advantages of both into a single 
system.

Regardless, these techniques hold 
great promise as integrated design and 
modeling tools. Although they have 
only been applied to simple problems 
so far, there is hope that they may be 
scalable to larger problems. 

It is becoming increasingly clear 
that the challenges we face in the 21st 
century are forbidding not just on 
account of their size but also because 
of their connectedness. Designing a 
better battery will not be sufficient 
for large-scale adoption of electric 
cars; it will also require designing 
new infrastructure to supply power to 
them. Combating global warming will 
require jointly designing economic, 
social, and technical solutions.

Creating machines or computer 
programs that grow, adapt, and mul-
tiply worry some. But it is worthwhile 
to keep in mind that self-replication 
and natural selection created the 
organisms that first filled our atmo-
sphere with oxygen and others that 
continue to scrub CO

2 from it. It also 
produced intelligent agents—us—
who are able to appreciate what we 
see around us and work to create 
new kinds of technologies that may 
yet help us to preserve it. 

Josh Bongard is an assistant profes-
sor in the Department of Computer 
Science at the University of Vermont. 
Contact him at josh.bongard@uvm.
edu.

machine shown in Figure 2 learns not 
only the parameters describing the 
different parts of its body but also 
the number of parts and how they 
interact. When designing a modular 
robot, we might ask how many mod-
ules should comprise the robot, how 
those modules should fit together, 
or how the robot should be able to 
reconfigure itself.

This ability to conduct integrated 
design and modeling is useful in 
other domains besides robotics. 
Complex systems have become a hot 
topic across the sciences, in which the 
connectivity between many hetero-
geneous units gives rise to behaviors 
of interest. 

Often, we wish to both describe the 
units in a complex network as well as 
guess the connections between them. 
For example, evolutionary computa-
tion can be used to model genetic 
networks, in which both the behavior 
of genes and their influences on one 
another can be discovered by observ-
ing how they switch on and off over 
time (J. Bongard and H. Lipson, “Auto-
mated Reverse Engineering Nonlinear 
Dynamical Systems,” Proc. National 
Academy of Sciences, June 2007, pp. 
9943-9948).

Evolutionary algorithms and 
robotics are just in their 
infancy, with many obstacles 

yet to overcome including making 
them more automated and coupling 
design with manufacture. There are 
also exciting attempts to hybrid-
ize bio-inspired computing with 

that compensates for its unexpected 
injury.

This work is part of a growing col-
lection of next-generation adaptive 
machines, many of which rely on  
bio-inspired algorithms to adjust 
operation on the fly. Some can adapt 
in real time to novel situations, which 
lets them regain their footing after 
slipping on ice, for instance. Others, 
known as social robots, can enter into 
fluid interactions with people: shak-
ing hands, maintaining eye contact, 
even raising their eyebrows when they 
see something surprising. Yet another 
class of machines known as modular 
robots are made up of collections of 
relatively independent modules, much 
like biological systems are made 
up of cells. If one module fails, the 
machine can reconfigure to continue 
operation.

intEgratEd dEsign  
and ModEling

Much credit for these new 
machines is due to advances in 
motor and sensing technologies, but 
also to the unique advantages that 
evolutionary computation offers. 
More traditional machine learning 
algorithms tend to assume that the 
general form of the solution is known, 
but the parameters of that form must 
be optimized in some way. 

Evolutionary computation really 
shines when confronted with an inte-
grated design or modeling problem 
in which both the underlying form 
and parameters of the system are 
unknown. For example, the resilient 


