

Programming in Java

Boston University
David G. Sullivan, Ph.D.

In CS 112, we assume that all students have already taken a rigorous prior
course in programming and computational problem-solving, but that they
may not have had experience using Java. We thus spend several weeks
reviewing some of the essential features of that language.

This collection of lecture notes is designed for a different type of course—
one that introduces Java to students with no prior programming
background. We are providing it in the hope that you may find it useful as
an additional resource.

Java Basics ... 2

Procedural Decomposition Using Simple Methods 8

Primitive Data, Types, and Expressions ... 21

Definite Loops .. 52

Methods with Parameters and Return Values ... 80

Using Objects from Existing Classes .. 103

Conditional Execution .. 126

Indefinite Loops and Boolean Expressions ... 149

Arrays ... 166

Classes as Blueprints: How to Define New Types of Objects 196

Inheritance and Polymorphism ... 234

Java Basics

Boston University

David G. Sullivan, Ph.D.

Programs and Classes

• In Java, all programs consist of one of more classes.

• For now:

• we'll limit ourselves to writing a single class

• you can just think of a class as a container for your program

• Example: our earlier program:

public class HelloWorld {
public static void main(String[] args) {

System.out.println("hello, world");
}

}

• A class must be defined in a file with a name of the form
classname.java

• for the class above, the name would be HelloWorld.java

Programming in Java David G. Sullivan, Ph.D. 2

Format of a Java Class

• General syntax:

public class name {

}

where name is replaced by the name of the class.

• Notes:

• the class begins with a header:

public class name

• the code inside the class is enclosed in curly braces
({ and })

code goes here…

Methods

• A method is a collection of instructions that perform
some action or computation.

• Every Java program must include a method called main.

• contains the instructions that will be executed first
when the program is run

• Our example program includes a main method with a
single instruction:

public class HelloWorld {
public static void main(String[] args) {

System.out.println("hello, world");
}

}

Programming in Java David G. Sullivan, Ph.D. 3

Methods (cont.)

• General syntax for the main method:

public static void main(String[] args) {

statement;
statement;
…

statement;
}

where each statement is replaced by a single instruction.

• Notes:

• the main method always begins with the same header:
public static void main(String[] args)

• the code inside the method is enclosed in curly braces

• each statement typically ends with a semi-colon

• the statements are executed sequentially

Identifiers

• Used to name the components of a Java program like
classes and methods.

• Rules:

• must begin with a letter (a-z, A-Z), $, or _

• can be followed by any number of letters, numbers, $, or _

• spaces are not allowed

• cannot be the same as a keyword – a word like class
that is part of the language itself (see the Resources page)

• Which of these are not valid identifiers?
n1 num_values 2n

avgSalary course name

• Java is case-sensitive (for both identifiers and keywords).

• example: HelloWorld is not the same as helloWorld

Programming in Java David G. Sullivan, Ph.D. 4

Conventions for Identifiers

• Capitalize class names.

• example: HelloWorld

• Do not capitalize method names.

• example: main

• Capitalize internal words within the name.

• example: HelloWorld

Printing Text
public class HelloWorld {

public static void main(String[] args) {
System.out.println("hello, world");

}
}

• Our program contains a single statement that prints some text.

• The printed text appears in the terminal or console.

Programming in Java David G. Sullivan, Ph.D. 5

Printing Text (cont.)

• The general format of such statements is:

System.out.println("text");

where text is replaced by the text you want to print.

• A piece of text like "Hello, world" is referred to as
a string literal.

• string: a collection of characters

• literal: specified explicitly in the program ("hard-coded")

• A string literal must be enclosed in double quotes.

• You can print a blank line by omitting the string literal:

System.out.println();

Printing Text (cont.)

• A string literal cannot span multiple lines.

• example: this is not allowed:

System.out.println("I want to print a string
on two lines.");

• Instead, we can use two different statements:
System.out.println("I want to print a string");
System.out.println("on two lines.");

Programming in Java David G. Sullivan, Ph.D. 6

println vs. print

• After printing a value, System.out.println
"moves down" to the next line on the screen.

• If we don’t want to do this, we can use System.out.print
instead:

System.out.print("text");

The next text to be printed will begin just after this text –
on the same line.

• For example:

System.out.print("I ");
System.out.print("program ");
System.out.println("with class!");

is equivalent to

System.out.println("I program with class!");

Escape Sequences

• Problem: what if we want to print a string that includes
double quotes?

• example: System.out.println("Jim said, "hi!"");

• this won’t compile. why?

• Solution: precede the double quote character by a \
System.out.println("Jim said, \"hi!\"");

• \" is an example of an escape sequence.

• The \ tells the compiler to interpret the following character
differently than it ordinarily would.

• Other examples:
• \n a newline character (goes to the next line)
• \t a tab
• \\ a backslash

Programming in Java David G. Sullivan, Ph.D. 7

Procedural Decomposition

(How to Use Methods to Write Better Programs)

Boston University

David G. Sullivan, Ph.D.

Example Program: Writing Block Letters
• Here's a program that writes the name "DEE" in block letters:

public class BlockLetters {
public static void main(String[] args) {

System.out.println(" -----");
System.out.println(" | \\");
System.out.println(" | |");
System.out.println(" | /");
System.out.println(" -----");
System.out.println();
System.out.println(" +-----");
System.out.println(" |");
System.out.println(" +----");
System.out.println(" |");
System.out.println(" +-----");
System.out.println();
System.out.println(" +-----");
System.out.println(" |");
System.out.println(" +----");
System.out.println(" |");
System.out.println(" +-----");

}
}

Programming in Java David G. Sullivan, Ph.D. 8

Example Program: Writing Block Letters
• The output looks like this:

| \
| |
| /

+-----
|
+----
|
+-----

+-----
|
+----
|
+-----

Code Duplication
public class BlockLetters {

public static void main(String[] args) {
System.out.println(" -----");
System.out.println(" | \\");
System.out.println(" | |");
System.out.println(" | /");
System.out.println(" -----");
System.out.println();
System.out.println(" +-----");
System.out.println(" |");
System.out.println(" +----");
System.out.println(" |");
System.out.println(" +-----");
System.out.println();
System.out.println(" +-----");
System.out.println(" |");
System.out.println(" +----");
System.out.println(" |");
System.out.println(" +-----");

}
}

• The code that writes an E appears twice – it is duplicated.

Programming in Java David G. Sullivan, Ph.D. 9

Code Duplication (cont.)

• Code duplication is undesirable. Why?

• Also, what if we wanted to create another word containing the
letters D or E? What would we need to do?

• A better approach: create a command for writing each letter,
and execute that command as needed.

• To create our own command in Java, we define a method.

Defining a Simple Static Method
• We've already seen how to define a main method:

public static void main(String[] args) {

statement;
statement;
…

statement;
}

• The simple methods that we'll define have a similar syntax:

public static void name() {

statement;
statement;
…

statement;
}

• This type of method is known as static method.

Programming in Java David G. Sullivan, Ph.D. 10

Defining a Simple Static Method (cont.)

• Here's a static method for writing a block letter E:

public static void writeE() {
System.out.println(" +-----");
System.out.println(" |");
System.out.println(" +----");
System.out.println(" |");
System.out.println(" +-----");

}

• It contains the same statements that we used to write an E
in our earlier program.

• This method gives us a command for writing an E.

• To use it, we simply include the following statement:

writeE();

Calling a Method
• The statement

writeE();

is known as a method call.

• General syntax for a static method call:

methodName();

• Calling a method causes the statements inside the method
to be executed.

Programming in Java David G. Sullivan, Ph.D. 11

Using Methods to Eliminate Duplication
• Here's a revised version of our program:

public class BlockLetters2 {
public static void writeE() {

System.out.println(" +-----");
System.out.println(" |");
System.out.println(" +----");
System.out.println(" |");
System.out.println(" +-----");

}

public static void main(String[] args) {
System.out.println(" -----");
System.out.println(" | \\");
System.out.println(" | |");
System.out.println(" | /");
System.out.println(" -----");
System.out.println();
writeE();
System.out.println();
writeE();

}
}

Methods Can Be Defined In Any Order
• Here's a version in which we put the main method first:

public class BlockLetters2 {
public static void main(String[] args) {

System.out.println(" -----");
System.out.println(" | \\");
System.out.println(" | |");
System.out.println(" | /");
System.out.println(" -----");
System.out.println();
writeE();
System.out.println();
writeE();

}

public static void writeE() {
System.out.println(" +-----");
System.out.println(" |");
System.out.println(" +----");
System.out.println(" |");
System.out.println(" +-----");

}
}

• By convention, the main method should appear first or last.

Programming in Java David G. Sullivan, Ph.D. 12

Flow of Control

• A program's flow of control is the order in which its statements
are executed.

• By default, the flow of control:

• is sequential

• begins with the first statement in the main method

Flow of Control (cont.)

• Example: consider the following program:
public class HelloWorldAgain {

public static void main(String[] args) {
System.out.println("hello");
System.out.println("world");
System.out.println();
...

}
}

• We can represent the flow of control using a flow chart:

System.out.println("hello");

System.out.println("world");

System.out.println();

Programming in Java David G. Sullivan, Ph.D. 13

Method Calls and Flow of Control

• When we call a method, the flow of control jumps to the method.

• After the method completes, the flow of control jumps back
to the point where the method call was made.

public class BlockLetters2 {
public static void writeE() {

System.out.println(" +-----");
System.out.println(" |");
System.out.println(" +----");
System.out.println(" |");
System.out.println(" +-----");

}

public static void main(String[] args) {
System.out.println(" -----");
System.out.println(" | \\");
System.out.println(" | |");
System.out.println(" | /");
System.out.println(" -----");
System.out.println();
writeE();
System.out.println();
...

Method Calls and Flow of Control (cont.)

• Here's a portion of the flowchart for our program:

main method: writeE method:

System.out.println();

writeE();

System.out.println(" +-----");

System.out.println(" |");

System.out.println(" +-----");

.

.

.

System.out.println();

.

.

.

.

.

.

Programming in Java David G. Sullivan, Ph.D. 14

Another Use of a Static Method
public class BlockLetters3 {

public static void writeD() {
System.out.println(" -----");
System.out.println(" | \\");
System.out.println(" | |");
System.out.println(" | /");
System.out.println(" -----");

}

public static void writeE() {
System.out.println(" +-----");
System.out.println(" |");
System.out.println(" +----");
System.out.println(" |");
System.out.println(" +-----");

}

public static void main(String[] args) {
writeD();
System.out.println();
writeE();
System.out.println();
writeE();

}
}

Another Use of a Static Method (cont.)

• The code in the writeD method is only used once,
so it doesn't eliminate code duplication.

• However, using a separate static method still makes the
overall program more readable.

• It helps to reveal the structure of the program.

Programming in Java David G. Sullivan, Ph.D. 15

Procedural Decomposition

• In general, methods allow us to decompose a problem into
smaller subproblems that are easier to solve.

• the resulting code is also easier to understand and maintain

• In our program, we've decomposed the task "write DEE"
into two subtasks:

• write D

• write E (which we perform twice).

• We can use a structure diagram to show the decomposition:

write DEE

write D write E

Procedural Decomposition (cont.)

• How could we use procedural decomposition in printing
the following lyrics?

Dashing through the snow in a one-horse open sleigh,
O'er the fields we go, laughing all the way.
Bells on bobtail ring, making spirits bright.
What fun it is to ride and sing a sleighing song tonight!

Jingle bells, jingle bells, jingle all the way!
O what fun it is to ride in a one-horse open sleigh!
Jingle bells, jingle bells, jingle all the way!
O what fun it is to ride in a one-horse open sleigh!

A day or two ago, I thought I'd take a ride,
And soon Miss Fanny Bright was seated by my side.
The horse was lean and lank; misfortune seemed his lot;
We got into a drifted bank and then we got upsot.

Jingle bells, jingle bells, jingle all the way!
O what fun it is to ride in a one-horse open sleigh!
Jingle bells, jingle bells, jingle all the way!
O what fun it is to ride in a one-horse open sleigh!

Programming in Java David G. Sullivan, Ph.D. 16

Procedural Decomposition (cont.)

Dashing through the snow in a one-horse open sleigh,
O'er the fields we go, laughing all the way.
Bells on bobtail ring, making spirits bright.
What fun it is to ride and sing a sleighing song tonight!

Jingle bells, jingle bells, jingle all the way!
O what fun it is to ride in a one-horse open sleigh!
Jingle bells, jingle bells, jingle all the way!
O what fun it is to ride in a one-horse open sleigh!

A day or two ago, I thought I'd take a ride,
And soon Miss Fanny Bright was seated by my side.
The horse was lean and lank; misfortune seemed his lot;
We got into a drifted bank and then we got upsot.

printSong

printVerse1

printVerse2

printVerse1 printRefrain printVerse2

printHalfRefrain

printRefrain

printHalfRefrain

Code Reuse

• Once we have a set of methods, we can use them to solve
other problems.

• Here's a program that writes the name "ED":
public class BlockLetters4 {

// these methods are the same as before
public static void writeD() {

...
}

public static void writeE() {
...

}

public static void main(String[] args) {
writeE();
System.out.println();
writeD();

}
}

Programming in Java David G. Sullivan, Ph.D. 17

Tracing the Flow of Control

• What is the output of the following program?

public class FlowControlTest {
public static void methodA() {

System.out.println("starting method A");
}

public static void methodB() {
System.out.println("starting method B");

}

public static void methodC() {
System.out.println("starting method C");

}

public static void main(String[] args) {
methodC();
methodA();

}
}

Methods Calling Methods

• The definition of one method can include calls to other methods.

• We've seen this already in the main method:

public static void main(String[] args) {
writeE();
System.out.println();
writeD();

}

• We can also do this in other methods:

public static void foo() {
System.out.println("This is method foo.");
bar();

}

public static void bar() {
System.out.println("This is method bar.");

}

Programming in Java David G. Sullivan, Ph.D. 18

Methods Calling Methods (cont.)

• What is the output of the following program?

public class FlowControlTest2 {
public static void methodOne() {

System.out.println("boo");
methodThree();

}

public static void methodTwo() {
System.out.println("hoo");
methodOne();

}

public static void methodThree() {
System.out.println("foo");

}

public static void main(String[] args) {
methodOne();
methodThree();
methodTwo();

}
}

Comments

• Comments are text that is ignored by the compiler.

• Used to make programs more readable

• Two types:

1. line comments: begin with //

• compiler ignores from // to the end of the line

• examples:
// this is a comment

System.out.println(); // so is this

2. block comments: begin with /* and end with */

• compiler ignores everything in between

• typically used at the top of each source file

Programming in Java David G. Sullivan, Ph.D. 19

Comments (cont.)

/*
* DrawTriangle.java
* Dave Sullivan (dgs@cs.bu.edu)
* This program draws a triangle.
*/

public class DrawTriangle {
public static void main(String[] args) {

System.out.println("Here's my drawing:");

// Draw the triangle using characters.
System.out.println(" ^");
System.out.println(" / \\");
System.out.println(" / \\");
System.out.println(" / \\");
System.out.println(" -------");

}
}

block comments

line comments

Comments (cont.)

• Put comments:

• at the top of each file, naming the author and explaining
what the program does

• at the start of every method other than main,
describing its behavior

• inside methods, to explain complex pieces of code
(this will be more useful later in the course)

• We will deduct points for failing to include the correct comments
and other stylistic problems.

Programming in Java David G. Sullivan, Ph.D. 20

Primitive Data, Variables,
and Expressions;

Simple Conditional Execution

Boston University

David G. Sullivan, Ph.D.

Overview of the Programming Process

Analysis/Specification

Design

Implementation

Testing/Debugging

Programming in Java David G. Sullivan, Ph.D. 21

Example Problem: Adding Up Your Change

• Let's say that we have a bunch of coins of various types,
and we want to figure out how much money we have.

• Let’s begin the process of developing a program that
does this.

Step 1: Analysis and Specification

• Analyze the problem (making sure that you understand it),
and specify the problem requirements clearly and
unambiguously.

• Describe exactly what the program will do, without worrying
about how it will do it.

Programming in Java David G. Sullivan, Ph.D. 22

Step 2: Design

• Determine the necessary algorithms (and possibly other
aspects of the program) and sketch out a design for them.

• This is where we figure out how the program will solve
the problem.

• Algorithms are often designed using pseudocode.

• more informal than an actual programming language

• allows us to avoid worrying about the syntax of the language

• example for our change-adder problem:

get the number of quarters
get the number of dimes
get the number of nickels
get the number of pennies
compute the total value of the coins
output the total value

Step 3: Implementation

• Translate your design into the programming language.

pseudocode  code

• We need to learn more Java before we can do this!

• Here's a portion or fragment of a Java program for computing
the value of a particular collection of coins:

quarters = 10;
dimes = 3;
nickels = 7;
pennies = 6;

cents = 25*quarters + 10*dimes + 5*nickels + pennies;
System.out.println("Your total in cents is:");
System.out.println(cents);

• In a moment, we'll use this fragment to examine some of the
fundamental building blocks of a Java program.

Programming in Java David G. Sullivan, Ph.D. 23

Step 4: Testing and Debugging
• A bug is an error in your program.

• Debugging involves finding and fixing the bugs.

• Testing – trying the programs on a variety of inputs –
helps us to find the bugs.

The first program bug! Found by Grace Murray Hopper at Harvard.
(http://www.hopper.navy.mil/grace/grace.htm)

Overview of the Programming Process

Analysis/Specification

Design

Implementation

Testing/Debugging

Programming in Java David G. Sullivan, Ph.D. 24

Program Building Blocks: Literals
quarters = 10;
dimes = 3;
nickels = 7;
pennies = 6;

cents = 25*quarters + 10*dimes + 5*nickels + pennies;
System.out.println("Your total in cents is:");
System.out.println(cents);

• Literals specify a particular value.

• They include:

• string literals: "Your total in cents is:"

• are surrounded by double quotes

• numeric literals: 25 3.1416

• commas are not allowed!

Program Building Blocks: Variables
quarters = 10;
dimes = 3;
nickels = 7;
pennies = 6;

cents = 25*quarters + 10*dimes + 5*nickels + pennies;
System.out.println("Your total in cents is:");
System.out.println(cents);

• We've already seen that variables are named memory locations
that are used to store a value:

• Variable names must follow the rules for identifiers
(see previous notes).

10quarters

Programming in Java David G. Sullivan, Ph.D. 25

Program Building Blocks: Statements
quarters = 10;
dimes = 3;
nickels = 7;
pennies = 6;

cents = 25*quarters + 10*dimes + 5*nickels + pennies;
System.out.println("Your total in cents is:");
System.out.println(cents);

• In Java, a single-line statement typically ends with a semi-colon.

• Later, we will see examples of control statements that
contain other statements.

Program Building Blocks: Expressions
quarters = 10;
dimes = 3;
nickels = 7;
pennies = 6;

cents = 25*quarters + 10*dimes + 5*nickels + pennies;
System.out.println("Your total in cents is:");
System.out.println(cents);

• Expressions are pieces of code that evaluate to a value.

• They include:

• literals, which evaluate to themselves

• variables, which evaluate to the value that they represent

• combinations of literals, variables, and operators:

25*quarters + 10*dimes + 5*nickels + pennies

Programming in Java David G. Sullivan, Ph.D. 26

Program Building Blocks: Expressions (cont.)

• Numerical operators include:

+ addition

- subtraction

* multiplication

/ division

% modulus or mod: gives the remainder of a division

example: 11 % 3 evaluates to 2

• Operators are applied to operands:

25 * quarters (2 * length) + (2 * width)

operands
of the * operator operands

of the + operator

Evaluating Expressions

• With expressions that involve more than one mathematical
operator, the usual order of operations applies.

• example:
3 + 4 * 3 / 2 – 7

=

=

=

=

• Use parentheses to:

• force a different order of evaluation

• example:
radius = circumference / (2 * pi);

• make the standard order of operations obvious!

Programming in Java David G. Sullivan, Ph.D. 27

Evaluating Expressions with Variables

• When an expression includes variables, they are first
replaced with their current value.

• Example: recall our code fragment:

quarters = 10;
dimes = 3;
nickels = 7;
pennies = 6;

cents = 25*quarters + 10*dimes + 5*nickels + pennies;
= 25* 10 + 10* 3 + 5* 7 + 6
= 250 + 10* 3 + 5* 7 + 6
= 250 + 30 + 5* 7 + 6
= 250 + 30 + 35 + 6
= 280 + 35 + 6
= 315 + 6
= 321

println Statements Revisited
• Recall our earlier syntax for println statements:

System.out.println("text");

• Here is a more complete version:

System.out.println(expression);

• Examples:

System.out.println(3.1416);
System.out.println(2 + 10 / 5);
System.out.println(cents); // a variable
System.out.println("cents"); // a string

any type of expression,
not just text

Programming in Java David G. Sullivan, Ph.D. 28

println Statements Revisited (cont.)

• The expression is first evaluated, and then the value is printed.

System.out.println(2 + 10 / 5);

System.out.println(4); // output: 4

System.out.println(cents);

System.out.println(321); // output: 321

System.out.println("cents");

System.out.println("cents"); // output: cents

• Note that the surrounding quotes are not displayed when
a string is printed.

println Statements Revisited (cont.)

• Another example:

System.out.println(10*dimes + 5*nickels);

System.out.println(10*3 + 5*7);

System.out.println(65);

Programming in Java David G. Sullivan, Ph.D. 29

Data Types

• A data type is a set of related data values.

• examples:

• integers

• strings

• characters

• Every data type in Java has a name that we can use
to identify it.

Commonly Used Data Types for Numbers

• int

• used for integers

• examples: 25 -2

• double

• used for real numbers (ones with a fractional part)

• examples: 3.1416 -15.2

• used for any numeric literal with a decimal point,
even if it's an integer:

5.0

• also used for any numeric literal written in scientific notation

3e8 -1.60e-19

more generally:

n x 10p is written nep

Programming in Java David G. Sullivan, Ph.D. 30

Incorrect Change-Adder Program
/*
* ChangeAdder.java
* Dave Sullivan (dgs@cs.bu.edu)
* This program determines the value of some coins.
*/

public class ChangeAdder {
public static void main(String[] args) {

quarters = 10;
dimes = 3;
nickels = 7;
pennies = 6;

// compute and print the total value
cents = 25*quarters + 10*dimes + 5*nickels + pennies;
System.out.print("total in cents is: ");
System.out.println(cents);

}
}

Declaring a Variable

• Java requires that we specify the type of a variable before
attempting to use it.

• This is called declaring the variable.

• syntax:

type name;

• examples:
int count; // will hold an integer
double area; // will hold a real number

• A variable declaration can also include more than one
variable of the same type:

int quarters, dimes;

Programming in Java David G. Sullivan, Ph.D. 31

Assignment Statements

• Used to give a value to a variable.

• Syntax:

variable = expression;

= is known as the assignment operator.

• Examples:
int quarters = 10; // declaration plus assignment

// declaration first, assignment later
int cents;
cents = 25*quarters + 10*dimes + 5*nickels + pennies;

// can also use to change the value of a variable
quarters = 15;

Corrected Change-Adder Program
/*
* ChangeAdder.java
* Dave Sullivan (dgs@cs.bu.edu)
* This program determines the value of some coins.
*/

public class ChangeAdder {
public static void main(String[] args) {

int quarters = 10;
int dimes = 3;
int nickels = 7;
int pennies = 6;
int cents;

// compute and print the total value
cents = 25*quarters + 10*dimes + 5*nickels + pennies;
System.out.print("total in cents is: ");
System.out.println(cents);

}
}

Programming in Java David G. Sullivan, Ph.D. 32

Assignment Statements (cont.)

• Steps in executing an assignment statement:

1) evaluate the expression on the right-hand side of the =

2) assign the resulting value to the variable on the
left-hand side of the =

• Examples:
int quarters = 10;

int quarters = 10; // 10 evaluates to itself!

int quartersValue = 25 * quarters;

int quartersValue = 25 * 10;

int quartersValue = 250;

Assignment Statements (cont.)

• An assignment statement does not create a permanent
relationship between variables.

• Example: consider the following code fragment
int x = 10;
int y = x + 2;
System.out.println(y);
x = 20;
System.out.println(y);

• changing the value of x does not change the value of y!

• You can only change the value of a variable by assigning it
a new value.

it outputs:

Programming in Java David G. Sullivan, Ph.D. 33

Assignment Statements (cont.)

• As the values of variables change, it can be helpful to picture
what's happening in memory.

• Examples:

int num1;
int num2 = 120; num1 ? num2 120

after the assignment at left, we get:

num1 = 50; num1 50 num2 120

num1 = num2 * 2; num1 240 num2 120
120 * 2

240

num2 = 60; num1 240 num2 60

undefined

The value of num1 is unchanged!

Assignment Statements (cont.)

• A variable can appear on both sides of the assignment
operator!

• Example (fill in the missing values):

int sum = 13;
int val = 30; sum 13 val 30

sum = sum + val; sum val

val = val * 2; sum val

Programming in Java David G. Sullivan, Ph.D. 34

Operators and Data Types

• Each data type has its own set of operators.

• the int version of an operator produces an int result

• the double version produces a double result

• etc.

• Rules for numeric operators:

• if the operands are both of type int,
the int version of the operator is used.

• examples: 15 + 30

1 / 2

25 * quarters

• if at least one of the operands is of type double,
the double version of the operator is used.

• examples: 15.5 + 30.1

1 / 2.0

25.0 * quarters

Incorrect Extended Change-Adder Program
/*
* ChangeAdder2.java
* Dave Sullivan (dgs@cs.bu.edu)
* This program determines the value of some coins.
*/

public class ChangeAdder2 {
public static void main(String[] args) {

int quarters = 10;
int dimes = 3;
int nickels = 7;
int pennies = 6;
int cents;

// compute and print the total value
cents = 25*quarters + 10*dimes + 5*nickels + pennies;
System.out.print("total in cents is: ");
System.out.println(cents);
double dollars = cents / 100;
System.out.print("total in dollars is: ");
System.out.println(dollars);

}
}

Programming in Java David G. Sullivan, Ph.D. 35

Two Types of Division

• The int version of the / operator performs integer division,
which discards the fractional part of the result
(i.e., everything after the decimal).

• examples:

expression value

5 / 3 1

11 / 5 2

• The double version of the / operator performs
floating-point division, which keeps the fractional part.

• examples:

expression value

5.0 / 3.0 1.6666666666666667

11 / 5.0 2.2

How Can We Fix Our Program?
/*
* ChangeAdder2.java
* Dave Sullivan (dgs@cs.bu.edu)
* This program determines the value of some coins.
*/

public class ChangeAdder2 {
public static void main(String[] args) {

int quarters = 10;
int dimes = 3;
int nickels = 7;
int pennies = 6;
int cents;

// compute and print the total value
cents = 25*quarters + 10*dimes + 5*nickels + pennies;
System.out.print("total in cents is: ");
System.out.println(cents);
double dollars = cents / 100;
System.out.print("total in dollars is: ");
System.out.println(dollars);

}
}

Programming in Java David G. Sullivan, Ph.D. 36

String Concatenation

• The meaning of the + operator depends on the types of
the operands.

• When at least one of the operands is a string, the + operator
performs string concatenation.

• combines two or more strings into a single string

• example:

System.out.println("hello " + "world");

is equivalent to
System.out.println("hello world");

String Concatenation (cont.)

• If one operand is a string and the other is a number,
the number is converted to a string and then concatenated.

• example: instead of writing
System.out.print("total in cents: ");
System.out.println(cents);

we can write
System.out.println("total in cents: " + cents);

• Here's how the evaluation occurs:
int cents = 321;
System.out.println("total in cents: " + cents);

"total in cents: " + 321
"total in cents: " + "321"
"total in cents: 321"

Programming in Java David G. Sullivan, Ph.D. 37

Change-Adder Using String Concatenation
/*
* ChangeAdder2.java
* Dave Sullivan (dgs@cs.bu.edu)
* This program determines the value of some coins.
*/

public class ChangeAdder2 {
public static void main(String[] args) {

int quarters = 10;
int dimes = 3;
int nickels = 7;
int pennies = 6;
int cents;

// compute and print the total value
cents = 25*quarters + 10*dimes + 5*nickels + pennies;
System.out.println("total in cents is: " + cents);
double dollars = cents / 100.0;
System.out.println("total in dollars is: " +

dollars);
}

}

An Incorrect Program for Computing a Grade
/*
* ComputeGrade.java
* Dave Sullivan (dgs@cs.bu.edu)
* This program computes a grade as a percentage.
*/

public class ComputeGrade {
public static void main(String[] args) {

int pointsEarned = 13;
int possiblePoints = 15;

// compute and print the grade as a percentage
double grade;
grade = pointsEarned / possiblePoints * 100;
System.out.println("The grade is: " + grade);

}
}

• What is the output?

Programming in Java David G. Sullivan, Ph.D. 38

Will This Fix Things?
/*
* ComputeGrade.java
* Dave Sullivan (dgs@cs.bu.edu)
* This program computes a grade as a percentage.
*/

public class ComputeGrade {
public static void main(String[] args) {

int pointsEarned = 13;
int possiblePoints = 15;

// compute and print the grade as a percentage
double grade;
grade = pointsEarned / possiblePoints * 100.0;
System.out.println("The grade is: " + grade);

}
}

Type Casts

• To compute the percentage, we need to tell Java to treat
at least one of the operands as a double.

• We do so by performing a type cast:

grade = (double)pointsEarned / possiblePoints * 100;

or

grade = pointsEarned / (double)possiblePoints * 100;

• General syntax for a type cast:

(type)variable

Programming in Java David G. Sullivan, Ph.D. 39

Corrected Program for Computing a Grade
/*
* ComputeGrade.java
* Dave Sullivan (dgs@cs.bu.edu)
* This program computes a grade as a percentage.
*/

public class ComputeGrade {
public static void main(String[] args) {

int pointsEarned = 13;
int possiblePoints = 15;

// compute and print the grade as a percentage
double grade;
grade = (double)pointsEarned / possiblePoints * 100;
System.out.println("The grade is: " + grade);

}
}

Evaluating a Type Cast

• Example of evaluating a type cast:

pointsEarned = 13;
possiblePoints = 15;

grade = (double)pointsEarned / possiblePoints * 100;
(double)13 / 15 * 100;

13.0 / 15 * 100;
0.8666666666666667 * 100;
86.66666666666667;

• Note that the type cast occurs after the variable is replaced
by its value.

• It does not change the value that is actually stored in the variable.

• in the example above, pointsEarned is still 13

Programming in Java David G. Sullivan, Ph.D. 40

Type Conversions

• Java will automatically convert values from one type
to another provided there is no potential loss of information.

• Example: we can perform the following assignment
without a type cast:

double d = 3;

• the JVM will convert the integer value 3 to the
floating-point value 3.0 and assign that value to d

• any int can be assigned to a double without losing
any information

variable of
type double

value of
type int

Type Conversions (cont.)

• The compiler will complain if the necessary type conversion
could (at least in some cases) lead to a loss of information:

int i = 7.5; // won't compile

• This is true regardless of the actual value being converted:
int i = 5.0; // won't compile

• To make the compiler happy in such cases, we need to
use a type cast:

double area = 5.7;
int approximateArea = (int)area;
System.out.println(approximateArea);

• what would the output be?

variable of
type int

value of
type double

Programming in Java David G. Sullivan, Ph.D. 41

Type Conversions (cont.)

• When an automatic type conversion is performed as part of
an assignment, the conversion happens after the evaluation
of the expression to the right of the =.

• Example:
double d = 1 / 3;

= 0; // uses integer division. why?

= 0.0;

A Block of Code

• A block of code is a set of statements that is treated as a
single unit.

• In Java, a block is typically surrounded by curly braces.

• Examples:

• each class is a block

• each method is a block

public class MyProgram {
public static void main(String[] args) {

int i = 5;
System.out.println(i * 3);
int j = 10;
System.out.println(j / i);

}
}

Programming in Java David G. Sullivan, Ph.D. 42

Variable Scope

• The scope of a variable is the portion of a program
in which the variable can be used.

• By default, the scope of a variable in Java:

• begins at the point at which it is declared

• ends at the end of the innermost block
that encloses the declaration

public class MyProgram2 {
public static void main(String[] args) {

System.out.println("Welcome!");
System.out.println("Let's do some math!");
int j = 10;
System.out.println(j / 5);

}
}

• Because of these rules, a variable cannot be used outside
of the block in which it is declared.

scope of j

Another Example

public class MyProgram3 {
public static void method1() {

int i = 5;
System.out.println(i * 3);
int j = 10;
System.out.println(j / i);

}

public static void main(String[] args) {
// The following line won't compile.
System.out.println(i + j);

int i = 4;
System.out.println(i * 6);
method1();

}
}

scope of
method1's
version of iscope of j

scope of
main's

version of i

Programming in Java David G. Sullivan, Ph.D. 43

Local Variables vs. Global Variables

public class MyProgram {
static int x = 10; // a global variable

public static void method1() {
int y = 5; // a local variable
System.out.println(x + y);
...

• Variables that are declared inside a method are local variables.

• they cannot be used outside that method.

• In theory, we can define global variables that are available
throughout the program.

• they are declared outside of any method,
using the keyword static

• However, we generally avoid global variables.

• can lead to problems in which one method accidentally
affects the behavior of another method

Yet Another Change-Adder Program!

• Let's change it to print the result in dollars and cents.

• 321 cents should print as 3 dollars, 21 cents

public class ChangeAdder3 {
public static void main(String[] args) {

int quarters = 10;
int dimes = 3;
int nickels = 7;
int pennies = 6;
int dollars, cents;

cents = 25*quarters + 10*dimes + 5*nickels + pennies;

// what should go here?

System.out.println("dollars = " + dollars);
System.out.println("cents = " + cents);

}
}

Programming in Java David G. Sullivan, Ph.D. 44

The Need for Conditional Execution

• What if the user has 121 cents?

• will print as 1 dollars, 21 cents

• would like it to print as 1 dollar, 21 cents

• We need a means of choosing what to print at runtime.

Conditional Execution in Java

if (condition) {

true block
} else {

false block
}

• If the condition is true:

• the statement(s) in the true block are executed

• the statement(s) in the false block (if any) are skipped

• If the condition is false:

• the statement(s) in the false block (if any) are executed

• the statement(s) in the true block are skipped

if (condition) {

true block
}

Programming in Java David G. Sullivan, Ph.D. 45

Expressing Simple Conditions

• Java provides a set of operators called relational operators
for expressing simple conditions:

operator name examples

< less than 5 < 10
num < 0

> greater than 40 > 60 (which is false!)
count > 10

<= less than or equal to average <= 85.8

>= greater than or equal to temp >= 32

== equal to sum == 10

firstChar == 'P'

!= not equal to age != myAge

(don't confuse with =)

Change Adder With Conditional Execution
public class ChangeAdder3 {

public static void main(String[] args) {
...

System.out.print(dollars);
if (dollars == 1) {

System.out.print(" dollar, ");
} else {

System.out.print(" dollars, ");
}

// Add statements to correctly print cents.
// Try to use only an if, not an else.

}
}

Programming in Java David G. Sullivan, Ph.D. 46

Classifying Bugs
• Syntax errors

• found by the compiler

• occur when code doesn't follow the rules of the
programming language

• examples?

Classifying Bugs
• Syntax errors

• found by the compiler

• occur when code doesn't follow the rules of the
programming language

• examples?

• Logic errors

• the code compiles, but it doesn’t do what you intended
it to do

• may or may not cause the program to crash

• called runtime errors if the program crashes

• often harder to find!

Programming in Java David G. Sullivan, Ph.D. 47

Common Syntax Errors Involving Variables

• Failing to declare the type of the variable.

• Failing to initialize a variable before you use it:
int radius;

double area = 3.1416 * radius * radius;

• Trying to declare a variable when there is already a variable
with that same name in the current scope:

int val1 = 10;
System.out.print(val1 * 2);
int val1 = 20;

Will This Compile?

public class ChangeAdder {
public static void main(String[] args) {

...
int cents;
cents = 25*quarters + 10*dimes + 5*nickels + pennies;

if (cents % 100 == 0) {
int dollars = cents / 100;
System.out.println(dollars + " dollars");

} else {
int dollars = cents / 100;
cents = dollars % 100;
System.out.println(dollars + " dollars and "

+ cents + " cents");
}

}
}

Programming in Java David G. Sullivan, Ph.D. 48

Representing Integers

• Like all values in a computer, integers are stored as
binary numbers – sequences of bits (0s and 1s).

• With n bits, we can represent 2n different values.

• examples:

• 2 bits give 22 = 4 different values

00, 01, 10, 11

• 3 bits give 23 = 8 different values

000, 001, 010, 011, 100, 101, 110, 111

• When we allow for negative integers (which Java does)
n bits can represent any integer from –2n-1 to 2n-1 – 1.

• there's one fewer positive value to make room for 0

Java’s Integer Types

• Java’s actually has four primitive types for integers, all of which
represent signed integers.

type # of bits range of values

byte 8 –27 to 27 – 1
(–128 to 127)

short 16 –215 to 215 – 1
(–32768 to 32767)

int 32 –231 to 231 – 1
(approx. +/–2 billion)

long 64 –263 to 263 – 1g

• We typically use int, unless there’s a good reason not to.

Programming in Java David G. Sullivan, Ph.D. 49

Java’s Floating-Point Types

• Java has two primitive types for floating-point numbers:

type # of bits approx. range approx. precision

float 32 +/–10–45 to +/–1038 7 decimal digits

double 64 +/–10–324 to +/–10308 15 decimal digits

• We typically use double because of its greater precision.

printf: Formatted Output
• When printing a decimal number, you may want to limit yourself

to a certain number of places after the decimal.

• You can do so using the System.out.printf method.

• example:

System.out.printf("%.2f", 1.0/3);

will print

0.33

• the number after the decimal point in the first parameter
indicates how many places after the decimal should be used

• There are other types of formatting that can also be performed
using this method.

• docs.oracle.com/javase/tutorial/java/data/numberformat.html

Programming in Java David G. Sullivan, Ph.D. 50

Review
• Consider the following code fragments

1) 1000

2) 10 * 5

3) System.out.println("Hello");

4) hello

5) num1 = 5;

6) 2*width + 2*length

7) main

• Which of them are examples of:

• literals?

• identifiers?

• expressions?

• statements?

Programming in Java David G. Sullivan, Ph.D. 51

Definite Loops

Boston University

David G. Sullivan, Ph.D.

Using a Variable for Counting

• Let's say that we're using a variable i to count the number
of times that something has been done:

int i = 0; i 0

• To increase the count, we can do this:

i = i + 1;

0 + 1

1 i 1

• To increase the count again, we repeat the same assignment:

i = i + 1;

1 + 1

2 i 2

Programming in Java David G. Sullivan, Ph.D. 52

Increment and Decrement Operators

• Instead of writing

i = i + 1;

we can use a shortcut and just write

i++;

• ++ is known as the increment operator.

• increment = increase by 1

• Java also provides a decrement operator (--).

• decrement = decrease by 1

• example:
i--;

Review: Flow of Control

• Flow of control = the order in which instructions are executed

• By default, instructions are executed in sequential order.

instructions flowchart
int sum = 0;

int num1 = 5;

int num2 = 10;

sum = num1 + num2;

• When we make a method call, the flow of control "jumps" to
the method, and it "jumps" back when the method completes.

int sum = 0;

int num1 = 5;

int num2 = 10;

sum = num1 + num2;

Programming in Java David G. Sullivan, Ph.D. 53

Altering the Flow of Control: Repetition

• To solve many types of problems, we need to be able
to modify the order in which instructions are executed.

• One reason for doing this is to allow for repetition.

Example of the Need for Repetition

• Here's a method for writing a large block letter L:

public static void writeL() {
System.out.println("|");
System.out.println("|");
System.out.println("|");
System.out.println("|");
System.out.println("|");
System.out.println("|");
System.out.println("|");
System.out.println("+----------");

}

• Rather than duplicating the statement
System.out.println("|");

seven times, we'd like to have this statement appear just once
and execute it seven times.

Programming in Java David G. Sullivan, Ph.D. 54

for Loops

• To repeat one or more statements multiple times, we can
use a construct known as a for loop.

• Here's a revised version of our writeL method that uses one:

public static void writeL() {
for (int i = 0; i < 7; i++) {

System.out.println("|");
}
System.out.println("+----------");

}

for Loops

• Syntax:

for (initialization ; continuation test ; update) {

one or more statements

}

• In our example:

for (int i = 0 ; i < 7 ; i++) {

System.out.println("|");

}

• The statements inside the loop are known as
the body of the loop.

• In our example, we use the variable i to count the number
of times that the body has been executed.

initialization continuation test

update

Programming in Java David G. Sullivan, Ph.D. 55

Executing a for Loop

for (initialization ; continuation test ; update) {
body of the loop

}

execute statement
after the loop

yes

nois the
test true?

execute the
body of the loop

perform the
update

perform the
initialization

Notes:
• the initialization is

only performed once

• the body is only
executed if the
test is true

• we repeatedly do:
test
body
update

until the test is false

Executing Our for Loop

for (int i = 0; i < 7; i++) {
System.out.println("|");

}

i i < 7 action
0 true print 1st "|"

1 true print 2nd "|"

2 true print 3rd "|"

3 true print 4th "|"

4 true print 5th "|"

5 true print 6th "|"

6 true print 7th "|"

7 false execute stmt.
after the loopexecute statement

after the loop

yes

nois i < 7
true?

execute body:
System.out.println("|");

perform update:
i++

initialization:
int i = 0;

Programming in Java David G. Sullivan, Ph.D. 56

Definite Loops
• For now, we'll limit ourselves to definite loops –

which repeat actions a fixed number of times.

• To repeat the body of a loop N times, we typically
take one of the following approaches:

for (int i = 0; i < N; i++) {
<body of the loop>

}

OR

for (int i = 1; i <= N; i++) {
<body of the loop>

}

• Each time that the body of a loop is executed is known as
an iteration of the loop.

• the loops shown above perform N iterations

Other Examples of Definite Loops
• What does this loop do?

for (int i = 0; i < 3; i++) {
System.out.println("Hip! Hip!");
System.out.println("Hooray!");

}

• What does this loop do?

for (int i = 0; i < 10; i++) {
System.out.println(i);

}

Programming in Java David G. Sullivan, Ph.D. 57

Using Different Initializations, Tests, and Updates
• The second loop from the previous page would be clearer

if we expressed it like this:

for (int i = 0; i <= 9; i++) {
System.out.println(i);

}

• Different problems may require different initializations,
continuation tests, and updates.

• What does this code fragment do?

for (int i = 2; i <= 10; i = i + 2) {
System.out.println(i * 10);

}

Tracing a for Loop

• Let's trace through the final code fragment from the last slide:

for (int i = 2; i <= 10; i = i + 2) {
System.out.println(i * 10);

}

i i <= 10 value printed

Programming in Java David G. Sullivan, Ph.D. 58

Common Mistake

• You should not put a semi-colon after the for-loop header:

for (int i = 0; i < 7; i++); {
System.out.println("|");

}

• The semi-colon ends the for statement.

• thus, it doesn't repeat anything!

• The println is independent of the for statement,
and only executes once.

Practice
• Fill in the blanks below to print the integers from 1 to 10:

for (____________; ____________; ____________) {
System.out.println(i);

}

• Fill in the blanks below to print the integers from 10 to 20:

for (____________; ____________; ____________) {
System.out.println(i);

}

• Fill in the blanks below to print the integers from 10 down to 1:

for (____________; ____________; ____________) {
System.out.println(i);

}

Programming in Java David G. Sullivan, Ph.D. 59

Other Java Shortcuts

• Recall this code fragment:

for (int i = 2; i <= 10; i = i + 2) {
System.out.println(i * 10);

}

• Instead of writing

i = i + 2;

we can use a shortcut and just write

i += 2;

• In general

variable += expression;

is equivalent to

variable = variable + (expression);

Java Shortcuts

• Java offers other shortcut operators as well.

• Here's a summary of all of them:

shortcut equivalent to

var++; var = var + 1;

var--; var = var – 1;

var += expr; var = var + (expr);

var -= expr; var = var - (expr);

var *= expr; var = var * (expr);

var /= expr; var = var / (expr);

var %= expr; var = var % (expr);

• Important: the = must come after the mathematical operator.

+= is correct

=+ is not!

Programming in Java David G. Sullivan, Ph.D. 60

More Practice
• Fill in the blanks below to print the even integers in reverse

order from 20 down to 6:

for (____________; ____________; ____________) {
System.out.println(i);

}

Find the Error

• Let's say that we want to print the numbers from 1 to n.

• Where is the error in the following code?

for (int i = 1; i < n; i++) {
System.out.println(i);

}

• This is an example of an off-by-one error. Beware of these
when writing your loop conditions!

Programming in Java David G. Sullivan, Ph.D. 61

Example Problem: Printing a Pattern, version 1

• Ask the user for a positive integer (call it n), and print a pattern
containing n asterisks.

• example:
Enter a positive integer: 3

• Let's use a for loop to do this:

// code to read n goes here...

for () {
System.out.print("*");

}
System.out.println();

Example Problem: Printing a Pattern, version 2

• Print a pattern containing n lines of n asterisks.

• example:
Enter a positive integer: 3

• One way to do this is to use a nested loop – one loop inside
another:

// code to read in n goes here...

for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {

System.out.print("*");
}
System.out.println();

}

• This makes it easier to create a similar box of a different size.

Programming in Java David G. Sullivan, Ph.D. 62

Nested Loops

• When you have a nested loop, the inner loop is executed to
completion for every iteration of the outer loop.

• How many times is the println statement executed below?

for (int i = 0; i < 5; i++) {
for (int j = 0; j < 7; j++) {

System.out.println(i + " " + j);
}

}

• How many times is the println statement executed below?

for (int i = 0; i < 5; i++) {
for (int j = 0; j < i; j++) {

System.out.println(i + " " + j);
}

}

Tracing a Nested for Loop

for (int i = 0; i < 5; i++) {
for (int j = 0; j < i; j++) {

System.out.println(i + " " + j);
}

}

i i < 5 j j < i value printed

Programming in Java David G. Sullivan, Ph.D. 63

Recall: Variable Scope

• The scope of a variable is the portion of a program
in which the variable can be used.

• By default, the scope of a variable in Java:

• begins at the point at which it is declared

• ends at the end of the innermost block
that encloses the declaration

public class MyProgram2 {
public static void main(String[] args) {

System.out.println("Welcome!");
System.out.println("Let's do some math!");
int j = 10;
System.out.println(j / 5);

}
}

scope of j

Special Case: for Loops and Variable Scope

• When a variable is declared in the initialization clause of
a for loop, its scope is limited to the loop.

• Example:

public static void myMethod() {
for (int i = 0; i < 5; i++) {

int j = i * 3;
System.out.println(j);

}

// the following line won't compile
System.out.print(i);
System.out.println(" values were printed.");

}

scope of i

Programming in Java David G. Sullivan, Ph.D. 64

Special Case: for Loops and Variable Scope (cont.)

• To allow i to be used outside the loop, we need to
declare it outside the loop:

• Example:

public static void myMethod() {
int i;
for (i = 0; i < 5; i++) {

int j = i * 3;
System.out.println(j);

}

// now this will compile
System.out.print(i);
System.out.println(" values were printed.");

}

scope
of i

• Limiting the scope of a loop variable allows us to use the
standard loop templates multiple times in the same method.

• Example:

public static void myMethod() {
for (int i = 0; i < 5; i++) {

int j = i * 3;
System.out.println(j);

}

for (int i = 0; i < 7; i++) {
System.out.println("Go Crimson!");

}
}

scope of
first i

scope of
second i

Special Case: for Loops and Variable Scope (cont.)

Programming in Java David G. Sullivan, Ph.D. 65

Review: Simple Repetition Loops

• Recall our two templates for performing N repetitions:

for (int i = 0; i < N; i++) {
// code to be repeated

}

for (int i = 1; i <= N; i++) {
// code to be repeated

}

• How may repetitions will each of the following perform?

for (int i = 1; i <= 15; i++) {
System.out.println("Hello");
System.out.println("How are you?");

}

for (int i = 0; i < 2*j; i++) {
…

}

More Practice: Tracing a Nested for Loop

for (int i = 1; i <= 3; i++) {
for (int j = 0; j < 2*i + 1; j++) {

System.out.print("*");
}
System.out.println();

}

i i <= 3 j j < 2*i + 1 output

Programming in Java David G. Sullivan, Ph.D. 66

Case Study: Drawing a Complex Figure

• Here's the figure:

()
(())

((()))
(((())))
========
|::::::|
|::::|
|::|
|::|
|::|
|::|
+==+

• To begin with, we'll focus on creating this exact figure.

• Then we'll modify our code so that the size of the figure
can easily be changed.

• we'll use for loops to allow for this

Problem Decomposition

• We begin by breaking the problem into subproblems,
looking for groups of lines that follow the same pattern:

()
(())

((()))
(((())))

========

|::::::|
|::::|

|::|
|::|
|::|
|::|

+--+

 rim of torch

 handle of torch

 flame

 top of torch

 bottom of torch

Programming in Java David G. Sullivan, Ph.D. 67

Problem Decomposition (cont.)

• This gives us the following initial pseudocode:

()
(())

((()))
(((())))

========

|::::::|
|::::|

|::|
|::|
|::|
|::|

+--+

draw the flame
draw the rim of the torch
draw the top of the torch
draw the handle of the torch
draw the bottom of the torch

• This is a high-level description
of what needs to be done.

• We'll gradually expand the pseudocode
into more and more detailed instructions –
until we're able to implement them in Java.

Drawing the Flame

• Let's begin by refining our specification
for drawing the flame.

• Here's our initial pseudocode for this task:

for (each of 4 lines) {
print some spaces (possibly 0)
print some left parentheses
print some right parentheses
go to a new line

}

• We need formulas for how many spaces and parens should
be printed on a given line.

1 ()
2 (())
3 ((()))
4(((())))

Programming in Java David G. Sullivan, Ph.D. 68

Finding the Formulas

• To begin with, we:

• number the lines in the flame

• form a table of the number of spaces
and parentheses on each line:

line spaces parens (each type)
1 3 1
2 2 2
3 1 3
4 0 4

• Then we find the formulas.

• assume the formulas are linear functions of the line number:
c1*line + c2

where c1 and c2 are constants

• parens = ?
• spaces = ?

1 ()
2 (())
3 ((()))
4(((())))

Refining the Pseudocode

• Given these formulas, we can refine our pseudocode:

for (each of 4 lines) {
print some spaces (possibly 0)
print some left parentheses
print some right parentheses
go to a new line

}

for (line going from 1 to 4) {
print 4 – line spaces
print line left parentheses
print line right parentheses
go to a new line

}

Programming in Java David G. Sullivan, Ph.D. 69

Implementing the Pseudocode in Java

• We use nested for loops:

for (line going from 1 to 4) {
print 4 – line spaces
print line left parentheses
print line right parentheses
go to a new line

}

for (int line = 1; line <= 4; line++) {
for (int i = 0; i < 4 - line; i++) {

System.out.print(" ");
}
for (int i = 0; i < line; i++) {

System.out.print("(");
}
for (int i = 0; i < line; i++) {

System.out.print(")");
}
System.out.println();

}

A Method for Drawing the Flame

• We put the code in its own static method, and add some
explanatory comments:

public static void drawFlame() {
for (int line = 1; line <= 4; line++) {

// spaces to the left of the current line
for (int i = 0; i < 4 - line; i++) {

System.out.print(" ");
}

// left and right parens on the current line
for (int i = 0; i < line; i++) {

System.out.print("(");
}
for (int i = 0; i < line; i++) {

System.out.print(")");
}

System.out.println();
}

}

Programming in Java David G. Sullivan, Ph.D. 70

Drawing the Top of the Torch

• What's the initial pseudocode for this task?

for (each of 2 lines) {

}

• Here's a table for the number of spaces and number of colons:
line spaces colons
1 0 6
2 1 4

• spaces = ?

• colons decreases by 2 as line increases by 1
 colons = -2*line + c2 for some number c2

• try different values, and eventually get: colons = ?

1|::::::|
2 |::::|

Refining the Pseudocode

• Once again, we use the formulas to refine our pseudocode:

for (each of 2 lines) {
print some spaces (possibly 0)
print a single vertical bar
print some colons
print a single vertical bar
go to a new line

}

for (line going from 1 to 2) {
print line - 1 spaces
print a single vertical bar
print -2*line + 8 colons
print a single vertical bar
go to a new line

}

Programming in Java David G. Sullivan, Ph.D. 71

A Method for Drawing the Top of the Torch

public static void drawTop() {
for (int line = 1; line <= 2; line++) {

// spaces to the left of the current line
for (int i = 0; i < line - 1; i++) {

System.out.print(" ");
}

// bars and colons on the current line
System.out.print("|");
for (int i = 0; i < –2*line + 8; i++) {

System.out.print(":");
}
System.out.print("|");

System.out.println();
}

}

Drawing the Rim

• This always has only one line,
so we don't need nested loops.

• However, we still need a single loop,
because we want to be able to scale
the size of the figure.

• What should the code look like?

for (; ;) {

}

• This code also goes in its own method, called drawRim()

========

Programming in Java David G. Sullivan, Ph.D. 72

Incremental Development

• We take similar steps to implement methods for the
remaining subtasks.

• After completing a given method, we test and debug it.

• The main method just calls the methods for the subtasks:

public static void main(String[] args) {
drawFlame();
drawRim();
drawTop();
drawHandle();
drawBottom();

}

• See the example program DrawTorch.java

Using Class Constants

• To make the torch larger or smaller, we'd need to make
many changes.

• the size of the figure is hard-coded into most methods

• To make the program more flexible, we can store info. about
the figure's dimensions in one or more class constants.

• like variables, but their values are fixed

• can be used throughout the program

Programming in Java David G. Sullivan, Ph.D. 73

Using Class Constants (cont.)

• We only need one constant for the torch.

• for the default size, it equals 2

• its connection to some of the dimensions
is shown at right

• We declare it at the very start of the class:
public class DrawTorch2 {

public static final int SCALE_FACTOR = 2;
...

• General syntax:

public static final type name = expression;

• conventions:

• capitalize all letters in the name
• put an underscore ('_') between multiple words

()
(())

((()))
(((())))
========

|::::::|
|::::|

2*22*2

4*2

2*2

2

Scaling the Figure

• Here are some other versions of the figure:

() ()
(()) (())

((())) ====
(((()))) |::|

((((())))) ||
(((((()))))) ||
============ ++
|::::::::::|
|::::::::|
|::::::|
|::::|
|::::|
|::::|
|::::|
|::::|
|::::|
+====+

SCALE_FACTOR = 3

SCALE_FACTOR = 1

Programming in Java David G. Sullivan, Ph.D. 74

Revised Method for Drawing the Flame

• We replace the two 4s with 2*SCALE_FACTOR:

public static void drawFlame() {
for (int line = 1; line <= 2*SCALE_FACTOR; line++) {

// spaces to the left of the flame
for (int i = 0; i < 2*SCALE_FACTOR - line; i++) {

System.out.print(" ");
}

// the flame itself, both left and right halves
for (int i = 0; i < line; i++) {

System.out.print("(");
}
for (int i = 0; i < line; i++) {

System.out.print(")");
}

System.out.println();
}

}

()
(())

((()))
(((())))

2*22*2

2*2

Making the Rim Scaleable
• How does the width of the rim depend on SCALE_FACTOR?

() () ()
(()) (()) (())

((())) ((())) ====
(((()))) (((())))

((((())))) ========
(((((())))))
============

• Use a table!

SCALE_FACTOR width of rim
1 4
2 8
3 12

width of rim = ?

Programming in Java David G. Sullivan, Ph.D. 75

Revised Method for Drawing the Rim

• Original version (for the default size):

public static void drawRim() {
for (int i = 0; i < 8; i++) {

System.out.print("=");
}
System.out.println();

}

• Scaleable version:

public static void drawRim() {
for (int i = 0; i < 4*SCALE_FACTOR; i++) {

System.out.print("=");
}
System.out.println();

}

Making the Top of the Torch Scaleable

• For SCALE_FACTOR = 2, we got:

number of lines = 2
spaces = line – 1
colons = -2 * line + 8

• What about SCALE_FACTOR = 3?

line spaces colons

1 0 10
2 1 8
3 2 6

number of lines = 3
spaces = ?
colons = ?

• in general, number of lines = ?

1|::::::|
2 |::::|

1|::::::::::|
2 |::::::::|
3 |::::::|

Programming in Java David G. Sullivan, Ph.D. 76

Making the Top of the Torch Scaleable (cont.)

• Compare the two sets of formulas:

SCALE_FACTOR = 2 SCALE_FACTOR = 3
spaces = line – 1 spaces = line – 1
colons = -2 * line + 8 colons = -2 * line + 12

• There's no change in:

• the formula for spaces

• the first constant in the formula for colons

• Use a table for the second constant:

SCALE_FACTOR constant
2 8
3 12

constant = ?

• Scaleable formulas: spaces = line – 1
colons = ?

Revised Method for Drawing the Top of the Torch

public static void drawTop() {
for (int line = 1; line <= SCALE_FACTOR; line++) {

// spaces to the left of the current line
for (int i = 0; i < line - 1; i++) {

System.out.print(" ");
}

// bars and colons on the current line
System.out.print("|");
for (int i = 0; i < -2*line + 4*SCALE_FACTOR; i++) {

System.out.print(":");
}
System.out.print("|");

System.out.println();
}

}

Programming in Java David G. Sullivan, Ph.D. 77

Practice: The Torch Handle

• Pseudocode for default size:

• Java code for default size:
public static void drawHandle() {

}

()
(())

((()))
(((())))
========
|::::::|
|::::|

1 |::|
2 |::|
3 |::|
4 |::|

+==+

Practice: Making the Handle Scaleable

• We again compare two different sizes.

• SCALE_FACTOR # lines spaces colons
2 4 2 2
3 6 3 4

• number of lines = ?
spaces = ?
colons = ?

|::::::|
|::::|

1 |::|
2 |::|
3 |::|
4 |::|

|::::::::::|
|::::::::|
|::::::|

1 |::::|
2 |::::|
3 |::::|
4 |::::|
5 |::::|
6 |::::|

Programming in Java David G. Sullivan, Ph.D. 78

Revised Method for Drawing the Handle

• What changes do we need to make?

public static void drawHandle() {
for (int line = 1; line <= 4; line++) {

for (int i = 0; i < 2; i++) {
System.out.print(" ");

}
System.out.print("|");
for (int i = 0; i < 2; i++) {

System.out.print(":");
}
System.out.println("|");

}
}

Extra Practice: Printing a Pattern, version 3

• Print a triangular pattern with lines containing n, n – 1, …, 1
asterisks.

• example:
Enter a positive integer: 3

**
*

• How would we use a nested loop to do this?

for () {

for () {
System.out.print("*");

}
System.out.println();

}

Programming in Java David G. Sullivan, Ph.D. 79

Methods with Parameters
and Return Values

Boston University

David G. Sullivan, Ph.D.

Review: Static Methods
• We've seen how we can use static methods to:

1. capture the structure of a program – breaking a task
into subtasks

2. eliminate code duplication

• Thus far, our methods have been limited in their ability
to accomplish these tasks.

Programming in Java David G. Sullivan, Ph.D. 80

A Limitation of Simple Static Methods
• For example, in our DrawTorch program, there are several
for loops that each print a series of spaces, such as:

for (int i = 0; i < 4 - line; i++) {
System.out.print(" ");

}

for (int i = 0; i < line - 1; i++) {
System.out.print(" ");

}

• However, despite the fact that all of these loops print spaces,
we can't replace them with a method that looks like this:

public static void printSpaces() {
…

Why not?

Parameters
• In order for a method that prints spaces to be useful,

we need one that can print an arbitrary number of spaces.

• Such a method would allow us to write commands like these:

printSpaces(5);

printSpaces(4 - line);

where the number of spaces to be printed is specified
between the parentheses.

• To do so, we write a method that has a parameter:

public static void printSpaces(int numSpaces) {
for (int i = 0; i < numSpaces; i++) {

System.out.print(" ");
}

}

Programming in Java David G. Sullivan, Ph.D. 81

Parameters (cont.)

• A parameter is a special type of variable that allows us
to pass information into a method.

• Consider again this method:
public static void printSpaces(int numSpaces) {

for (int i = 0; i < numSpaces; i++) {
System.out.print(" ");

}
}

• When we execute a method call like

printSpaces(10);

the expression specified between the parentheses:

• is evaluated

• is assigned to the parameter

• can thereby be used by the code inside the method

Parameters (cont.)

public static void printSpaces(int numSpaces) {
for (int i = 0; i < numSpaces; i++) {

System.out.print(" ");
}

}

• Here's an example with a more
complicated expression:

int line = 2;
printSpaces(4 - line);

4 - 2
2

Programming in Java David G. Sullivan, Ph.D. 82

A Note on Terminology
• The term parameter is used for both:

• the variable specified in the method header

• known as a formal parameter

• the value that you specify when you make the method call

• known as an actual parameter

• also known as an argument

public static void printSpaces(int numSpaces) {
for (int i = 0; i < numSpaces; i++) {

System.out.print(" ");
}

}

printSpaces(10);

actual parameter / argument

formal parameter

Parameters and Generalization
• Parameters allow us to generalize a task.

• They allow us to write one method that can perform
a family of related tasks – instead of writing a separate
method for each separate task.

print5Spaces()

print10Spaces()

print20Spaces()

print100Spaces()

…

printSpaces(parameter)

Programming in Java David G. Sullivan, Ph.D. 83

Representing Individual Characters

• So far we've learned about two data types:

• int

• double

• The char type is used to represent individual characters.

• To specify a char literal, we surround the character
by single quotes:

• examples: 'a' 'Z' '0' '7' '?' '\\'

• can only represent single characters

• don’t use double-quotes!

"a" is a string, not a character

Methods with Multiple Parameters

• Here's a method with more than one parameter:

public static void printChars(char ch, int num) {
for (int i = 0; i < num; i++) {

System.out.print(ch);
}

}

• Example of calling this method:

printChars(' ', 10);

• Notes:

• the parameters (both formal and actual) are separated
by commas

• each formal parameter must be preceded by its type

• the actual parameters are evaluated and assigned to
the corresponding formal parameters

Programming in Java David G. Sullivan, Ph.D. 84

Example of Using a Method with Parameters
public static void drawFlame() {

for (int line = 1; line <= 4; line++) {
for (int i = 0; i < 4 - line; i++) {

System.out.print(" ");
}
for (int i = 0; i < line; i++) {

System.out.print("(");
}
for (int i = 0; i < line; i++) {

System.out.print(")");
}
System.out.println();

}
}

public static void drawFlame() {
for (int line = 1; line <= 4; line++) {

printChars(' ', 4 - line);
printChars('(', line);
printChars(')', line);
System.out.println();

}
}

replace nested loops with method calls

Recall: Variable Scope

• The scope of a variable is the portion of a program
in which the variable can be used.

• By default, the scope of a variable in Java:

• begins at the point at which it is declared

• ends at the end of the innermost block
that encloses the declaration

public static void printResults(int a, int b) {
System.out.println("Here are the stats:");

int sum = a + b;
System.out.print("sum = ");
System.out.println(sum);

double avg = (a + b) / 2.0;
System.out.print("average = ");
System.out.println(avg);

}

scope of
avg

scope of sum

Programming in Java David G. Sullivan, Ph.D. 85

• What about the parameters of a method?

• they do not follow the default scope rules!

• their scope is limited to their method

Special Case: Parameters and Variable Scope

public class MyClass {
public static void printResults(int a, int b) {

System.out.println("Here are the stats:");

int sum = a + b;
System.out.print("sum = ");
System.out.println(sum);

double avg = (a + b) / 2.0;
System.out.print("average = ");
System.out.println(avg);

}

static int c = a + b; // does not compile!
}

scope
of

a and b

Practice with Scope
public static void drawRectangle(int height) {

for (int i = 0; i < height; i++) {

// which variables could be used here?
int width = height * 2;
for (int j = 0; j < width; j++) {

System.out.print("*");

// what about here?
}

// what about here?
System.out.println();

}
// what about here?

}

public static void repeatMessage(int numTimes) {

// what about here?
for (int i = 0; i < numTimes; i++) {

System.out.println("What is your scope?");
}

}

Programming in Java David G. Sullivan, Ph.D. 86

Practice with Parameters
public static void printValues(int a, int b) {

System.out.println(a + " " + b);
b = 2 * a;
System.out.println("b" + b);

}

public static void main(String[] args) {
int a = 2;
int b = 3;
printValues(b, a);
printValues(7, b * 3);
System.out.println(a + " " + b);

}

• What's the output?

A Limitation of Parameters

• Parameters allow us to pass values into a method.

• They don't allow us to get a value out of a method.

Programming in Java David G. Sullivan, Ph.D. 87

A Limitation of Parameters (cont.)

• Example: using a method to compute the opposite of a number

• This won't work:

public static void opposite(int number) {
number = number * -1;

}

public static void main(String[] args) {
// read in points from the user

opposite(points);
…

}

• the opposite method changes the value of number,
but number can't be used outside of that method

• the method doesn't change the value of points

Methods That Return a Value

• To compute the opposite of a number, we need a method
that's able to return a value.

• Such a method would allow us to write statements like this:

int penalty = opposite(points);

• The value returned by the method would replace
the method call in the original statement.

• Example:

int points = 10;
int penalty = opposite(points);

int penalty = -10; // after the method completes

Programming in Java David G. Sullivan, Ph.D. 88

Defining a Method that Returns a Value

• Here's a method that computes and returns the opposite
of a number:

public static int opposite(int number) {
return number * -1;

}

• In the header of the method, void is replaced by int,
which is the type of the returned value.

• The returned value is specified using a return statement.
Syntax:

return expression;

• expression is evaluated

• the resulting value replaces the method call in
the statement that called the method

Defining a Method that Returns a Value (cont.)

• The complete syntax for the header of a static method is:

public static returnType name(type1 param1, type2 param2, …)

• Note: a method call is a type of expression!

• it evaluates to its return value

int opp = opposite(10);

int opp = -10;

• In our earlier methods, the return type was always void:

public static void printSpaces(int numSpaces) {
...

This is a special return type that indicates that no value
is returned.

Programming in Java David G. Sullivan, Ph.D. 89

Flow of Control with Methods That Return a Value

• The flow of control jumps to a method until it returns.

• The flow jumps back, and the returned value replaces the call.

• Example:

int num = 10;
int opp = opposite(num);
System.out.println(opp);

int num = 10;

int opp = opposite(num);

System.out.println(opp);

method instruction 1

method instruction 2
.
.
.

return statement

after the method returns

Flow of Control with Methods That Return a Value

• The flow of control jumps to a method until it returns.

• The flow jumps back, and the returned value replaces the call.

• Example:

int num = 10;
int opp = opposite(num);
System.out.println(opp);

int opp = -10;

method instruction 1

method instruction 2
.
.
.

return statementSystem.out.println(opp);

after the method returns

int num = 10;

Programming in Java David G. Sullivan, Ph.D. 90

Returning vs. Printing

• Instead of returning a value, we could write a method
that prints the value:

public static void printOpposite(int number) {
System.out.println(number * -1);

}

• However, a method that returns a value is typically
more useful.

• With such a method, you can still print the value by printing
what the method returns:

System.out.println(opposite(num));

• the return value replaces the method call and is printed

• In addition, you can do other things besides printing:

int penalty = opposite(num);

Practice: Computing the Volume of a Cone

• volume of a cone = base * height
3

• Let's write a method named coneVol for computing it.

• parameters and their types?

• return type?

• method definition:

public static ________ coneVol(___________________________) {

}

Programming in Java David G. Sullivan, Ph.D. 91

The Math Class

• Java's built-in Math class contains static methods for
mathematical operations.

• These methods return the result of applying the operation
to the parameters.

• Examples:

round(double value) – returns the result of rounding
value to the nearest integer

abs(double value) – returns the absolute value of value

pow(double base, double expon) – returns the result
of raising base to the expon power

sqrt(double value) – returns the square root of value

• For other examples, use the Java API on the Resources page.

The Math Class (cont.)

• To use a static method defined in another class,
we need to use the name of the class when we call it.

• We use what's known as dot notation.

• Syntax:

ClassName.methodName(param1, param2, …)

• Example:

double maxVal = Math.pow(2, numBits - 1) – 1;

class
name

method
name

actual
parameters

Programming in Java David G. Sullivan, Ph.D. 92

*** Common Mistake ***

• Consider this alternative opposite method:

public static int opposite(int number) {
number = number * -1;
return number;

}

• What's wrong with the following code that uses it?

public class OppositeFinder {
public static void main(String[] args) {

int number = 10;
opposite(number);
System.out.print("opposite = ");
System.out.println(number);

}

Keeping Track of Variables

• Consider again the alternative opposite method:

public static int opposite(int number) {
number = number * -1;
return number;

}

• Here's some code that uses it correctly:

public class OppositeFinder {
public static void main(String[] args) {

int number = 10;
int otherNumber = opposite(number);
...

}

• There are two different variables named number.
How does the runtime system distinguish between them?

• More generally, how does it keep track of variables?

Programming in Java David G. Sullivan, Ph.D. 93

Keeping Track of Variables (cont.)

• When you make a method call, the Java runtime sets aside
a block of memory known as the frame of that method call.

• The frame is used to store:

• the formal parameters of the method

• any local variables – variables declared within the method

• A given frame can only be accessed by statements that are
part of the corresponding method call.

note: we're ignoring main's parameter for nownumber otherNumber

main

• When a method (method1) calls another method (method2),
the frame of method1 is set aside temporarily.

• method1's frame is "covered up" by the frame of method2

• example: after main calls opposite, we get:

main

maxOfThree

a b c max

• When the runtime system encounters a variable, it uses
the one from the current frame (the one on top).

• When a method returns, its frame is removed, which
"uncovers" the frame of the method that called it.

Keeping Track of Variables (cont.)

number otherNumber

number

main

opposite

Programming in Java David G. Sullivan, Ph.D. 94

Example: Tracing Through a Program

public class OppositeFinder {
public static void main(String[] args) {

int number = 10;
int otherNumber = opposite(number);
System.out.print("opposite = ");
System.out.println(otherNumber);

}

public static int opposite(int number) {
number = number * -1;
return number;

}
}

number otherNumber

main
• A frame is created

for the main method.

Example: Tracing Through a Program

public class OppositeFinder {
public static void main(String[] args) {

int number = 10;
int otherNumber = opposite(number);
System.out.print("opposite = ");
System.out.println(otherNumber);

}

public static int opposite(int number) {
number = number * -1;
return number;

}
}

10

number otherNumber

main

Programming in Java David G. Sullivan, Ph.D. 95

Example: Tracing Through a Program

public class OppositeFinder {
public static void main(String[] args) {

int number = 10;
int otherNumber = opposite(number);
System.out.print("opposite = ");
System.out.println(otherNumber);

}

public static int opposite(int number) {
number = number * -1;
return number;

}
}

10

number otherNumber

main

Example: Tracing Through a Program

public class OppositeFinder {
public static void main(String[] args) {

int number = 10;
int otherNumber = opposite(10);
System.out.print("opposite = ");
System.out.println(otherNumber);

}

public static int opposite(int number) {
number = number * -1;
return number;

}
}

number otherNumber

number

main

opposite • A frame is created
for the opposite method,
and that frame "covers
up" the frame for main.

Programming in Java David G. Sullivan, Ph.D. 96

Example: Tracing Through a Program

public class OppositeFinder {
public static void main(String[] args) {

int number = 10;
int otherNumber = opposite(10);
System.out.print("opposite = ");
System.out.println(otherNumber);

}

public static int opposite(int number) {
number = number * -1;
return number;

}
}

number otherNumber

number

10

main

opposite • The actual parameter
is passed in and is
assigned to the formal
parameter.

Example: Tracing Through a Program

public class OppositeFinder {
public static void main(String[] args) {

int number = 10;
int otherNumber = opposite(10);
System.out.print("opposite = ");
System.out.println(otherNumber);

}

public static int opposite(int number) {
number = number * -1;
return number;

}
}

number otherNumber

number

10

main

opposite

Programming in Java David G. Sullivan, Ph.D. 97

Example: Tracing Through a Program

public class OppositeFinder {
public static void main(String[] args) {

int number = 10;
int otherNumber = opposite(10);
System.out.print("opposite = ");
System.out.println(otherNumber);

}

public static int opposite(int number) {
number = -10;
return number;

}
}

number otherNumber

number

-10

main

opposite

Example: Tracing Through a Program

public class OppositeFinder {
public static void main(String[] args) {

int number = 10;
int otherNumber = opposite(10);
System.out.print("opposite = ");
System.out.println(otherNumber);

}

public static int opposite(int number) {
number = -10;
return -10;

}
}

10

number otherNumber

main
• opposite returns,

which removes its frame.

• The variable number
in main's frame hasn't
been changed!

Programming in Java David G. Sullivan, Ph.D. 98

Example: Tracing Through a Program

public class OppositeFinder {
public static void main(String[] args) {

int number = 10;
int otherNumber = opposite(10);
System.out.print("opposite = ");
System.out.println(otherNumber);

}

public static int opposite(int number) {
number = -10;
return -10;

}
}

10

number otherNumber

main
• The returned value

replaces the
method call.

Example: Tracing Through a Program

public class OppositeFinder {
public static void main(String[] args) {

int number = 10;
int otherNumber = -10;
System.out.print("opposite = ");
System.out.println(otherNumber);

}

public static int opposite(int number) {
number = -10;
return -10;

}
}

10 -10

number otherNumber

main

Programming in Java David G. Sullivan, Ph.D. 99

Example: Tracing Through a Program

public class OppositeFinder {
public static void main(String[] args) {

int number = 10;
int otherNumber = -10;
System.out.print("opposite = ");
System.out.println(otherNumber);

}

public static int opposite(int number) {
number = -10;
return -10;

}
}

10 -10

number otherNumber

main

Example: Tracing Through a Program

public class OppositeFinder {
public static void main(String[] args) {

int number = 10;
int otherNumber = -10;
System.out.print("opposite = ");
System.out.println(-10);

}

public static int opposite(int number) {
number = -10;
return -10;

}
}

• main returns, which
removes its frame.

Programming in Java David G. Sullivan, Ph.D. 100

Practice

• What is the output of the following program?

public class MethodPractice {
public static int triple(int x) {

x = x * 3;
return x;

}

public static void main(String[] args) {
int y = 2;
y = triple(y);
System.out.println(y);
triple(y);
System.out.println(y);

}
}

More Practice

public class Mystery {
public static int foo(int x, int y) {

y = y + 1;
x = x + y;
System.out.println(x + " " + y);
return x;

}

public static void main(String[] args) {
int x = 2;
int y = 0;

y = foo(y, x);
System.out.println(x + " " + y);

foo(x, x);
System.out.println(x + " " + y);

System.out.println(foo(x, y));
System.out.println(x + " " + y);

}
}

foo
x | y

main
x | y

output

Programming in Java David G. Sullivan, Ph.D. 101

From Unstructured to Structured
public class TwoTriangles {

public static void main(String[] args) {
char ch = '*'; // character used in printing
int smallBase = 5; // base length of smaller triangle

// Print the small triangle.
for (int line = 1; line <= smallBase; line++) {

for (int i = 0; i < line; i++) {
System.out.print(ch);

}
System.out.println();

}

// Print the large triangle.
for (int line = 1; line <= 2 * smallBase; line++) {

for (int i = 0; i < line; i++) {
System.out.print(ch);

}
System.out.println();

}
}

}

From Unstructured to Structured (cont.)

public class TwoTriangles {
public static void main(String[] args) {

char ch = '*'; // character used in printing
int smallBase = 5; // base length of smaller triangle

// Print the small triangle.

printTriangle(_________________________________);

// Print the large triangle.

printTriangle(_________________________________);
}

public static void printTriangle(_______________________) {

}
}

Programming in Java David G. Sullivan, Ph.D. 102

Using Objects from Existing Classes

Boston University

David G. Sullivan, Ph.D.

Combining Data and Operations

• The data types that we've seen thus far are referred to as
primitive data types.
• int, double, char

• several others

• Java allows us to use another kind of data known as an object.

• An object groups together:

• one or more data values (the object's fields)

• a set of operations (the object's methods)

• Objects in a program are often used to model
real-world objects.

Programming in Java David G. Sullivan, Ph.D. 103

Combining Data and Operations (cont.)

• Example: an Address object

• possible fields: street, city, state, zip

• possible operations: get the city, change the city,
check if two addresses are equal

• Here are two ways to visualize an Address object:

street "111 Cummington St."

city "Boston"

state "MA"

zip "02215"

street "111 Cummington St."

city "Boston"

state "MA"

zip "02215"

getCity()
changeCity()
…

fields

methods

Classes as Blueprints

• We've been using classes as containers for our programs.

• A class can also serve as a blueprint – as the definition of a
new type of object.

• The objects of a given class are built according to its blueprint.

• Another analogy:

• class = cookie cutter
objects = cookies

• The objects of a class are also referred to as instances
of the class.

Programming in Java David G. Sullivan, Ph.D. 104

Class vs. Object

• The Address class is a blueprint:

• Address objects are built according to that blueprint:

public class Address {
// definitions of the fields
...

// definitions of the methods
...

}

"111 Cummington St."street "111 Cummington St."street

"Boston"city "Boston"city

"MA"state "MA"state

"02215"zip "02215"zip

"240 West 44th Street"street "240 West 44th Street"street

"New York"city "New York"city

"NY"state "NY"state

"10036"zip "10036"zip

"1600 Pennsylvania Ave."street "1600 Pennsylvania Ave."street

"Washington"city "Washington"city

"DC"state "DC"state

"20500"zip "20500"zip

Using Objects from Existing Classes

• Later in the course, you'll learn how to create your own
classes that act as blueprints for objects.

• For now, we'll focus on learning how to use objects from
existing classes.

Programming in Java David G. Sullivan, Ph.D. 105

String Objects

• In Java, a string (like "Hello, world!") is actually
represented using an object.

• data values: the characters in the string

• operations: get the length of the string, get a substring, etc.

• The String class defines this type of object:

• Individual String objects are instances of the String class:

public class String {
// definitions of the fields
...

// definitions of the methods
...

}

Perry Hello object

Variables for Objects

• When we use a variable to represent an object,
the type of the variable is the name of the object's class.

• Here's a declaration of a variable for a String object:

String name;

• we capitalize String, because it's a class name

type
(the class name)

variable name

Programming in Java David G. Sullivan, Ph.D. 106

Creating String Objects

• One way to create a String object is to specify a string literal:

String name = "Perry Sullivan";

• We create a new String from existing Strings when we
use the + operator to perform concatenation:

String firstName = "Perry";
String lastName = "Sullivan";
String fullName = firstName + " " + lastName;

• Recall that we can concatenate a String with other types
of values:

String msg = "Perry is " + 6;

// msg now represents "Perry is 6"

Using an Object's Methods

• An object's methods are different from the static methods
that we've seen thus far.

• they're called non-static or instance methods

• An object's methods belong to the object.
They specify the operations that the object can perform.

• To use a non-static method, we have to specify the object
to which the method belongs.

• use dot notation, preceding the method name
with the object's variable:

String firstName = "Perry";
int len = firstName.length();

• Using an object's method is like sending a message
to the object, asking it to perform that operation.

Programming in Java David G. Sullivan, Ph.D. 107

The API of a Class

• The methods defined within a class are known as the API
of that class.

• API = application programming interface

• We can consult the API of an existing class to determine
which operations are supported.

• The API of all classes that come with Java is available here:
https://docs.oracle.com/javase/8/docs/api/

• there's a link on the resources page of the course website

Consulting the Java API

select
the
package
name
(optional)

String

is in
java.lang

Programming in Java David G. Sullivan, Ph.D. 108

Consulting the Java API

select
the
class
name

Consulting the Java API (cont.)

• Scroll down to see a summary of the available methods:

Programming in Java David G. Sullivan, Ph.D. 109

Consulting the Java API (cont.)

• Clicking on a method name gives you more information:

• From the header, we can determine:

• the return type: int

• the parameters we need to supply:
the empty () indicates that length has no parameters

behavior

method header

Numbering the Characters in a String

• The characters are numbered from left to right, starting from 0.

0 1 2 3 4

Perry

• The position of a character in a string is known as its index.

• 'P' has an index of 0 in "Perry"

• 'y' has an index of 4

Programming in Java David G. Sullivan, Ph.D. 110

substring Method

String substring(int beginIndex, int endIndex)

• return type: ?

• parameters: ?

• behavior: returns the substring that:

• begins at beginIndex

• ends at endIndex – 1

substring Method (cont.)

• To extract a substring of length N, you can just figure out
beginIndex and do:

substring(beginIndex, beginIndex + N)

• example: consider again this string:

String name = "Perry Sullivan";

To extract a substring containing the first 5 characters,
we can do this:

String first = name.substring(0, 5);

Programming in Java David G. Sullivan, Ph.D. 111

Review: Calling a Method

• Consider this code fragment:

String name = "Perry Sullivan";
int start = 6;
String last = name.substring(start, start + 8);

• Steps for executing the method call:

1. the actual parameters are evaluated to give:
String last = name.substring(6, 14);

2. a frame is created for the method, and the
actual parameters are assigned to the formal parameters

3. flow of control jumps to the method, which creates and
returns the substring "Sullivan"

4. flow of control jumps back, and the returned value
replaces the method call:
String last = "Sullivan";

String s = "Strings have methods inside them!";
int len = s.length();
__________________ // get the last character in s

How should we fill in the blank?

Programming in Java David G. Sullivan, Ph.D. 112

charAt Method

• The charAt() method that we use for indexing returns a
char, not a String.

• We have to be careful when we use its return value!

• example: what does this print?
String name = "Perry Sullivan";
System.out.println(name.charAt(0) +

name.charAt(6));

charAt Method

• Here's how we can fix this:
String name = "Perry Sullivan";
System.out.println(name.charAt(0) + "" +
name.charAt(6));

System.out.println('P' + "" +
'S');

System.out.println("PS");

Programming in Java David G. Sullivan, Ph.D. 113

Another String Method

String toUpperCase()

returns a new String in which all of the letters in the
original String are converted to upper-case letters

• Example:

String warning = "Start the problem set ASAP!";
System.out.println(warning.toUpperCase());

System.out.println("START THE PROBLEM SET ASAP!");

• toUpperCase() creates and returns a new String.
It does not change the original String.

• In fact, it's never possible to change an existing String object.

• We say that Strings are immutable objects.

indexOf Method

int indexOf(char ch)

• return type: int

• parameter list: (char ch)

• returns:

• the index of the first occurrence of ch in the string

• -1 if the ch does not appear in the string

• examples:
String name = "Perry Sullivan";
System.out.println(name.indexOf('r'));
System.out.println(name.indexOf('X'));

Programming in Java David G. Sullivan, Ph.D. 114

The Signature of a Method

• The signature of a method consists of:

• its name

• the number and types of its parameters

public String substring(int beginIndex, int endIndex)

• A class cannot include two methods with the same signature.

the signature

Two Methods with the Same Name

• There are actually two String methods named substring:

String substring(int beginIndex, int endIndex)

String substring(int beginIndex)

• returns the substring that begins at beginIndex and
continues to the end of the string

• Do these two methods have the same signature?

• Giving two methods the same name is known as
method overloading.

• When you call an overloaded method, the compiler uses
the number and types of the actual parameters to figure out
which version to use.

Programming in Java David G. Sullivan, Ph.D. 115

Console Input Using a Scanner Object

• We’ve been printing text in the console window.

• You can also ask the user to enter a value in that window.

• known as console input

• To do so, we use a type of object known as a Scanner.

• recall PS 2

Packages

• Java groups related classes into packages.

• Many classes are part of the java.lang package.

• examples: String, Math

• we don't need to tell the compiler where to find
these classes

• If a class is in another package, we need to use an
import statement so that the compiler will be able to find it.

• put it before the definition of the class

• The Scanner class is in the java.util package, so we do this:

import java.util.*;

public class MyProgram {
...

Programming in Java David G. Sullivan, Ph.D. 116

• String objects are different from other objects, because
we're able to create them using literals.

• To create an object, we typically use a special method
known as a constructor.

• Syntax:

variable = new ClassName(parameters);
or

type variable = new ClassName(parameters);

• To create a Scanner object for console input:

Scanner console = new Scanner(System.in);

the parameter tells the constructor that we want the Scanner
to read from the standard input (i.e., the keyboard)

Creating an Object

Scanner Methods: A Partial List

• String next()

• read in a single "word" and return it

• int nextInt()

• read in an integer and return it

• double nextDouble()

• read in a floating-point value and return it

• String nextLine()

• read in a "line" of input (could be multiple words)
and return it

Programming in Java David G. Sullivan, Ph.D. 117

Example of Using a Scanner Object

• To read an integer from the user:

Scanner console = new Scanner(System.in);
int numGrades = console.nextInt();

• The second line causes the program to pause until the user
types in an integer followed by the [ENTER] key.

• If the user only hits [ENTER], it will continue to pause.

• If the user enters an integer, it is returned and assigned
to numGrades.

• If the user enters a non-integer, an exception is thrown
and the program crashes.

Example Program: GradeCalculator

import java.util.*;

public class GradeCalculator {
public static void main(String[] args) {

Scanner console = new Scanner(System.in);

System.out.print("Points earned: ");
int points = console.nextInt();
System.out.print("Possible points: ");
int possiblePoints = console.nextInt();

double grade = points/(double)possiblePoints;
grade = grade * 100.0;

System.out.println("grade is " + grade);
}

}

Programming in Java David G. Sullivan, Ph.D. 118

Important Note About Console Input

• When writing an interactive program that involves user input
in methods other than main, you should:

• create a single Scanner object on the first line of the main

method

• pass that object into any other method that needs it

• This allows you to avoid creating multiple objects that all
do the same thing.

• It also facilitates our grading, because it allows us to provide
a series of inputs using a file instead of the keyboard.

Important Note About Console Input (cont.)

• Example:

public class MyProgram {
public static void main(String[] args) {

Scanner console = new Scanner(System.in);
String str1 = getString(console);
String str2 = getString(console);
System.out.println(str1 + " " + str2);

}

public static String getString(Scanner console) {
System.out.print("Enter a string: ");
String str = console.next();
return str;

}
}

Programming in Java David G. Sullivan, Ph.D. 119

What's Wrong with the Following?

import java.util.*;

public class LengthConverter {
public static void main(String[] args) {

Scanner console = new Scanner(System.in);
int cm = (int)(getInches(console) * 2.54);
System.out.println(getInches(console)
+ " inches = " + cm + " cm");

}

public static int getInches(Scanner console) {
System.out.print("Enter a length in inches: ");
int inches = console.nextInt();
return inches;

}
}

Exercise: Analyzing a Name: First Version

public class NameAnalyzer {
public static void main(String[] args) {

String name = "Perry Sullivan";
System.out.println("full name = " + name);

int length = name.length();
System.out.println("length = " + length);

String first = name.substring(0, 5);
System.out.println("first name = " + first);

String last = name.substring(6);
System.out.println("last name = " + last);

}
}

Programming in Java David G. Sullivan, Ph.D. 120

Making the Program More General

• Would the code work if we used a different name?

import java.util.*;

public class NameAnalyzer {
public static void main(String[] args) {

Scanner console = new Scanner(System.in);
String name = console.nextLine();
System.out.println("full name = " + name);

int length = name.length();
System.out.println("length = " + length);

String first = name.substring(0, 5);
System.out.println("first name = " + first);

String last = name.substring(6);
System.out.println("last name = " + last);

}
}

Breaking Up a Name

• Given a string of the form "firstName lastName", how can
we get the first and last names, without knowing how long it is?

• Pseudocode for what we need to do:

• What String methods can we use? Consult the API!

• Code:

Programming in Java David G. Sullivan, Ph.D. 121

Static Methods for Breaking Up a Name

• How could we rewrite our name analyzer to use
separate methods for extracting the first and last names?

public static _________ firstName(_______________) {

}

public static _________ lastName(_______________) {

}

Using the Static Methods

• Given the methods from the previous slide, what would the
main method now look like?

public static void main(String[] args) {
Scanner console = new Scanner(System.in);
String name = console.nextLine();
System.out.println("full name = " + name);

int length = name.length();
System.out.println("length = " + length);

}

Programming in Java David G. Sullivan, Ph.D. 122

Processing a String One Character at a Time

• Write a method for printing the name vertically, one char per line.

import java.util.*;

public class NameAnalyzer {
public static void main(String[] args) {

Scanner console = new Scanner(System.in);
String name = console.nextLine();
System.out.println("full name = " + name);
...
printVertical(name);

}

public static _____ printVertical(_______________){

for (int i = 0; i < _______________; i++) {

}
}

}

Scanner Objects and Tokens

• Most Scanner methods read one token at a time.

• Tokens are separated by whitespace (spaces, tabs, newlines).

• example: if the user enters the line

wow, I slept for 9 hours!\n

there are six tokens:

• wow,

• I

• slept

• for

• 9

• hours!

newline character,
which you get when
you hit [ENTER]

Programming in Java David G. Sullivan, Ph.D. 123

Scanner Objects and Tokens (cont.)

• Consider the following lines of code:

System.out.print("Enter the length and width: ");
int length = console.nextInt();
int width = console.nextInt();

• Because the nextInt() method reads one token at a time,
the user can either:

• enter the two numbers on the same line, separated by
one or more whitespace characters
Enter the length and width: 30 15

• enter the two numbers on different lines
Enter the length and width: 30
15

nextLine Method

• The nextLine() method does not just read a single token.

• Using nextLine can lead to unexpected behavior,
for reasons that we'll discuss later on.

• Avoid it for now!

Programming in Java David G. Sullivan, Ph.D. 124

Additional Terminology

• To avoid having too many new terms at once, I've limited
the terminology introduced in these notes.

• Here are some additional terms related to classes, objects,
and methods:

• invoking a method = calling a method

• method invocation = method call

• the called object = the object used to make a method call

• instantiate an object = create an object

• members of a class = the fields and methods of a class

Programming in Java David G. Sullivan, Ph.D. 125

Conditional Execution

Boston University

David G. Sullivan, Ph.D.

Review: Simple Conditional Execution in Java

if (condition) {

true block
} else {

false block
}

• If the condition is true:

• the statement(s) in the true block are executed

• the statement(s) in the false block (if any) are skipped

• If the condition is false:

• the statement(s) in the false block (if any) are executed

• the statement(s) in the true block are skipped

if (condition) {

true block
}

Programming in Java David G. Sullivan, Ph.D. 126

Example: Analyzing a Number

Scanner console = new Scanner(System.in);
System.out.print("Enter an integer: ");
int num = console.nextInt();

if (num % 2 == 0) {
System.out.println(num + " is even.");

} else {
System.out.println(num + " is odd.");

}

Flowchart for an if-else Statement

next statement

true false
condition

false blocktrue block

Programming in Java David G. Sullivan, Ph.D. 127

Common Mistake

• You should not put a semi-colon after an if-statement header:

if (num % 2 == 0); {
System.out.println(…);
...

}

• The semi-colon ends the if statement.

• thus, it has an empty true block

• The println and other statements are independent of
the if statement, and always execute.

Choosing at Most One of Several Options

• Consider this code:

if (num < 0) {
System.out.println("The number is negative.");

}
if (num > 0) {

System.out.println("The number is positive.");
}
if (num == 0) {

System.out.println("The number is zero.");
}

• All three conditions are evaluated, but at most one of them
can be true (in this case, exactly one).

Programming in Java David G. Sullivan, Ph.D. 128

Choosing at Most One of Several Options (cont.)

• We can do this instead:

if (num < 0) {
System.out.println("The number is negative.");

}
else if (num > 0) {

System.out.println("The number is positive.");
}
else if (num == 0) {

System.out.println("The number is zero.");
}

• If the first condition is true, it will skip the second and third.

• If the first condition is false, it will evaluate the second, and
if the second condition is true, it will skip the third.

• If the second condition is false, it will evaluate the third, etc.

Choosing at Most One of Several Options (cont.)

• We can also make things more compact as follows:

if (num < 0) {
System.out.println("The number is negative.");

} else if (num > 0) {

System.out.println("The number is positive.");
} else if (num == 0) {

System.out.println("The number is zero.");
}

• This emphasizes that the entire thing is one compound
statement.

Programming in Java David G. Sullivan, Ph.D. 129

if-else if Statements

• Syntax:

if (condition1) {

true block for condition1

} else if (condition2) {

true block for condition2
}

…

} else {

false block for all of the conditions
}

• The conditions are evaluated in order.
The true block of the first true condition is executed.
All of the remaining conditions and their blocks are skipped.

• If no condition is true, the false block (if any) is executed.

Flowchart for an if-else if Statement

false block

false

true
condition1 true block 1

false

true
condition2 true block 2

...

false

next statement

Programming in Java David G. Sullivan, Ph.D. 130

Choosing Exactly One Option

• Consider again this code fragment:

if (num < 0) {
System.out.println("The number is negative.");

} else if (num > 0) {

System.out.println("The number is positive.");
} else if (num == 0) {

System.out.println("The number is zero.");
}

• One of the conditions must be true, so we can omit the last one:

if (num < 0) {
System.out.println("The number is negative.");

} else if (num > 0) {

System.out.println("The number is positive.");
} else {

System.out.println("The number is zero.");
}

Types of Conditional Execution

• If it want to execute any number of several conditional blocks,
use sequential if statements:
if (num < 0) {

System.out.println("The number is negative.");
}
if (num % 2 == 0) {

System.out.println("The number is even.");
}

• If you want to execute at most one (i.e., 0 or 1) of several
blocks, use an if-else if statement ending in else if:
if (num < 0) {

System.out.println("The number is negative.");
} else if (num > 0) {

System.out.println("The number is positive.");
}

• If you want to execute exactly one of several blocks, use an
if-else if ending in just else (see bottom of last slide).

Programming in Java David G. Sullivan, Ph.D. 131

Find the Logic Error

Scanner console = new Scanner(System.in);

System.out.print("Enter the student's score: ");
int score = console.nextInt();

String grade;
if (score >= 90) {

grade = "A";
}
if (score >= 80) {

grade = "B";
}
if (score >= 70) {

grade = "C";
}
if (score >= 60) {

grade = "D";
}
if (score < 60) {

grade = "F";
}

Review: Variable Scope

• Recall: the scope of a variable is the portion of a program
in which the variable can be used.

• By default, the scope of a variable:

• begins at the point at which it is declared

• ends at the end of the innermost block that encloses the
declaration

• Because of these rules, a variable cannot be used outside
of the block in which it is declared.

Programming in Java David G. Sullivan, Ph.D. 132

Variable Scope and if-else statements

• The following program will produce compile-time errors:

public static void main(String[] args) {
Scanner console = new Scanner(System.in);
System.out.print("enter a positive int: ");
int num = console.nextInt();
if (num < 0) {

System.out.println("number is negative;"
+ " using its absolute value");

double sqrt = Math.sqrt(num * -1);
} else {

sqrt = Math.sqrt(num);
}
System.out.println("square root = " + sqrt);

}

• Why?

Variable Scope and if-else statements (cont.)

• To eliminate the errors, declare the variable outside of
the true block:

public static void main(String[] args) {
Scanner console = new Scanner(System.in);
System.out.print("enter a positive int: ");
int num = console.nextInt();
double sqrt;
if (num < 0) {

System.out.println("number is negative;"
+ " using its absolute value");

sqrt = Math.sqrt(num * -1);
} else {

sqrt = Math.sqrt(num);
}
System.out.println("square root = " + sqrt);

}

• What is the scope of sqrt now?

Programming in Java David G. Sullivan, Ph.D. 133

Review: Loop Patterns for n Repetitions
• Thus far, we've mainly used for loops to repeat something

a definite number of times.

• We've seen two different patterns for this:

• pattern 1:

for (int i = 0; i < n; i++) {

statements to repeat
}

• pattern 2:

for (int i = 1; i <= n; i++) {

statements to repeat
}

Another Loop Pattern: Cumulative Sum

• We can also use a for loop to add up a set of numbers.

• Basic pattern (using pseudocode):

sum = 0
for (all of the numbers that we want to sum) {

num = the next number
sum = sum + num

}

Programming in Java David G. Sullivan, Ph.D. 134

Example of Using a Cumulative Sum
public class GradeAverager {

public static void main(String[] args) {
Scanner console = new Scanner(System.in);
System.out.print("number of grades? ");
int numGrades = console.nextInt();

if (numGrades <= 0) {
System.out.println("nothing to average");

} else {
int sum = 0;
for (int i = 1; i <= numGrades; i++) {

System.out.print("grade #" + i + ": ");
int grade = console.nextInt();
sum = sum + grade;

}

System.out.println("The average is " +
(double)sum / numGrades);

}
}

}

• Note the use of an if-else statement to handle invalid
user inputs.

Tracing Through a Cumulative Sum

• Let's trace through this code.
int sum = 0;
for (int i = 1; i <= numGrades; i++) {

System.out.print("grade #" + i + ": ");
int grade = console.nextInt();
sum = sum + grade;

}

assuming that the user enters these grades: 80, 90, 84.

numGrades = 3

i i <= numGrades grade sum

Programming in Java David G. Sullivan, Ph.D. 135

Conditional Execution and Return Values

• With conditional execution, it's possible to write a method
with more than one return statement.

• example:
public static int min(int a, int b) {

if (a < b) {
return a;

} else {
return b;

}
}

• Only one of the return statements is executed.

• As soon as you reach a return statement, the method's
execution stops and the specified value is returned.

• the rest of the method is not executed

Conditional Execution and Return Values (cont.)

• Instead of writing the method this way:

public static int min(int a, int b) {
if (a < b) {

return a;
} else {

return b;
}

}

we could instead write it like this, without the else:

public static int min(int a, int b) {
if (a < b) {

return a;
}
return b;

}

• Why is this equivalent?

Programming in Java David G. Sullivan, Ph.D. 136

Conditional Execution and Return Values (cont.)

• Consider this method, which has a compile-time error:

public static int compare(int a, int b) {
if (a < b) {

return -1;
} else if (a > b) {

return 1;
} else if (a == b) {

return 0;
}

}

• Because all of the return statements are connected
to conditions, the compiler worries that no value
will be returned.

Conditional Execution and Return Values (cont.)

• Here's one way to fix it:

public static int compare(int a, int b) {
if (a < b) {

return -1;
} else if (a > b) {

return 1;
} else {

return 0;
}

}

Programming in Java David G. Sullivan, Ph.D. 137

Conditional Execution and Return Values (cont.)

• Here's another way:

public static int compare(int a, int b) {
if (a < b) {

return -1;
} else if (a > b) {

return 1;
}

return 0;
}

• Both fixes allow the compiler to know for certain that
a value will always be returned.

Returning From a void Method

public static void repeat(String msg, int n) {
if (n <= 0) { // special cases

return;
}

for (int i = 0; i < n; i++) {
System.out.println(msg);

}
}

• Note that this method has a return type of void.

• it doesn't return a value.

• However, it still has a return statement.

• used to break out of the method

• note that there's nothing between the return and the ;

Programming in Java David G. Sullivan, Ph.D. 138

Testing for Equivalent Primitive Values

• The == and != operators are used when comparing primitives.

• int, double, char, etc.

• Example:
Scanner console = new Scanner(System.in);

...
System.out.print("Do you have another (y/n)? ");
char choice = console.next().charAt(0);
if (choice == 'y') { // this works just fine

processItem();
} else if (choice == 'n') {

return;
} else {

System.out.println("invalid input");
}

Testing for Equivalent Objects

• The == and != operators do not typically work
when comparing objects. (We'll see why this is later.)

• Example:
Scanner console = new Scanner(System.in);
System.out.print("regular or diet? ");
String choice = console.next();
if (choice == "regular") { // doesn't work

processRegular();
} else {

...
}

• choice == "regular" compiles, but it evaluates to false,
even when the user does enter "regular"!

Programming in Java David G. Sullivan, Ph.D. 139

Testing for Equivalent Objects (cont.)

• We use a special method called the equals method
to test if two objects are equivalent.

• example:
Scanner console = new Scanner(System.in);
System.out.print("regular or diet? ");
String choice = console.next();
if (choice.equals("regular")) {

processRegular();
} else {

...
}

• choice.equals("regular") compares the string represented
by the variable choice with the string "regular"

• returns true when they are equivalent

• returns false when they are not

equalsIgnoreCase()

• We often want to compare two strings without paying attention
to the case of the letters.

• example: we want to treat as equivalent:
"regular"

"Regular"
"REGULAR"

etc.

• The String class has a method called equalsIgnoreCase that
can be used for this purpose:

if (choice.equalsIgnoreCase("regular")) {

...

}

Programming in Java David G. Sullivan, Ph.D. 140

Example Problem: Ticket Sales

• Different prices for balcony seats and orchestra seats

• Here are the rules:

• persons younger than 25 receive discounted prices:

• $20 for balcony seats

• $35 for orchestra seats

• everyone else pays the regular prices:

• $30 for balcony seats

• $50 for orchestra seats

• Assume only valid inputs.

Ticket Sales Program: main method

Scanner console = new Scanner(System.in);
System.out.print("Enter your age: ");
int age = console.nextInt();

if (age < 25) {
// handle people younger than 25
System.out.print("orchestra or balcony? ");
String choice = console.next();

int price;
if (choice.equalsIgnoreCase("orchestra")) {

price = 35;
} else {

price = 20;
}

System.out.println("The price is $" + price);
} else {

// handle people 25 and older
...

}

Programming in Java David G. Sullivan, Ph.D. 141

Ticket Sales Program: main method (cont.)

...

} else {
// handle people 25 and older
System.out.print("orchestra or balcony? ");
String choice = console.next();

int price;
if (choice.equalsIgnoreCase("orchestra")) {

price = 50;
} else {

price = 30;
}

System.out.println("The price is $" + price);
}

Where Is the Code Duplication?...

if (age < 25) {
System.out.print("orchestra or balcony? ");
String choice = console.next();

int price;
if (choice.equalsIgnoreCase("orchestra")) {

price = 35;
} else {

price = 20;
}

System.out.println("The price is $" + price);
} else {

System.out.print("orchestra or balcony? ");
String choice = console.next();

int price;
if (choice.equalsIgnoreCase("orchestra")) {

price = 50;
} else {

price = 30;
}

System.out.println("The price is $" + price);
}

Programming in Java David G. Sullivan, Ph.D. 142

Factoring Out Code Common to Multiple Cases

Scanner console = new Scanner(System.in);
System.out.print("Enter your age: ");
int age = console.nextInt();

System.out.print("orchestra or balcony? ");
String choice = console.next();

if (age < 25) {
int price;
if (choice.equalsIgnoreCase("orchestra")) {

price = 35;
} else {

price = 20;
}

} else {
int price;
if (choice.equalsIgnoreCase("orchestra")) {

price = 50;
} else {

price = 30;
}

}

System.out.println("The price is $" + price);

What Other Change Is Needed?

Scanner console = new Scanner(System.in);
System.out.print("Enter your age: ");
int age = console.nextInt();

System.out.print("orchestra or balcony? ");
String choice = console.next();

if (age < 25) {
int price;
if (choice.equalsIgnoreCase("orchestra")) {

price = 35;
} else {

price = 20;
}

} else {
int price;
if (choice.equalsIgnoreCase("orchestra")) {

price = 50;
} else {

price = 30;
}

}

System.out.println("The price is $" + price);

Programming in Java David G. Sullivan, Ph.D. 143

Now Let's Make It Structured

public static void main(String[] args) {
...

int age = console.nextInt();

System.out.print("orchestra or balcony? ");
String choice = console.next();
int price;

if (age < 25) {

__;
} else {

…
}

System.out.println("The price is $" + price);
}
public static ________ discountPrice(__________________) {

}

Expanded Ticket Sales Problem

• One additional case:

• persons younger than 13 cannot buy a ticket

• persons whose age is 13-24 receive discounted prices:

• $20 for balcony seats

• $35 for orchestra seats

• everyone else pays the regular prices:

• $30 for balcony seats

• $50 for orchestra seats

Programming in Java David G. Sullivan, Ph.D. 144

Here's the Unfactored Version...

if (age < 13) {
System.out.println("You cannot buy a ticket.");

} else if (age < 25) {
System.out.print("orchestra or balcony? ");
String choice = console.next();

int price;
if (choice.equalsIgnoreCase("orchestra")) {

price = 35;
} else {

price = 20;
}

System.out.println("The price is $" + price);
} else {

System.out.print("orchestra or balcony? ");
String choice = console.next();

int price;
if (choice.equalsIgnoreCase("orchestra")) {

price = 50;
} else {

price = 30;
}

System.out.println("The price is $" + price);
}

We now have code
common to the
2nd and 3rd cases,
but not the 1st.

Group the Second and Third Cases Together
...

if (age < 13) {
System.out.println("You cannot buy a ticket.");

} else {
if (age < 25) {

System.out.print("orchestra or balcony? ");
String choice = console.next();

int price;
if (choice.equalsIgnoreCase("orchestra")) {

price = 35;
} else {

price = 20;
}

System.out.println("The price is $" + price);
} else {

System.out.print("orchestra or balcony? ");
String choice = console.next();

...

System.out.println("The price is $" + price);
}

}

Programming in Java David G. Sullivan, Ph.D. 145

Then Factor Out the Common Code
...

if (age < 13) {
System.out.println("You cannot buy a ticket.");

} else {
System.out.print("orchestra or balcony? ");
String choice = console.next();

int price;
if (age < 25) {

if (choice.equalsIgnoreCase("orchestra")) {
price = 35;

} else {
price = 20;

}
} else {

if (choice.equalsIgnoreCase("orchestra")) {
price = 50;

} else {
price = 30;

}
}

System.out.println("The price is $" + price);
}

Case Study: Coffee Shop Price Calculator

• Relevant info:

• brewed coffee prices by size:

• tiny: $1.60

• medio: $1.80

• gigundo: $2.00

• latte prices by size:

• tiny: $2.80

• medio: $3.20

• gigundo: $3.60

plus, add 50 cents for a latte with flavored syrup

• sales tax:

• students: no tax

• non-students: 6.25% tax

Programming in Java David G. Sullivan, Ph.D. 146

Case Study: Coffee Shop Price Calculator (cont.)

• Developing a solution:

1. Begin with an unstructured solution.

• everything in the main method

• use if-else-if statement(s) to handle the various cases

2. Next, factor out code that is common to multiple cases.

• put it either before or after the appropriate
if-else-if statement

3. Finally, create a fully structured solution.

• use procedural decomposition to capture
logical pieces of the solution

Case Study: Coffee Shop Price Calculator (cont.)

Programming in Java David G. Sullivan, Ph.D. 147

Optional: Comparing Floating-Point Values

• Because the floating-point types have limited precision, it's
possible to end up with roundoff errors.

• Example:

double sum = 0.1 + 0.1 + 0.1 + 0.1 + 0.1;
sum = sum + 0.1 + 0.1 + 0.1 + 0.1 + 0.1;
System.out.println(sum);
// get 0.9999999999999999!

• Thus when trying to determine if two floating-point values are
equal, we usually do not use the == operator.

• Instead, we test if the difference between the two values is
less than some small threshold value:

if (Math.abs(sum – 1.0) < 0.0000001) {
System.out.println(sum + " == 1.0");

}

threshold

Optional: Another Cumulative Computation

• The same pattern can be used for other types of computations.

• Example: counting the occurrences of a character in a string.

• Let's write a static method called numOccur that does this.

• examples:

numOccur('l', "hello") should return 2

numOccur('s', "Mississippi") should return 4

public static ___ numOccur(_____________________) {

}

Programming in Java David G. Sullivan, Ph.D. 148

Indefinite Loops
and Boolean Expressions

Boston University

David G. Sullivan, Ph.D.

Review: Definite Loops

• The loops that we've seen thus far have been definite loops.

• we know exactly how many iterations will be performed
before the loop even begins

• In an indefinite loop, the number of iterations is either:

• not as obvious

• impossible to determine before the loop begins

Programming in Java David G. Sullivan, Ph.D. 149

Sample Problem: Finding Multiples

• Problem: Print all multiples of a number (call it num) that are
less than 100.

• output for num = 9:
9 18 27 36 45 54 63 72 81 90 99

• Pseudocode for one possible algorithm:

mult = num
repeat as long as mult < 100:

print mult + " "
mult = mult + num

print a newline

Sample Problem: Finding Multiples (cont.)

• Pseudocode:

mult = num
repeat as long as mult < 100:

print mult + " "
mult = mult + num

print a newline

• Here's how we would write this in Java:

int mult = num;
while (mult < 100) {

System.out.print(mult + " ");
mult = mult + num;

}
System.out.println();

Programming in Java David G. Sullivan, Ph.D. 150

while Loops

• In general, a while loop has the form

while (test) {

one or more statements
}

• As with for loops, the statements in the block of a while loop
are known as the body of the loop.

Evaluating a while Loop

Steps:

1. evaluate the test

2. if it's false, skip the
statements in the body

3. if it's true, execute the
statements in the body,
and go back to step 1

next statement

true

false
condition

body of the loop

test

Programming in Java David G. Sullivan, Ph.D. 151

Tracing a while Loop

• Let's trace through our code when num has the value 15:

int mult = num;
while (mult < 100) {

System.out.print(mult + " ");
mult = mult + num;

}

output thus far mult

before entering the loop 15

after the first iteration 15 30

after the second iteration 15 30 45

after the third iteration 15 30 45 60

after the fourth iteration 15 30 45 60 75

after the fifth iteration 15 30 45 60 75 90

after the sixth iteration 15 30 45 60 75 90 105

and now (mult < 100) is false, so we exit the loop

Comparing if and while

true block

next statement

true

false
condition

next statement

true

false
condition

while block

if statement while statement

• The true block of an if statement is evaluated at most once.

• The body of a while statement can be evaluated multiple times,
provided the test remains true.

test test

while body

Programming in Java David G. Sullivan, Ph.D. 152

Typical while Loop Structure

• Typical structure:

initialization statement(s)
while (test) {

other statements
update statement(s)

}

• In our example:

int mult = num; // initialization
while (mult < 100) {

System.out.print(mult + " ");
mult = mult + num; // update

}

Comparing for and while loops

• while loop (typical structure):

initialization
while (test) {

other statements
update

}

• for loop:

for (initialization; test; update) {
one or more statements

}

Programming in Java David G. Sullivan, Ph.D. 153

Infinite Loops

• Let's say that we change the condition for our while loop:

int mult = num;
while (mult != 100) { // replaced < with !=

System.out.print(mult + " ");
mult = mult + num;

}

• When num is 15, the condition will always be true.

• why?

• an infinite loop – the program will hang (or repeatedly output
something), and needs to be stopped manually

• what class of error is this (syntax or logic)?

• It's generally better to use <, <=, >, >= in a loop condition,
rather than == or !=

Infinite Loops (cont.)

• Another common source of infinite loops is forgetting the
update statement:

int mult = num;
while (mult < 100) {

System.out.print(mult + " ");
// update should go here

}

Programming in Java David G. Sullivan, Ph.D. 154

A Need for Error-Checking

• Let's return to our original version:

int mult = num;
while (mult < 100) {

System.out.print(mult + " ");
mult = mult + num;

}

• This could still end up in an infinite loop! How?

Using a Loop When Error-Checking

• We need to check that the user enters a positive integer.

• If the number is <= 0, ask the user to try again.

• Here's one way of doing it using a while loop:

Scanner console = new Scanner(System.in);
System.out.print("Enter a positive integer: ");
int num = console.nextInt();
while (num <= 0) {

System.out.print("Enter a positive integer: ");
num = console.nextInt();

}

• Note that we end up duplicating code.

Programming in Java David G. Sullivan, Ph.D. 155

Error-Checking Using a do-while Loop

• Java has a second type of loop statement that allows us to
eliminate the duplicated code in this case:

Scanner console = new Scanner(System.in);
int num;
do {

System.out.print("Enter a positive integer: ");
num = console.nextInt();

} while (num <= 0);

• The code in the body of a do-while loop is always executed
at least once.

do-while Loops

• In general, a do-while statement has the form
do {

one or more statements

} while (test);

• Note the need for a semi-colon after the condition.

• We do not need a semi-colon after the condition in a
while loop.

• beware of using one – it can actually create an infinite loop!

Programming in Java David G. Sullivan, Ph.D. 156

Evaluating a do-while Loop

Steps:

1. execute the statements
in the body

2. evaluate the test

3. if it's true, go back to
step 1

(if it's false, continue to the
next statement)

next statement

true

false

while block

condition

body of the loop

test

Formulating Loop Conditions

• We often need to repeat actions until a condition is met.

• example: keep reading a value until the value is positive

• such conditions are termination conditions –
they indicate when the repetition should stop

• However, loops in Java repeat actions while a condition is met.

• they use continuation conditions

• As a result, you may need to convert a termination condition
into a continuation condition.

Programming in Java David G. Sullivan, Ph.D. 157

Which Type of Loop Should You Use?

• Use a for loop when the number of repetitions is known in
advance – i.e., for a definite loop.

• Otherwise, use a while loop or do-while loop:

• use a while loop if the body of the loop may not be
executed at all

• i.e., if the condition may be false at the start of the loop

• use a do-while loop if:

• the body will always be executed at least once

• doing so will allow you to avoid duplicating code

Find the Error…

• Where is the syntax error below?

Scanner console = new Scanner(System.in);

do {
System.out.print("Enter a positive integer: ");
int num = console.nextInt();

} while (num <= 0);

System.out.println("\nThe multiples of " + num +
" less than 100 are:");

int mult = num;
while (mult < 100) {

System.out.print(mult + " ");
mult = mult + num;

}

System.out.println();

Programming in Java David G. Sullivan, Ph.D. 158

Practice with while loops

• What does the following loop output?

int a = 10;
while (a > 2) {

a = a – 2;
System.out.println(a * 2);

}

a > 2 a output

before loop
1st iteration
2nd iteration
3rd iteration
4th iteration

boolean Data Type

• A condition like mult < 100 has one of two values:
true or false

• In Java, these two values are represented using the
boolean data type.

• one of the primitive data types (like int, double, and char)

• true and false are its two literal values

• This type is named after the 19th-century
mathematician George Boole, who developed
the system of logic called boolean algebra.

Programming in Java David G. Sullivan, Ph.D. 159

boolean Expressions

• We have seen a number of constructs that use a "test".

• loops

• if statements

• A more precise term for a "test" is a boolean expression.

• A boolean expression is any expression that evaluates to
true or false.

• examples: num > 0
false
firstChar == 'P'
score != 20

boolean Expressions (cont.)

• Recall this line from our ticket-price program:
if (choice.equals("orchestra")) …

• if we look at the String class in the Java API, we see
that the equals method has this header:

public boolean equals(...)

it returns either true or false

a boolean expression, because
it evaluates to true or false

Programming in Java David G. Sullivan, Ph.D. 160

Forming More Complex Conditions

• We often need to make a decision based on more than one
condition – or based on the opposite of a condition.

• examples in pseudocode:

if the number is even AND it is greater than 100…

if it is NOT the case that your grade is > 80…

• Java provides three logical operators for this purpose:

operator name example

&& and age >= 18 && age <= 35

|| or age < 3 || age > 65

! not !(grade > 80)

Truth Tables

• The logical operators operate on boolean expressions.

• let a and b represent two such expressions

• We can define the logical operators using truth tables.

truth table for && (and) truth table for || (or)

truth table for ! (not)

a b a && b

false false false

false true false

true false false

true true true

a b a || b

false false false

false true true

true false true

true true true

a !a

false true

true false

Programming in Java David G. Sullivan, Ph.D. 161

Truth Tables (cont.)

• Example: evaluate the following expression:
(20 >= 0) && (30 % 4 == 1)

• First, evaluate each of the operands:
(20 >= 0) && (30 % 4 == 1)

true && false

• Then, consult the appropriate row of the truth table:

• Thus, (20 >= 0) && (30 % 4 == 1) evaluates to false

a b a && b

false false false

false true false

true false false

true true true

Practice with Boolean Expressions

• Let's say that we wanted to express the following English
condition in Java:

"num is not equal to either 0 or 1"

• Which of the following boolean expression(s) would work?

a) num != 0 || 1

b) num != 0 || num != 1

c) !(num == 0 || num == 1)

• Is there a different boolean expression that would work here?

Programming in Java David G. Sullivan, Ph.D. 162

boolean Variables

• We can declare variables of type boolean, and assign
the values of boolean expressions to them:

int num = 10;
boolean isPos = (num > 0);
boolean isDone = false;

• these statements give us the following picture in memory:

isPos true isDone false

• Using a boolean variable can make your code more readable:

if (value % 2 == 0) {
...

boolean isEven = (value % 2 == 0);
if (isEven == true) {

...

boolean Variables (cont.)

• Instead of doing this:

boolean isEven = (num % 2 == 0);
if (isEven == true) {

...

you could just do this:

boolean isEven = (num % 2 == 0);
if (isEven) {

...

The extra comparison isn't necessary!

• Similarly, instead of writing:

if (isEven == false) {
...

you could just write this:

if (!isEven) {
...

Programming in Java David G. Sullivan, Ph.D. 163

Input Using a Sentinel

• Example problem: averaging an arbitrary number of grades.

• Instead of having the user tell us the number of grades
in advance, we can let the user indicate that there are no more
grades by entering a special sentinal value.

• When we encounter the sentinel, we break out of the loop

• example interaction:
Enter grade (-1 to end): 10
Enter grade (-1 to end): 8
Enter grade (-1 to end): 9
Enter grade (-1 to end): 5
Enter grade (-1 to end): -1
The average is: 8.0

Input Using a Sentinel (cont.)

• Here's one way to do this:

Scanner console = new Scanner(System.in);
int total = 0;
int numGrades = 0;

System.out.print("Enter grade (or -1 to quit): ");
int grade = console.nextInt();
while (grade != -1) {

total += grade;
numGrades++;
System.out.print("Enter grade (or -1 to quit): ");
grade = console.nextInt();

}

if (numGrades > 0) {
System.out.print("The average is ");
System.out.println((double)total/numGrades);

}

Programming in Java David G. Sullivan, Ph.D. 164

Input Using a Sentinel and a Boolean Flag

• Here's another way, using what is known as a boolean flag,
which is a variable that keeps track of some condition:

Scanner console = new Scanner(System.in);
int total = 0;
int numGrades = 0;
boolean done = false;

while (!done) {
System.out.print("Enter grade (or -1 to quit): ");
int grade = console.nextInt();
if (grade == -1) {

done = true;
} else {

total += grade;
numGrades++;

}
}

if (numGrades > 0) {
...

Input Using a Sentinel and a break Statement

• Here's another way, using what is known as a break statement,
which "breaks out" of the loop:

Scanner console = new Scanner(System.in);
int total = 0;
int numGrades = 0;

while (true) {
System.out.print("Enter grade (or -1 to quit): ");
int grade = console.nextInt();
if (grade == -1) {

break;
}
total += grade;
numGrades++;

}

// after the break statement, the flow of control
// resumes here...
if (numGrades > 0) {

...

Programming in Java David G. Sullivan, Ph.D. 165

Arrays

Boston University

David G. Sullivan, Ph.D.

Collections of Data

• Recall our program for averaging quiz grades:
public static void main(String[] args) {

Scanner console = new Scanner(System.in);
int total = 0;
int numGrades = 0;

while (true) {
System.out.print("Enter a grade (or -1 to quit): ");
int grade = console.nextInt();
if (grade == -1) {

break;
}
total += grade;
numGrades++;

}

if (numGrades > 0) {
...

}

• What if we wanted to store the individual grades?

• an example of a collection of data

Programming in Java David G. Sullivan, Ph.D. 166

Arrays

• An array is a collection of data values of the same type.

• In the same way that we think of a variable as a single box,
an array can be thought of as a sequence of boxes:

• Each box contains one of the data values in the collection

• referred to as the elements of the array

• Each element has a numeric index
• the first element has an index of 0,

the second element has an index of 1,
etc.

• example: the value 6 above has an index of 3

• like the index of a character in a String

7 8 9 6 10 7 9 5

0 1 2 3 4 5 6 7 indices

elements

Declaring and Creating an Array

• We use a variable to represent the array as a whole.

• Example of declaring an array variable:

int[] grades;

• the [] indicates that it will represent an array

• the int indicates that the elements will be ints

• Declaring the array variable does not create the array.

• Example of creating an array:

grades = new int[8];

the length of the array –
i.e., the number of elements

Programming in Java David G. Sullivan, Ph.D. 167

Declaring and Creating an Array (cont.)

• We often declare and create an array in the same statement:

int[] grades = new int[8];

• General syntax:

type[] array = new type[length];

where

type is the type of the individual elements
array is the name of the variable used for the array
length is the number of elements in the array

The Length of an Array

• The length of an array is the number of elements in the array.

• The length of an array can be obtained as follows:

array.length

• example:
grades.length

• note: it is not a method

grades.length() won't work!

Programming in Java David G. Sullivan, Ph.D. 168

Auto-Initialization

• When you create an array in this way:

int[] grades = new int[8];

the runtime system gives the elements default values:

• The value used depends on the type of the elements:

int 0
double 0.0
char '\0'
boolean false

objects null

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7

Accessing an Array Element

• To access an array element, we use an expression of the form

array[index]

• Examples:

grades[0] accesses the first element
grades[1] accesses the second element
grades[5] accesses the sixth element

• Here's one way of setting up the array we showed earlier:

int[] grades = new int[8];
grades[0] = 7; grades[1] = 8; grades[2] = 9;
grades[3] = 6; grades[4] = 10; grades[5] = 7;
grades[6] = 9; grades[7] = 5;

7 8 9 6 10 7 9 5

0 1 2 3 4 5 6 7

Programming in Java David G. Sullivan, Ph.D. 169

Accessing an Array Element (cont.)

• Acceptable index values:

integers from 0 to array.length – 1

• If we specify an index outside that range, we'll get an
ArrayIndexOutOfBoundsException at runtime.

• example:

int[] grades = int[8];
grades[8] = 5;

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8
no such
element!

Accessing an Array Element (cont.)

• The index can be any integer expression.

• example:

int lastGrade = grades[grades.length – 1];

• We can operate on an array element in the same way that
we operate on any other variable of that type.

• example: applying a 10% late penalty to the grade
at index i

grades[i] = (int)(grades[i] * 0.9);

• example: adding 5 points of extra credit to the grade
at index i

grades[i] += 5;

Programming in Java David G. Sullivan, Ph.D. 170

Another Way to Create an Array

• If we know that we want an array to contain specific values,
we can specify them when create the array.

• Example: here's another way to create and initialize our
grades array:

int[] grades = {7, 8, 9, 6, 10, 7, 9, 5};

• The list of values is known as an initialization list.

• it can only be specified when the array is declared

• we don't use the new operator in this case

• we don't specify the length of the array – it is determined
from the number of values in the initialization list

• Other examples:

double[] heights = {65.2, 72.0, 70.6, 67.9};
boolean[] isPassing = {true, true, false, true};

Storing Grades Entered by the User

• We need to know how big to make the array.

• one way: ask the user for the maximum number of values
public static void main(String[] args) {

Scanner console = new Scanner(System.in);

System.out.print("How many grades? ");
int maxNumGrades = console.nextInt();
int[] grades = new int[maxNumGrades];

int total = 0;
int numGrades = 0;

while (numGrades < maxNumGrades) {
System.out.print("Enter a grade (or -1 to quit): ");
grades[numGrades] = console.nextInt();
if (grades[numGrades] == -1) {

break;
}
total += grades[numGrades];
numGrades++;

}
...

}

Programming in Java David G. Sullivan, Ph.D. 171

Processing the Values in an Array

• We often use a for loop to process the values in an array.

• Example: print out all of the grades

int[] grades = new int[maxNumGrades];
...
for (int i = 0; i < grades.length; i++) {

System.out.println("grade " + i + ": " + grades[i]);
}

• General pattern:

for (int i = 0; i < array.length; i++) {
do something with array[i];

}

• Processing array elements sequentially from first to last
is known as traversing the array.

• noun = traversal

Another Example of Traversing an Array

• Let's write code to find the highest quiz grade in the array:

int max = __________________;

for (_________; _________________; ______) {

}

Programming in Java David G. Sullivan, Ph.D. 172

Another Example of Traversing an Array (cont.)

• Let's trace through our code:
int max = grades[0];
for (int i = 1; i < grades.length; i++) {

if (grades[i] > max) {
max = grades[i];

}
}

i grades[i] max
7

1 8 8
2 9 9
3 6 9
4 10 10
5 7 10
...

7 8 9 6 10 7 9 5grades array:

Review: What Is a Variable?

• We've seen that a variable is like a named "box" in memory
that can be used to store a value.

int count = 10; count 10

• If a variable represents a primitive-type value, the value is
stored in the variable itself, as shown above.

Programming in Java David G. Sullivan, Ph.D. 173

Reference Variables

• If a variable represents an object, the object itself is
not stored inside the variable.

• Rather, the object is located somewhere else in memory, and
the variable holds the memory address of the object.

• we say that the variable stores a reference to the object

• such variables are called reference variables

Arrays and References

• An array is a type of object.

• Thus, an array variable is a reference variable.

• it stores a reference to the array

• Example:

int[] grades = new int[8];

might give the following picture:

• We usually use an arrow to represent a reference:

0 0 0 0 0 0 0 02000grades

memory location: 2000

0 0 0 0 0 0 0 0grades

Programming in Java David G. Sullivan, Ph.D. 174

Printing an Array

• What is the output of the following lines?
int[] grades = {7, 8, 9, 6, 10, 7, 9, 5};
System.out.println(grades);

• To print the contents of the array, we can use a for loop
as we showed earlier.

• We can also use the Arrays.toString() method,
which is part of Java's built in Arrays class.

int[] grades = {7, 8, 9, 6, 10, 7, 9, 5};
System.out.println(Arrays.toString(grades));

• doing so produces the following output:
[7, 8, 9, 6, 10, 7, 9, 5]

• To use this method, we need to import the java.util package.

What is the output of the full program?
import java.util.*;

public class FunWithArrays {
public static void main(String[] args) {

int[] temps = {51, 50, 36, 29, 30};
int first = temps[0];
int numTemps = temps.length;
int last = temps[numTemps - 1];

temps[2] = 40;
temps[3] += 5;
System.out.println(temps[3]);
System.out.println(Arrays.toString(temps));

}
}

first

last

numTemps

temps

output:

Programming in Java David G. Sullivan, Ph.D. 175

Copying References

• When we assign the value of one reference variable to
another, we copy the reference to the object.
We do not copy the object itself.

• Example involving objects:

String s1 = "hello, world";
String s2 = s1;

s2

s1
"hello, world"

Copying References (cont.)

• An example involving an array:

int[] grades = {7, 8, 9, 6, 10, 7, 9, 5};
int[] other = grades;

• Given the lines of code above, what will the lines below print?

other[2] = 4;
System.out.println(grades[2] + " " + other[2]);

other

grades 7 8 9 6 10 7 9 5

Programming in Java David G. Sullivan, Ph.D. 176

Changing the Internals vs. Changing a Variable

• When two variables hold a reference to the same array...

int[] list1 = {7, 8, 9};
int[] list2 = list1;

• ...if we change the internals of the array,
both variables will "see" the change:

list2[2] = 4;
System.out.println(Arrays.toString(list1));

list2

list1 7 8 9

list2

list1 7 8 4 output of println:

Changing the Internals vs. Changing a Variable (cont.)

• When two variables hold a reference to the same array...

int[] list1 = {7, 8, 9};
int[] list2 = list1;

• ...if we change one of the variables itself,
that does not change the other variable:

list2 = new int[3];
System.out.println(Arrays.toString(list1));

list2

list1 7 8 9

list2

list1 7 8 9

0 0 0

output of println:

Programming in Java David G. Sullivan, Ph.D. 177

Null References

• To indicate that a reference variable doesn't yet refer to any
object, we can assign it a special value called null.

int[] grades = null;
String s = null;

grades null s null

• Attempting to use a null reference to access an object
produces a NullPointerException.

• "pointer" is another name for reference

• examples:
int[] grades = null;
String s = null;
grades[3] = 10; // NullPointerException!
char ch = s.charAt(5); // NullPointerException!

Copying an Array

• To actually create a copy of an array, we can:
• create a new array of the same length as the first
• traverse the arrays and copy the individual elements

• Example:

int[] grades = {7, 8, 9, 6, 10, 7, 9, 5};
int[] other = new int[grades.length];
for (int i = 0; i < grades.length; i++) {

other[i] = grades[i];
}

• What do the following lines print now?
other[2] = 4;
System.out.println(grades[2] + " " + other[2]);

other

grades 7 8 9 6 10 7 9 5

7 8 9 6 10 7 9 5

Programming in Java David G. Sullivan, Ph.D. 178

Programming Style Point

• Here's how we copied the array:

int[] grades = {7, 8, 9, 6, 10, 7, 9, 5};
int[] other = new int[grades.length];
for (int i = 0; i < grades.length; i++) {

other[i] = grades[i];
}

• This would also work:

int[] grades = {7, 8, 9, 6, 10, 7, 9, 5};
int[] other = new int[8];
for (int i = 0; i < 8; i++) {

other[i] = grades[i];
}

• Why is the first way better?

Passing an Array to a Method

• Let's put our code for finding the highest grade into a method:

public class GradeAnalyzer {

public static _______ maxGrade(int[] grades) {
int max = grades[0];
for (int i = 1; i < grades.length; i++) {

if (grades[i] > max) {
max = grades[i];

}
}

_____________________;
}

public static void main(String[] args) {
...

int maxNumGrades = console.nextInt();
int[] grades = new int[maxNumGrades];

... // code to read in the values

System.out.println("max grade = " +

________________________________);

Programming in Java David G. Sullivan, Ph.D. 179

Passing an Array to a Method (cont.)

• What's wrong with this alternative approach?

public class GradeAnalyzer {

public static int maxGrade(int[] grades) {
int max = grades[0];
for (int i = 1; i < grades.length; i++) {

if (grades[i] > max) {
max = grades[i];

}
}

return max;
}

public static void main(String[] args) {
...

int maxNumGrades = console.nextInt();
int[] grades = new int[maxNumGrades];

... // code to read in the values

maxGrade(grades);
System.out.println("max grade = " + max);

Passing an Array to a Method (cont.)

• We could do this instead:

public class GradeAnalyzer {

public static int maxGrade(int[] grades) {
int max = grades[0];
for (int i = 1; i < grades.length; i++) {

if (grades[i] > max) {
max = grades[i];

}
}

return max;
}

public static void main(String[] args) {
...

int maxNumGrades = console.nextInt();
int[] grades = new int[maxNumGrades];

... // code to read in the values

int max = maxGrade(grades);
System.out.println("max grade = " + max);

Programming in Java David G. Sullivan, Ph.D. 180

Finding the Average Value in an Array

• Here's a method that computes the average grade:

public static double averageGrade(int[] grades) {
int total = 0;
for (int i = 0; i < grades.length; i++) {

total += grades[i];
}

return (double)total / grades.length;
}

Testing If An Array Meets Some Condition

• Let's say that we need to be able to determine
if there are any grades below a certain cutoff value.

• e.g., to determine if a retest should be given

• Does this method work?

public static boolean
anyGradesBelow(int[] grades, int cutoff) {

for (int i = 0; i < grades.length; i++) {
if (grades[i] < cutoff) {

return true;
} else {

return false;
}

}
}

Programming in Java David G. Sullivan, Ph.D. 181

Testing If An Array Meets Some Condition (cont.)

• We can return true as soon as we find a grade that
is below the threshold.

• We can only return false if none of the grades is below.

• Here is a corrected version:

public static boolean
anyGradesBelow(int[] grades, int cutoff) {

for (int i = 0; i < grades.length; i++) {
if (grades[i] < cutoff) {

return true;
}

}

// if we get here, none of the grades is below.
return false;

}

Testing If An Array Meets Some Condition (cont.)

• Here's a similar problem: write a method that determines
if all of the grades are perfect (assume perfect = 100).

public static boolean allPerfect(int[] grades) {

}

Programming in Java David G. Sullivan, Ph.D. 182

Using an Array to Count Things

• Let's say that we want to count how many times each of the
possible grade values appears in a collection of grades.

• We can use an array to store the counts.

• counts[i] will store the number of times that the grade i
appears

• for this grades array

we would have this array of counts:

10 8 9 6 10 7 9 5

0 0 0 0 0 1 1 2 1 2 1

0 1 2 3 4 5 6 7 8 9 10

grades

counts

7

Using an Array to Count Things (cont.)

• The size of the counts array should be one more than the
maximum value being counted:

int max = maxGrade(grades);
int[] counts = new int[max + 1];

• Given the array, here's how to do the actual counting:

for (int i = 0; i < grades.length; i++) {
counts[grades[i]]++;

}

10 8 9 6 10 7 9 5

0 0 0 0 0 1 1 2 1 2 1

0 1 2 3 4 5 6 7 8 9 10

grades

counts

7

Programming in Java David G. Sullivan, Ph.D. 183

Using an Array to Count Things (cont.)

• Let's trace through this code for the grades array shown above:

for (int i = 0; i < grades.length; i++) {
counts[grades[i]]++;

}

i grades[i] operation performed

10 8 9 6 10 7 9 5

0 1 2 3 4 5 6 7 8 9 10

grades

counts

7

A Method That Returns an Array

• We can write a method to create and return the array of counts:

public static int[] getCounts(int[] grades, int maxGrade) {
int[] counts = new int[maxGrade + 1];
for (int i = 0; i < grades.length; i++) {

counts[grades[i]]++;
}

return counts;
}

public static void main(String[] args) {
... // main method begins as in the earlier versions
int max = maxGrade(grades);
int[] counts = getCounts(grades, max);
...

}

Programming in Java David G. Sullivan, Ph.D. 184

public static void main(String[] args) {
int[] a = {1, 2, 3};
triple(a);
System.out.println(Arrays.toString(a));

}

public static void triple(int[] n) {
for (int i = 0; i < n.length; i++) {

n[i] = n[i] * 3;
}

}

• When a method is passed
an array as a parameter,
it gets a copy of the reference,
not a copy of the array.

• If the method changes the internals
of the array, those changes will
be there after the method returns.

Using a Method to Change an Array's Contents

n

a

main

1 2 3

triple

Using a Method to Change an Array's Contents (cont.)

n

a

main

1 2 3

a

main

1 2 3

triple

before method call

during method call

a

main

3 6 9

after method call

a

main

3 6 9

triple

Programming in Java David G. Sullivan, Ph.D. 185

public static void main(String[] args) {
int[] a = {1, 2, 3};
triple(a);
System.out.println(Arrays.toString(a));

}

public static void triple(int[] n) {
for (int i = 0; i < n.length; i++) {

n[i] = n[i] * 3; // changes internals
}

}

• If the method changes the internals
of the array, those changes will
be there after the method returns.

n

a

main

1 2 3

triple

Changing the Internals vs. Changing a Variable

3 6 9

public static void main(String[] args) {
int[] a = {1, 2, 3};
triple(a);
System.out.println(Arrays.toString(a));

}

public static void method2(int[] n) {
n = new int[3]; // changes the variable

}

• However, if the method changes
its variable for the array, that
change does not affect the
original array.

• Changing what's in one
variable doesn't affect
any other variable!

n

a

main

1 2 3

method2

Changing the Internals vs. Changing a Variable (cont.)

x

0 0 0

Programming in Java David G. Sullivan, Ph.D. 186

Swapping Elements in an Array
• We sometimes need to be able to swap two elements in an array.

• Example:

• What's wrong with this code for swapping the two values?

arr[2] = arr[5];
arr[5] = arr[2];

• it gives this:

arr 35 6 19 23 3 47 9 15

arr 35 6 47 23 3 19 9 15

arr 35 6 47 23 3 47 9 15

0 1 2 3 4 5 6 7

Swapping Elements in an Array (cont.)

• To perform a swap, we need to use a temporary variable:
int temp = arr[2];
arr[2] = arr[5];
arr[5] = temp;

arr 35 6 19 23 3 47 9 15

19temp

0 1 2 3 4 5 6 7

arr 35 6 47 23 3 47 9 15

19temp

0 1 2 3 4 5 6 7

arr 35 6 47 23 3 19 9 15

19temp

0 1 2 3 4 5 6 7

Programming in Java David G. Sullivan, Ph.D. 187

A Method for Swapping Elements
• Here's a method for swapping the elements at positions i and j

in the array arr:
public static void swap(int[] arr, int i, int j) {

int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;

}

• We don't need to return anything, because the method changes
the internals of the array that is passed in.

• Here's an example of how we would use it:
int[] grades = {7, 8, 9, 6, 10, 7, 9, 5};
swap(grades, 2, 5);
System.out.println(Arrays.toString(grades));

• What would the output be?

Recall: A Method That Returns an Array

• We can write a method to create and return the array of counts:

public static int[] getCounts(int[] grades, int maxGrade) {
int[] counts = new int[maxGrade + 1];
for (int i = 0; i < grades.length; i++) {

counts[grades[i]]++;
}

return counts;
}

public static void main(String[] args) {
... // main method begins as in the earlier versions
int max = maxGrade(grades);
int[] counts = getCounts(grades, max);
...

}

Programming in Java David G. Sullivan, Ph.D. 188

An Alternative Approach for the Array of Counts

• Create the array ahead of time and pass it into the method:

public static void getCounts(int[] grades, int[] counts) {

for (int i = 0; i < grades.length; i++) {
counts[grades[i]]++;

}

}

public static void main(String[] args) {
... // main method begins as in the earlier versions
int max = maxGrade(grades);
int[] counts = new int[max];
getCounts(grades, counts);
...

}

• Because the method changes the internals of the array,
those changes will be there after the method returns.

Shifting Values in an Array

• Let's say a small business is using an array to store the
number of items sold over a 10-day period.

numSold[0] gives the number of items sold today
numSold[1] gives the number of items sold 1 day ago
numSold[2] gives the number of items sold 2 days ago
…
numSold[9] gives the number of items sold 9 days ago

numSold 15 8 19 2 5 8 11 18 7 16

Programming in Java David G. Sullivan, Ph.D. 189

Shifting Values in an Array (cont.)

• At the start of each day, it's necessary to shift the values over
to make room for the new day's sales.

• the last value is lost, since it's now 10 days old

• In order to shift the values over, we need to perform
assignments like the following:

numSold[9] = numSold[8];
numSold[6] = numSold[5];
numSold[2] = numSold[1];

• what is the general form (the pattern) of these assignments?

numSold 15 8 19 2 5 8 11 18 7 16

numSold 0 15 8 19 2 5 8 11 18 7

Shifting Values in an Array (cont.)

• Here's one attempt at code for shifting all of the elements:

for (int i = 0; i < numSold.length; i++) {
numSold[i] = numSold[i - 1];

}

• If we run this, we get an ArrayIndexOutOfBoundsException.
Why?

Programming in Java David G. Sullivan, Ph.D. 190

Shifting Values in an Array (cont.)

• This version of the code eliminates the exception:

for (int i = 1; i < numSold.length; i++) {
numSold[i] = numSold[i – 1];

}

• Let's trace it to see what it does:

• when i == 1, we perform numSold[1] = numSold[0] to get:

• when i == 2, we perform numSold[2] = numSold[1] to get:

this obviously doesn't work!

numSold 15 8 19 2 5 8 11 18 7 16

numSold 15 15 19 2 5 8 11 18 7 16

numSold 15 15 15 2 5 8 11 18 7 16

Shifting Values in an Array (cont.)

• How can we fix this code so that it does the right thing?

for (int i = 1; i < numSold.length; i++) {
numSold[i] = numSold[i – 1];

}

for (; ;) {

}

• After performing all of the shifts, we would do: numSold[0] = 0;

numSold 0 15 8 19 2 5 8 11 18 7

numSold 15 15 8 19 2 5 8 11 18 7

Programming in Java David G. Sullivan, Ph.D. 191

"Growing" an Array

• Once we have created an array, we can't increase its size.

• Instead, we need to do the following:

• create a new, larger array (use a temporary variable)

• copy the contents of the original array into the new array

• assign the new array to the original array variable

• Example for our grades array:

int[] grades = {7, 8, 9, 6, 10, 7, 9, 5};
...
int[] temp = new int[16];
for (int i = 0; i < grades.length; i++) {

temp[i] = grades[i];
}
grades = temp;

Arrays of Objects

• We can use an array to represent a collection of objects.

• In such cases, the cells of the array store references to
the objects.

• Example:

String[] suitNames = {"clubs", "spades",
"hearts", "diamonds"};

suitNames

"clubs" "spades" "hearts" "diamonds"

Programming in Java David G. Sullivan, Ph.D. 192

Two-Dimensional Arrays

• Thus far, we've been looking at single-dimensional arrays

• We can also create multi-dimensional arrays.

• The most common type is a two-dimensional (2-D) array.

• We can visualize it as a matrix consisting of rows and columns:

0 15 8 3 16 12 7 9 5

1 6 11 9 4 1 5 8 13

2 17 3 5 18 10 6 7 21

3 8 14 13 6 13 12 8 4

4 1 9 5 16 20 2 3 9

0 1 2 3 4 5 6 7 column
indices

row
indices

2-D Array Basics

• Example of declaring and creating a 2-D array:

int[][] scores = new int[5][8];

• To access an element, we use an expression of the form

array[row][column]

• example: scores[3][4] gives the score at row 3, column 4

number
of rows

number
of columns

0 15 8 3 16 12 7 9 5

1 6 11 9 4 1 5 8 13

2 17 3 5 18 10 6 7 21

3 8 14 13 6 13 12 8 4

4 1 9 5 16 20 2 3 9

0 1 2 3 4 5 6 7

Programming in Java David G. Sullivan, Ph.D. 193

Example Application: Maintaining a Game Board

• For a Tic-Tac-Toe board, we could use a 2-D array to keep
track of the state of the board:

char[][] board = new char[3][3];

• Alternatively, we could create and initialize it as follows:

char[][] board = {{' ', ' ', ' '},
{' ', ' ', ' '},
{' ', ' ', ' '}};

• If a player puts an X in the middle square, we could record
this fact by making the following assignment:

board[1][1] = 'X';

An Array of Arrays

• A 2-D array is really an array of arrays!

• scores[0] represents the entire first row
scores[1] represents the entire second row, etc.

• array.length gives the number of rows
array[row].length gives the number of columns in that row

15 8 3 16 12 7 9 5

6 11 9 4 1 5 8 13

17 3 5 18 10 6 7 21

8 14 13 6 13 12 8 4

1 9 5 16 20 2 3 9

scores

Programming in Java David G. Sullivan, Ph.D. 194

Processing All of the Elements in a 2-D Array

• To perform some operation on all of the elements in a 2-D
array, we typically use a nested loop.

• example: finding the maximum value in a 2-D array.

public static int maxValue(int[][] arr) {
int max = arr[0][0];
for (int r = 0; r < arr.length; r++) {

for (int c = 0; c < arr[r].length; c++) {
if (arr[r][c] > max) {

max = arr[r][c];
}

}
}

return max;
}

Optional: Other Multi-Dimensional Arrays

• It's possible to have a "ragged" 2-D array in which different
rows have different numbers of columns:

int[][] foo = {{11, 22, 33},
{7, 20, 30, 40},
{1, 2}};

• We can also create arrays of higher dimensions.

• example: a three-dimensional matrix:

double[][][] matrix = new double[2][5][4];

11 22 33

10 20 30 40

1 2

foo

Programming in Java David G. Sullivan, Ph.D. 195

Classes as Blueprints:
How to Define New Types of Objects

Boston University

David G. Sullivan, Ph.D.

Types of Decomposition

• When writing a program, it's important to decompose it into
manageable pieces.

• We've already seen how to use procedural decomposition.

• break a task into smaller subtasks, each of which gets
its own method

• Another way to decompose a program is to view it as a
collection of objects.

• referred to as object-oriented programming

Programming in Java David G. Sullivan, Ph.D. 196

Review: What is an Object?

• An object groups together:

• one or more data values (the object's fields)

• a set of operations that the object can perform
(the object's methods)

Review: Using an Object's Methods

• An object's methods are different from the static methods
that we've been writing thus far.

• they're called non-static or instance methods

• When using an instance method, we specify the object
to which the method belongs by using dot notation:

String firstName = "Perry";
int len = firstName.length();

• Using an instance method is like sending a message
to an object, asking it to perform an operation.

• We refer to the object on which the method is invoked
as either:

• the called object

• the current object

Programming in Java David G. Sullivan, Ph.D. 197

Review: Classes as Blueprints

• We've been using classes as containers for our programs.

• A class can also serve as a blueprint – as the definition of
a new type of object.

• specifying the fields and methods that objects of that type
will have

• The objects of a given class are built according to its blueprint.

• Objects of a class are referred to as instances of the class.

Rectangle Objects

• Java comes with a built-in Rectangle class.

• in the java.awt package

• Each Rectangle object has the following fields:

• x – the x coordinate of its upper left corner

• y – the y coordinate of its upper left corner
• width

• height

• Here's an example of one:

height 30

width 50

y 150

x 200

Programming in Java David G. Sullivan, Ph.D. 198

Rectangle Methods

• A Rectangle's methods include:

void grow(int h, int v)
void translate(int x, int y)
double getWidth()
double getHeight()
double getX()
double getY()

Writing a "Blueprint Class"

• To illustrate how to define a new type of object,
let's write our own class for Rectangle objects.

public class Rectangle {
...

• As always, the class definition goes in an appropriately named
text file.

• in this case: Rectangle.java

Programming in Java David G. Sullivan, Ph.D. 199

Using Fields to Capture an Object's State

• Here's the first version of our Rectangle class:

public class Rectangle {
int x;
int y;
int width;
int height;

}

• it declares four fields,
each of which stores an int

• each Rectangle object gets
its own set of these fields

• Another name for a field is an instance variable.

height

width

y

x

Using Fields to Capture an Object's State (cont.)

• For now, we'll create Rectangle objects like this:

Rectangle r1 = new Rectangle();

• The fields are initially filled with
the default values for their types.

• just like array elements

• Fields can be accessed
using dot notation:

r1.x = 10;
r1.y = 20;
r1.width = 100;
r1.height = 50; height 50

width 100

y 20

x 10r1

height 0

width 0

y 0

x 0r1

Programming in Java David G. Sullivan, Ph.D. 200

Client Programs

• Our Rectangle class is not a program.

• it has no main method

• Instead, it will be used by code defined in other classes.

• referred to as client programs or client code

• More generally, when we define a new type of object,
we create a building block that can be used in other code.

• just like the objects from the built-in classes:
String, Scanner, File, etc.

• our programs have been clients of those classes

Initial Client Program
public class RectangleClient {

public static void main(String[] args) {
Rectangle r1 = new Rectangle();
r1.x = 10; r1.y = 20;
r1.width = 100; r1.height = 50;

Rectangle r2 = new Rectangle();
r2.x = 50; r2.y = 100;
r2.width = 20; r2.height = 80;

System.out.println("r1: " + r1.width + " x " + r1.height);
int area1 = r1.width * r1.height;
System.out.println("area = " + area1);

System.out.println("r2: " + r2.width + " x " + r2.height);
int area2 = r2.width * r2.height;
System.out.println("area = " + area2);

// grow both rectangles
r1.width += 50; r1.height += 10;
r2.width += 5; r2.height += 30;

System.out.println("r1: " + r1.width + " x " + r1.height);
System.out.println("r2: " + r2.width + " x " + r2.height);

}
}

Programming in Java David G. Sullivan, Ph.D. 201

Using Methods to Capture an Object's Behavior

• It would be useful to have a method for growing a Rectangle.

• One option would be to define a static method:

public static void grow(Rectangle r, int dWidth, int dHeight) {
r.width += dWidth;
r.height += dHeight;

}

• This would allow us to replace the statements

r1.width += 50;

r1.height += 10;

with the method call

Rectangle.grow(r1, 50, 10);

Using Methods to Capture an Object's Behavior

• It would be useful to have a method for growing a Rectangle.

• One option would be to define a static method in our
Rectangle class:

public static void grow(Rectangle r, int dWidth, int dHeight) {
r.width += dWidth;
r.height += dHeight;

}

• This would allow us to replace these statements in the client

r1.width += 50;

r1.height += 10;

with the method call
Rectangle.grow(r1, 50, 10);

(Note: We need to use the class name, because we're calling
the method from outside the Rectangle class.)

Programming in Java David G. Sullivan, Ph.D. 202

Using Methods to Capture an Object's Behavior (cont.)

• A better approach is to give each Rectangle object
the ability to grow itself.

• We do so by defining a non-static or instance method.

• We'll use dot notation to call the instance method:

r1.grow(50, 10);

instead of Rectangle.grow(r1, 50, 10);

• This is like sending a message to r1, asking it to grow itself.

Using Methods to Capture an Object's Behavior (cont.)

• Here's our grow instance method:
public void grow(int dWidth, int dHeight) { // no static

this.width += dWidth;
this.height += dHeight;

}

• We don't pass the Rectangle object as an explicit parameter.

• Instead, the Java keyword this gives us access to
the called object.

• every instance method has this special variable

• referred to as the implicit parameter

• Example: r1.grow(50, 10)

• r1 is the called object

• this.width gives us access to r1's width field

• this.height gives us access to r1's height field

Programming in Java David G. Sullivan, Ph.D. 203

Comparing the Static and Non-Static Versions

• Static:
public static void grow(Rectangle r, int dWidth, int dHeight) {

r.width += dWidth;
r.height += dHeight;

}

• sample method call: Rectangle.grow(r1, 50, 10);

• Non-static:
public void grow(int dWidth, int dHeight) {

this.width += dWidth;
this.height += dHeight;

}

• there's no keyword static in the method header

• the Rectangle object is not an explicit parameter

• the implicit parameter this gives access to the object

• sample method call: r1.grow(50, 10);

Omitting the Keyword this

• The use of this to access the fields is optional.

• example:
public void grow(int dWidth, int dHeight) {

width += dWidth;
height += dHeight;

}

Programming in Java David G. Sullivan, Ph.D. 204

Another Example of an Instance Method

• Here's an instance method for getting the area of a Rectangle:

public int area() {
return this.width * this.height;

}

• Sample method calls:

int area1 = r1.area();
int area2 = r2.area();

• we're asking r1 and r2 to
give us their areas

• no explicit parameters
are needed because
the necessary info.
is in the objects' fields!

height 80

width 20

y 100

x 50r2

height 50

width 100

y 20

x 10r1

Types of Instance Methods

• There are two main types of instance methods:

• mutators – methods that change an object's internal state

• accessors – methods that retrieve information from an object
without changing its state

• Examples of mutators:

• grow() in our Rectangle class

• Examples of accessors:

• area() in our Rectangle class

• String methods: length(), substring(), charAt()

Programming in Java David G. Sullivan, Ph.D. 205

Second Version of our Rectangle Class
public class Rectangle {

int x;
int y;
int width;
int height;

public void grow(int dWidth, int dHeight) {
this.width += dWidth;
this.height += dHeight;

}

public int area() {
return this.width * this.height;

}
}

Which method call increases r's height by 5?
public class Rectangle {

int x;
int y;
int width;
int height;

public void grow(int dWidth, int dHeight) {
this.width += dWidth;
this.height += dHeight;

}

public int area() {
return this.width * this.height;

}
}

• Consider this client code:
Rectangle r = new Rectangle();
r.width = 10;
r.height = 15;

______???______;

Programming in Java David G. Sullivan, Ph.D. 206

Initial Client Program
public class RectangleClient {

public static void main(String[] args) {
Rectangle r1 = new Rectangle();
r1.x = 10; r1.y = 20;
r1.width = 100; r1.height = 50;

Rectangle r2 = new Rectangle();
r2.x = 50; r2.y = 100;
r2.width = 20; r2.height = 80;

System.out.println("r1: " + r1.width + " x " + r1.height);
int area1 = r1.width * r1.height;
System.out.println("area = " + area1);

System.out.println("r2: " + r2.width + " x " + r2.height);
int area2 = r2.width * r2.height;
System.out.println("area = " + area2);

// grow both rectangles
r1.width += 50; r1.height += 10;
r2.width += 5; r2.height += 30;

System.out.println("r1: " + r1.width + " x " + r1.height);
System.out.println("r2: " + r2.width + " x " + r2.height);

}
}

Revised Client Program
public class RectangleClient {

public static void main(String[] args) {
Rectangle r1 = new Rectangle();
r1.x = 10; r1.y = 20;
r1.width = 100; r1.height = 50;

Rectangle r2 = new Rectangle();
r2.x = 50; r2.y = 100;
r2.width = 20; r2.height = 80;

System.out.println("r1: " + r1.width + " x " + r1.height);
System.out.println("area = " + r1.area());

System.out.println("r2: " + r2.width + " x " + r2.height);
System.out.println("area = " + r2.area());

// grow both rectangles
r1.grow(50, 10);
r2.grow(5, 30);

System.out.println("r1: " + r1.width + " x " + r1.height);
System.out.println("r2: " + r2.width + " x " + r2.height);

}
}

Programming in Java David G. Sullivan, Ph.D. 207

Practice Defining Instance Methods
• Add a mutator method that moves the rectangle to the right

by a specified amount.

public ______ moveRight(___________________) {

}

• Add an accessor method that determines if the rectangle
is a square (true or false).

public __________ isSquare(____________) {

}

Defining a Constructor
• Our current client program has to use several lines

to initialize each Rectangle object:
Rectangle r1 = new Rectangle();
r1.x = 10; r1.y = 20;

r1.width = 100; r1.height = 50;

• We'd like to be able to do something like this instead:
Rectangle r1 = new Rectangle(10, 20, 100, 50);

• To do so, we need to define a constructor, a special method
that initializes the state of an object when it is created.

Programming in Java David G. Sullivan, Ph.D. 208

Defining a Constructor (cont.)

• Here it is:
public Rectangle(int initialX, int initialY,
int initialWidth, int initialHeight) {
this.x = initialX;
this.y = initialY;
this.width = initialWidth;
this.height = initialHeight;

}

• General syntax for a constructor:

public ClassName(parameter list) {

body of the constructor

}

• Note that a constructor has no return type.

Third Version of our Rectangle Class
public class Rectangle {

int x;
int y;
int width;
int height;

public Rectangle(int initialX, int initialY,
int initialWidth, int initialHeight) {

this.x = initialX;
this.y = initialY;
this.width = initialWidth;
this.height = initialHeight;

}

public void grow(int dWidth, int dHeight) {
this.width += dWidth;
this.height += dHeight;

}

public int area() {
return this.width * this.height;

}
}

Programming in Java David G. Sullivan, Ph.D. 209

Revised Client Program
public class RectangleClient {

public static void main(String[] args) {
Rectangle r1 = new Rectangle(10, 20, 100, 50);
Rectangle r2 = new Rectangle(50, 100, 20, 80);

System.out.println("r1: " + r1.width + " x " + r1.height);
System.out.println("area = " + r1.area());

System.out.println("r2: " + r2.width + " x " + r2.height);
System.out.println("area = " + r2.area());

// grow both rectangles
r1.grow(50, 10);
r2.grow(5, 30);

System.out.println("r1: " + r1.width + " x " + r1.height);
System.out.println("r2: " + r2.width + " x " + r2.height);

}
}

A Closer Look at Creating an Object
• What happens when the following line is executed?

Rectangle r1 = new Rectangle(10, 20, 100, 50);

• Several different things actually happen:

1) a new Rectangle object is created

• initially, all fields have their default values

2) the constructor is then called to assign values to the fields

3) a reference to the new object is stored in the variable r1

0height 0height

0width 0width

0y 0y

0x 0xr1r1

50height 50height

100width 100width

20y 20y

10x 10xr1r1

50height 50height

100width 100width

20y 20y

10x 10xr1r1

Programming in Java David G. Sullivan, Ph.D. 210

Limiting Access to Fields
• The current version of our Rectangle class allows clients

to directly access a Rectangle object's fields:
r1.width = 100;
r1.height += 20;

• This means that clients can make inappropriate changes:
r1.width = -100;

• To prevent this, we can declare the fields to be private:
public class Rectangle {

private int x;
private int y;
private int width;
private int height;
...

}

• This indicates that these fields can only be accessed or
modified by methods that are part of the Rectangle class.

Limiting Access to Fields (cont.)

• Now that the fields are private, our client program won't compile:

public class RectangleClient {
public static void main(String[] args) {

Rectangle r1 = new Rectangle(10, 20, 100, 50);
Rectangle r2 = new Rectangle(50, 100, 20, 80);

System.out.println("r1: " + r1.width + " x " + r1.height);
System.out.println("area = " + r1.area());

System.out.println("r2: " + r2.width + " x " + r2.height);
System.out.println("area = " + r2.area());

// grow both rectangles
r1.grow(50, 10);
r2.grow(5, 30);

System.out.println("r1: " + r1.width + " x " + r1.height);
System.out.println("r2: " + r2.width + " x " + r2.height);

}
}

Programming in Java David G. Sullivan, Ph.D. 211

Adding Accessor Methods for the Fields
public class Rectangle {

private int x;
private int y;
private int width;
private int height;
...
public int getX() {

return this.x;
}
public int getY() {

return this.y;
}
public int getWidth() {

return this.width;
}
public int getHeight() {

return this.height;
}

}

• These methods are public, which indicates that they can be
used by code that is outside the Rectangle class.

Revised Client Program

public class RectangleClient {
public static void main(String[] args) {

Rectangle r1 = new Rectangle(10, 20, 100, 50);
Rectangle r2 = new Rectangle(50, 100, 20, 80);

System.out.println("r1: " + r1.getWidth() + " x " +
r1.getHeight());

System.out.println("area = " + r1.area());

System.out.println("r2: " + r2.getWidth() + " x " +
r2.getHeight());

System.out.println("area = " + r2.area());

// grow both rectangles
r1.grow(50, 10);
r2.grow(5, 30);

System.out.println("r1: " + r1.getWidth() + " x " +
r1.getHeight());

System.out.println("r2: " + r2.getWidth() + " x " +
r2.getHeight());

}
}

Programming in Java David G. Sullivan, Ph.D. 212

Access Modifiers

• public and private are known as access modifiers.

• they specify where a class, field, or method can be used

• A class is usually declared to be public:

public class Rectangle {

• indicates that objects of the class can be used anywhere,
including in other classes

• Fields are usually declared to be private.

• Methods are usually declared to be public.

• We occasionally define private methods.

• serve as helper methods for the public methods

• cannot be invoked by code that is outside the class

Allowing Only Appropriate Changes

• To allow for appropriate changes to an object,
we add whatever mutator methods make sense.

• These methods can prevent inappropriate changes:

public void setLocation(int newX, int newY) {
if (newX < 0 || newY < 0) {

throw new IllegalArgumentException();
}

this.x = newX;
this.y = newY;

}

• Throwing an exception ends the method early.

• If the caller of the method doesn't handle the exception,
it will crash.

Programming in Java David G. Sullivan, Ph.D. 213

Allowing Only Appropriate Changes (cont.)

• Here are two other mutator methods:

public void setWidth(int newWidth) {
if (newWidth <= 0) {

throw new IllegalArgumentException();
}

this.width = newWidth;
}

public void setHeight(int newHeight) {
if (newHeight <= 0) {

throw new IllegalArgumentException();
}

this.height = newHeight;
}

Instance Methods Calling Other Instance Methods

• Here's another mutator method that we already had:
public void grow(int dWidth, int dHeight) {

this.width += dWidth;
this.height += dHeight;

}

• However, it doesn't prevent inappropriate changes.

• Rather than adding error-checking to it, we can have it call
the new mutator methods:

public void grow(int dWidth, int dHeight) {
this.setWidth(this.width + dWidth);
this.setHeight(this.height + dHeight);

}

• we use this to call another method in the same object

• those other methods perform the necessary error-checking

Programming in Java David G. Sullivan, Ph.D. 214

Revised Constructor

• To prevent invalid values in the fields of a Rectangle object,
we also need to modify our constructor.

• Here again, we take advantage of the error-checking code
that's already present in the mutator methods:

public Rectangle(int initialX, int initialY,
int initialWidth, int initialHeight)

{
this.setLocation(initialX, initialY);
this.setWidth(initialWidth);
this.setHeight(initialHeight);

}

• setLocation, setWidth, and setHeight operate on
the newly created Rectangle object

Encapsulation
• Encapsulation is one of the key principles of object-oriented

programming.

• It refers to the practice of “hiding” the implementation of
a class from users of the class.

• prevent direct access to the internals of an object

• making the fields private

• provide limited, indirect access through a set of methods

• making them public

• In addition to preventing inappropriate changes,
encapsulation allows us to change the implementation
of a class without breaking the client code that uses it.

Programming in Java David G. Sullivan, Ph.D. 215

Abstraction

• Abstraction involves focusing on the essential properties of
something, rather than its inner or low-level details.

• an important concept in computer science

• Encapsulation leads to abstraction.

• example: rather than treating a Rectangle as four ints,
we treat it as an object that's capable of growing itself,
changing its location, etc.

Practice Defining Instance Methods
• Add a mutator method that scales the dimensions of

a Rectangle object by a specified factor.

• make the factor a double, to allow for fractional values

• take advantage of existing mutator methods

• use a type cast to turn the result back into an integer

public _________ scale(___________________) {

}

• Add an accessor method that gets the perimeter of
a Rectangle object.

public _________ perimeter(___________________) {

}

Programming in Java David G. Sullivan, Ph.D. 216

Testing for Equivalent Objects

• Let's say that we have two different Rectangle objects,
both of which represent equivalent rectangles:

Rectangle rect1 = new Rectangle(10, 100, 20, 55);
Rectangle rect2 = new Rectangle(10, 100, 20, 55);

• What is the value of the following condition?

rect1 == rect2

height 55

width 20

y 100

x 10

height 55

width 20

y 100

x 10
rect1

rect2

Testing for Equivalent Objects (cont.)

• The condition

rect1 == rect2

compares the references stored in rect1 and rect2.

• It doesn't compare the objects themselves.

2000

3152
height 55

width 20

y 100

x 10

rect1

rect2

height 55

width 20

y 100

x 10

memory location: 3152

memory location: 2000

Programming in Java David G. Sullivan, Ph.D. 217

Testing for Equivalent Objects (cont.)

• Recall: to test for equivalent objects, we need to use
the equals method:

rect1.equals(rect2)

• Java's built-in classes have equals methods that:

• return true if the two objects are equivalent to each other

• return false otherwise

Default equals() Method

• If we don't write an equals() method for a class,
objects of that class get a default version of this method.

• The default equals() just tests if the memory addresses
of the two objects are the same.

• the same as what == does!

• To ensure that we're able to test for equivalent objects,
we need to write our own equals() method.

Programming in Java David G. Sullivan, Ph.D. 218

equals() Method for Our Rectangle Class

public boolean equals(Rectangle other) {
if (other == null) {

return false;
} else if (this.x != other.x) {

return false;
} else if (this.y != other.y) {

return false;
} else if (this.width != other.width) {

return false;
} else if (this.height != other.height) {

return false;
} else {

return true;
}

}

• Note: The method is able to access the fields in other
directly (without using accessor methods).

• Instance methods can access the private fields of any object
from the same class as the method.

equals() Method for Our Rectangle Class (cont.)

• Here's an alternative version:

public boolean equals(Rectangle other) {
return (other != null

&& this.x == other.x
&& this.y == other.y
&& this.width == other.width
&& this.height == other.height);

}

Programming in Java David G. Sullivan, Ph.D. 219

Converting an Object to a String

• The toString() method allows objects to be displayed
in a human-readable format.

• it returns a string representation of the object

• This method is called implicitly when you attempt to print an
object or when you perform string concatenation:
Rectangle r1 = new Rectangle(10, 20, 100, 80);
System.out.println(r1);

// the second line above is equivalent to:
System.out.println(r1.toString());

• If we don't write a toString() method for a class,
objects of that class get a default version of this method.

• here again, it usually makes sense to write
our own version

toString() Method for Our Rectangle Class
public String toString() {

return this.width + " x " + this.height;
}

• Note: the method does not do any printing.

• It returns a String that can then be printed.

Programming in Java David G. Sullivan, Ph.D. 220

Revised Client Program

public class RectangleClient {
public static void main(String[] args) {

Rectangle r1 = new Rectangle(10, 20, 100, 50);
Rectangle r2 = new Rectangle(50, 100, 20, 80);

System.out.println("r1: " + r1);
System.out.println("area = " + r1.area());

System.out.println("r2: " + r2);
System.out.println("area = " + r2.area());

// grow both rectangles
r1.grow(50, 10);
r2.grow(5, 30);

System.out.println("r1: " + r1);
System.out.println("r2: " + r2);

}
}

Conventions for Accessors and Mutators

• Accessors:

• usually have no parameters

• all of the necessary info. is inside the called object

• have a non-void return type

• often have a name that begins with "get" or "is"

• examples: getWidth(), isSquare()

• but not always: area(), perimeter()

• Mutators:

• usually have one or more parameter

• usually have a void return type

• often have a name that begins with "set"

• examples: setLocation(), setWidth()

• but not always: grow(), scale()

Programming in Java David G. Sullivan, Ph.D. 221

The Implicit Parameter and Method Frames

• When we call an instance method, the implicit parameter
is included in its method frame.

• example: r1.grow(50, 10)

• The method uses this to access the fields in the called object.

• even if the code doesn't explicitly use it

width += dWidth; this.width += dWidth;
height += dHeight; this.height += dHeight;

height 50

width 100

y 20

x 10

dHeight 10

dWidth 50

grow

this

r1

Example: Method Frames for Instance Methods
public class RectangleClient {

public static void main(String[] args) {
Rectangle r1 = new Rectangle(10, 20, 100, 50);
Rectangle r2 = new Rectangle(50, 100, 20, 80);
...
r1.grow(50, 10);
r2.grow(5, 30);
...

• After the objects are created:

height 80

width 20

y 100

x 50
height 50

width 100

y 20

x 10

r2

r1

main

Programming in Java David G. Sullivan, Ph.D. 222

Example: Method Frames for Instance Methods
public class RectangleClient {

public static void main(String[] args) {
Rectangle r1 = new Rectangle(10, 20, 100, 50);
Rectangle r2 = new Rectangle(50, 100, 20, 80);
...
r1.grow(50, 10);
r2.grow(5, 30);
...

• During the method call r1.grow(50, 10):

height 80

width 20

y 100

x 50
height 50

width 100

y 20

x 10

r2

r1

main

dHeight 10

dWidth 50

grow

this

Example: Method Frames for Instance Methods
public class RectangleClient {

public static void main(String[] args) {
Rectangle r1 = new Rectangle(10, 20, 100, 50);
Rectangle r2 = new Rectangle(50, 100, 20, 80);
...
r1.grow(50, 10);
r2.grow(5, 30);
...

• After the method call r1.grow(50, 10):

height 80

width 20

y 100

x 50
height 60

width 150

y 20

x 10

r2

r1

main

Programming in Java David G. Sullivan, Ph.D. 223

Example: Method Frames for Instance Methods
public class RectangleClient {

public static void main(String[] args) {
Rectangle r1 = new Rectangle(10, 20, 100, 50);
Rectangle r2 = new Rectangle(50, 100, 20, 80);
...
r1.grow(50, 10);
r2.grow(5, 30);
...

• During the method call r2.grow(5, 30):

height 80

width 20

y 100

x 50
height 60

width 150

y 20

x 10

r2

r1

main

dHeight 30

dWidth 5

grow

this

Example: Method Frames for Instance Methods
public class RectangleClient {

public static void main(String[] args) {
Rectangle r1 = new Rectangle(10, 20, 100, 50);
Rectangle r2 = new Rectangle(50, 100, 20, 80);
...
r1.grow(50, 10);
r2.grow(5, 30);
...

• After the method call r2.grow(5, 30):

height 110

width 25

y 100

x 50
height 60

width 150

y 20

x 10

r2

r1

main

Programming in Java David G. Sullivan, Ph.D. 224

Why Mutators Don't Need to Return Anything

• A mutator operates directly on the called object,
so any changes it makes will be there after the method returns.

• example: the call r2.grow(5, 30) from the last slide

• during this call, grow gets a copy of the reference in r2,
so it changes the object to which r2 refers

height 110

width 25

y 100

x 50
height 60

width 150

y 20

x 10

r2

r1

main

dHeight 30

dWidth 5

grow

this

Variable Scope: Static vs. Non-Static Methods
public class Foo {

private int x;

public static int bar(int b, int c, Foo f) {
c = c + this.x; // would not compile
return 3*b + f.x; // would compile

}

public int boo(int d, Foo f) {
d = d + this.x + f.x; // would compile
return 2 * d;

}
}

• Static methods (like bar above) do NOT have a called object,
so they can't access its fields.

• Instance/non-static methods (like boo above) do have a called
object, so they can access its fields.

• Any method of a class can access fields in an object of that class
that is passed in as a parameter (like the parameter f above).

Programming in Java David G. Sullivan, Ph.D. 225

A Common Use of the Implicit Parameter
• Here's our setLocation method:

public void setLocation(int newX, int newY) {
if (newX < 0 || newY < 0) {

throw new IllegalArgumentException();
}
this.x = newX;
this.y = newY;

}

• Here's an equivalent version:
public void setLocation(int x, int y) {

if (x < 0 || y < 0) {
throw new IllegalArgumentException();

}
this.x = x;
this.y = y;

}

• When the parameters have the same names as the fields,
we must use this to access the fields.

Defining a Second Constructor
• Here's our Rectangle constructor:

public Rectangle(int initialX, int initialY,
int initialWidth, int initialHeight) {
this.setLocation(initialX, initialY);
this.setWidth(initialWidth);
this.setHeight(initialHeight);

}

• It requires four parameters:
Rectangle r1 = new Rectangle(10, 20, 100, 50);

• A class can have an arbitrary number of constructors,
provided that each of them has a distinct parameter list.

Programming in Java David G. Sullivan, Ph.D. 226

Defining a Second Constructor (cont.)

• Here's a constructor that only takes values for width and height:

public Rectangle(int width, int height) {
this.setWidth(width);
this.setHeight(height);
this.x = 0;
this.y = 0;

}

• it puts the rectangle at the location (0, 0)

• Equivalently, we can call the original constructor,
and let it perform the actual assignments:

public Rectangle(int width, int height) {
this(0, 0, width, height); // call other constr.

}

• we use the keyword this instead of Rectangle

• this is the way that one constructor calls another

Practice Exercise: Writing Client Code
• Write a static method called processRectangle() that:

• takes a Rectangle object (call it r) and an integer
(call it delta) as parameters

• prints the existing dimensions and area of the Rectangle
(hint: take advantage of the toString() method)

• increases both of the Rectangle's dimensions by delta

• prints the new dimensions and area

Programming in Java David G. Sullivan, Ph.D. 227

Collections of Data

• There are many situations in which we need a program
to maintain a collection of data.

• Examples include:

• all of the grades on a given assignment/exam

• a simple database of song info (e.g., in a music player)

Using an Array for a Collection

• We've used an array to maintain a collection of primitive
data values.

• It's also possible to have an array of objects:

grades 7 8 9 6 10 7 9 5

suitNames

"clubs" "spades" "hearts" "diamonds"

Programming in Java David G. Sullivan, Ph.D. 228

A Class for a Collection

• Rather than just using an array, it's often helpful to create a
blueprint class for the collection.

• Example: a GradeSet class for a collection of grades from
a single assignment or exam

• possible field definitions:

public class GradeSet {
private String name;
private int possiblePoints;
private double[] grades;
private int gradeCount;

• The array of values is "inside" the collection object, along with
other relevant information associated with the collection.

• In addition, we would add methods for maintaining and
processing the collection.

A Blueprint Class for Grade Objects

• Rather than just representing the grades as ints or doubles,
we'll use a separate blueprint class for a single grade:

public class Grade {
private double rawScore;
private int latePenalty; // as a percent

• This allows us to store both the raw score
and the late penalty (if any).

• Constructors and methods include:
Grade(double raw, int late)
Grade(double raw)
getRawScore()
getLatePenalty()
setRawScore(double newScore)
setLatePenalty(int newPenalty)
getAdjustedScore() // with late penalty

Programming in Java David G. Sullivan, Ph.D. 229

Revised GradeSet Class

public class GradeSet {
private String name;
private int possiblePoints;
private Grade[] grades;
private int gradeCount;

• Here's what one of these objects would look like in memory:

latePenalty 0

grades

gradeCount

nullnull

1

null

possiblePoints 30

nameq2

rawScore 26

…

"quiz 2"

GradeSet Constructor/Methods

• Constructor:
GradeSet(String name, int possPts, int numGrades)

• Accessor methods:
String getName()
int getPossiblePoints()
int getGradeCount()
Grade getGrade(int i) // get grade at position i
double averageGrade(boolean includePenalty)

• Mutator methods:
void setName(String name)
void setPossiblePoints(int possPoints)
void addGrade(Grade g)
Grade removeGrade(int i) // remove grade at posn i

• Let's review the code for these, and write some of them
together.

Programming in Java David G. Sullivan, Ph.D. 230

GradeSet Constructor/Methods

GradeSet Constructor/Methods

Programming in Java David G. Sullivan, Ph.D. 231

GradeSet: Adding a Grade

grades

gradeCount

nullnullnull

0

null

possiblePoints 100

name "PS 4"ps4

GradeSet ps4 = new GradeSet("PS 4", 100, 4);
ps4.addGrade(new Grade(95, 0));
ps4.addGrade(new Grade(80, 10));

GradeSet: Adding a Grade

grades

gradeCount

nullnull

1

null

possiblePoints 100

name "PS 4"ps4

GradeSet ps4 = new GradeSet("PS 4", 100, 4);
ps4.addGrade(new Grade(95, 0));
ps4.addGrade(new Grade(80, 10));

latePenalty 0

rawScore 95

Programming in Java David G. Sullivan, Ph.D. 232

GradeSet: Adding a Grade

grades

gradeCount

null

2

null

possiblePoints 100

name "PS 4"ps4

GradeSet ps4 = new GradeSet("PS 4", 100, 4);
ps4.addGrade(new Grade(95, 0));
ps4.addGrade(new Grade(80, 10));

latePenalty 0

rawScore 95

latePenalty 10

rawScore 80

Programming in Java David G. Sullivan, Ph.D. 233

Inheritance and Polymorphism

Boston University

David G. Sullivan, Ph.D.

A Class for Modeling an Automobile
public class Automobile {

private String make;
private String model;
private int year;
private int mileage;
private String plateNumber;
private int numSeats;
private boolean isSUV;

public Automobile(String make, String model, int year,
int numSeats, boolean isSUV) {

this.make = make;
this.model = model;
if (year < 1900) {

throw new IllegalArgumentException();
}
this.year = year;
this.numSeats = numSeats;
this.isSUV = isSUV;
this.mileage = 0;
this.plateNumber = "unknown";

}

public Automobile(String make, String model, int year) {
this(make, model, year, 5, false);

} // continued…

Programming in Java David G. Sullivan, Ph.D. 234

A Class for Modeling an Automobile (cont.)

public String getMake() {
return this.make;

}

public String getModel() {
return this.model;

}

public int getYear() {
return this.year;

}

public int getMileage() {
return this.mileage;

}

public String getPlateNumber() {
return this.plateNumber;

}

public int getNumSeats() {
return this.numSeats;

}

public boolean isSUV() {
return this.isSUV;

} // continued…

A Class for Modeling an Automobile (cont.)

public void setMileage(int newMileage) {
if (newMileage < this.mileage) {

throw new IllegalArgumentException();
}
this.mileage = newMileage;

}

public void setPlateNumber(String plate) {

this.plateNumber = plate;

}

public String toString() {
String str = this.make + " " + this.model;
str += "(" + this.numSeats + " seats)";
return str;

}
}

• There are no mutators for the other fields. Why not?

Programming in Java David G. Sullivan, Ph.D. 235

Modeling a Related Class

• What if we now want to write a class to represent a taxi?

• The Taxi class will have the same fields and methods
as the Automobile class.

• It will also have its own fields and methods:
taxiID getID, setID
fareTotal getFareTotal, addFare
numFares getNumFares, getAverageFare

resetFareInfo

• We may also want the Taxi versions of some of the
Automobile methods to behave differently. Examples:

• we may want the toString method to include values
from different fields

• we may want the getNumSeats method to return only
the number of seats available for passengers

Inheritance

• To avoid redefining all of the Automobile fields and methods,
we specify that the Taxi class extends the Automobile class:

public class Taxi extends Automobile {

• The Taxi class will inherit the fields and methods of the
Automobile class.

• it doesn't have to redefine them

Programming in Java David G. Sullivan, Ph.D. 236

A Class for Modeling a Taxi
public class Taxi extends Automobile {

// We don't need to include the fields
// from Automobile!
private String taxiID;
private double fareTotal;
private int numFares;

// constructor goes here...

// We don't need to include the methods
// from Automobile!

public String getID() {
return this.taxiID;

}

public void addFare(double fare) {
if (fare < 0) {

throw new IllegalArgumentException();
}
this.fareTotal += fare;
this.numFares++;

}
...

Using Inherited Methods

• Because Taxi extends Automobile, we can invoke a method
defined in the Automobile class on a Taxi object.

• example:
Taxi t = new Taxi(…);
t.setMileage(25000);

• This works even though there is no setMileage method
defined in the Taxi class!

• Taxi inherits it from Automobile

Programming in Java David G. Sullivan, Ph.D. 237

Overriding an Inherited Method

• A class can override an inherited method, replacing it
with its own version.

• To override a method, the new method must have the same:

• return type

• name

• number and types of parameters

• Example: our Taxi class can define its own toString method:

public String toString() {
return "Taxi (id = " + this.taxiID + ")";

}

• it overrides the toString method inherited from Automobile

Rethinking Our Design

• What if we also want to be able to capture information
about other types of vehicles?

• motorcycles

• trucks

• The classes for these other vehicles should not inherit from
Automobile. Why not?

• Solution: define a Vehicle class

• fields and methods common to all vehicles are defined there

• leave automobile-specific state and behavior in Automobile

• everything else is inherited from Vehicle

• define Motorcycle and Truck classes that also inherit
from Vehicle

Programming in Java David G. Sullivan, Ph.D. 238

A Class for Modeling a Vehicle
public class Vehicle {

private String make;
private String model;
private int year;
private int mileage;
private String plateNumber;
private int numWheels; // this was not in Automobile

public Vehicle(String make, String model, int year,
int numWheels) {

this.make = make;
this.model = model;
if (year < 1900) {

throw new IllegalArgumentException();
}
this.year = year;
this.numWheels = numWheels;
this.mileage = 0;
this.plateNumber = "unknown";

}

public String getMake() {
return this.make;

}

// etc.

Revised Automobile Class
public class Automobile extends Vehicle {

// make, model, etc. are now inherited from Vehicle

// The following are specific to automobiles,
// so we leave them here.
private int numSeats;
private boolean isSUV;

// constructor goes here...

// getMake(), etc. are now inherited from Vehicle

// The following are specific to automobiles,
// so we leave them here.
public int getNumSeats() {

return this.numSeats;
}

public boolean isSUV() {
return this.isSUV;

}
...

}

Programming in Java David G. Sullivan, Ph.D. 239

Inheritance Hierarchy

• Inheritance leads classes to be organized in a hierarchy:

• A class in Java inherits directly from at most one class.

• However, a class can inherit indirectly from a class higher up
in the hierarchy.

• example: Taxi inherits indirectly from Vehicle

Vehicle

Motorcycle Truck

TaxiLimousine TractorTrailerMovingVan

Automobile

Terminology

• When class C extends class D (directly or indirectly):

• class D is known as a superclass or base class of C

• super – comes above it in the hierarchy

• class C is known as a subclass or derived class of D

• sub – comes below it in the hierarchy

• Examples:

• Automobile is a superclass of
Taxi and Limosine

• Taxi is a subclass of
Automobile and Vehicle

Vehicle

TaxiLimousine

Automobile

Programming in Java David G. Sullivan, Ph.D. 240

Deciding Where to Define a Method

• Assume we only care about the number of axles in truck vehicles.

• Thus, we define the getNumAxles method in the Truck class,
rather than in the Vehicle class.

public int getNumAxles() {

return this.getNumWheels() / 2;
}

• it will be inherited by subclasses of Truck

• it won't be available to non-truck subclasses of Vehicle

• We override this method in the TractorTrailer class,
because tractor trailers have four wheels on all but the front axle:

public int getNumAxles() {
int numBackWheels = this.getNumWheels() – 2;

return 1 + numBackWheels/4;
}

What is Accessible From a Superclass?

• A subclass has direct access to the public fields and methods
of a superclass.

• A subclass does not have direct access to the private
fields and methods of a superclass.

• Example: we can think of an Automobile object as follows:

make

model

year

mileage

plateNumber

numSeats

isSUV

private fields inherited from Vehicle.
They cannot be accessed directly
by methods in Automobile.

fields defined in Automobile.
They can be accessed directly
by methods in Automobile.

numWheels

Programming in Java David G. Sullivan, Ph.D. 241

What is Accessible From a Superclass? (cont.)

• Example: now that make and model are defined in Vehicle,
we're no longer able to access them directly in the
Automobile version of toString:

public String toString() {
String str = this.make + " " + this.model;
str += " (" + this.numSeats + " seats)";
return str;

}

• Instead, we need to make method calls to access the
inherited fields:

public String toString() {
String str = this.getMake() + " " +

this.getModel();
str += " (" + this.numSeats + " seats)";
return str;

}

won't compile

What is Accessible From a Superclass? (cont.)

• Faulty approach: redefine the inherited fields in the subclass

public class Vehicle {
private String make;
private String model;
…

}

public class Automobile extends Vehicle {
private String make; // NOT a good idea!
private String model;
…

}

• You should NOT do this!

Programming in Java David G. Sullivan, Ph.D. 242

Writing a Constructor for a Subclass

• Another example of illegally accessing inherited private fields:

public Automobile(String make, String model, int year,
int numSeats, boolean isSUV) {

this.make = make;
this.model = model;
...

}

• To initialize inherited fields, a constructor should invoke
a constructor from the superclass.

public Automobile(String make, String model, int year,
int numSeats, boolean isSUV) {
super(make, model, year, 4); // 4 is for numWheels
this.numSeats = numSeats;
this.isSUV = isSUV;

}

• use the keyword super followed by appropriate
parameters for the superclass constructor

• must be done as the very first line of the constructor

Writing a Constructor for a Subclass (cont.)

• If a subclass constructor doesn't explicitly invoke a
superclass constructor, the compiler tries to insert a call
to the superclass constructor with no parameters.

• If there isn't such a constructor, we get a compile-time error.

• example: this constructor won't compile:

public Taxi(String make, String model, int year, String ID)
{

this.taxiID = ID;
}

• the compiler attempts to insert the following call:
super();

• there isn't an Automobile constructor with no parameters

Programming in Java David G. Sullivan, Ph.D. 243

The Object Class

• If a class doesn't explicitly extend another class,
it implicitly extends a special class called Object.

• Thus, the Object class is at the top of the class hierarchy.

• all classes are subclasses of this class

• the default toString and equals methods are defined
in this class

Motorcycle Automobile Truck

Object

String TemperatureVehicle

... ...

Inheritance in the Java API

Programming in Java David G. Sullivan, Ph.D. 244

More Examples of Method Overriding

• Vehicle inherits the fields and methods of Object.

• The inherited toString method isn't very helpful.

• We define a Vehicle version that overrides the inherited one:

public String toString() { // Vehicle version
String str = this.make + " " + this.model;
return str;

}

• When toString is invoked on a Vehicle object,
the Vehicle version is executed:

Vehicle v = new Vehicle("Radio Flyer",
"Classic Tricycle", 2002, 3);

System.out.println(v);

outputs: Radio Flyer Classic Tricycle

More Examples of Method Overriding (cont.)

• The Automobile class inherits the Vehicle version of
toString.

• If we didn't define a toString() method in Automobile,
the inherited version would be used.

• The Automobile version overrides the Vehicle version
so that the number of seats can be included in the string:

public String toString() {
String str = this.getMake() + " " +

this.getModel();
str += " (" + this.numSeats + " seats)";
return str;

}

Programming in Java David G. Sullivan, Ph.D. 245

Invoking an Overriden Method

• When a subclass overrides an inherited method, we can
invoke the inherited version by using the keyword super.

• Example: the Automobile version of toString() begins with
the same fields as the Vehicle version:

public String toString() {
String str = this.getMake() + " " +

this.getModel();
str += " (" + this.numSeats + " seats)";
return str;

}

• instead of calling the accessor methods, we can do this:
public String toString() {

String str = super.toString();
str += " (" + this.numSeats + " seats)";
return str;

}

• A square is a special type of rectangle.

• but the width and height must be the same

• Assume that we also want Square objects
to have a field for the unit of measurement (e.g., "cm").

• Square objects should mostly behave like Rectangle objects:
Rectangle r = new Rectangle(20, 30);
int area1 = r.area();

Square sq = new Square(40, "cm");
int area2 = sq.area();

• But there may be differences as well:

System.out.println(r);

System.out.println(sq);

output:
20 x 30

Another Example of Inheritance

output:
square with 40-cm sides

Programming in Java David G. Sullivan, Ph.D. 246

Another Example of Inheritance (cont.)
public class Rectangle {

private int width;
private int height;
...

public Rectangle(int initWidth, int initHeight) {
...

}

public int getWidth() {
...

}
... // other methods

}

public class Square extends Rectangle {
private String unit; // inherits other fields

public Square(int side, String unit) {
super(side, side);
this.unit = unit;

}

public String toString() { // overrides
String s = "square with ";
s += this.getWidth() + "-";
s += this.unit + " sides";
return s;

} // inherits other methods
}

Another Example of Inheritance (cont.)
public class Rectangle {

private int width;
private int height;
...

public Rectangle(int initWidth, int initHeight) {
...

}

public int getWidth() {
...

}
... // other methods

}

public class Square extends Rectangle {
private String unit; // inherits other fields

public Square(int side, String unit) {
super(side, side);
this.unit = unit;

}

public String toString() { // overrides
String s = "square with ";
s += this.getWidth() + "-";
s += this.unit + " sides";
return s;

} // inherits other methods
}

Programming in Java David G. Sullivan, Ph.D. 247

Another Example of Method Overriding

• The Rectangle class has the following mutator method:

public void setWidth(int w) {
if (w <= 0) {

throw new IllegalArgumentException();
}
this.width = w;

}

• The Square class inherits it. Why should we override it?

Which of these works?

A. // Square version, which overrides
// the version inherited from Rectangle
public void setWidth(int w) {

this.width = w;
this.height = w;

}

B. // Square version, which overrides
// the version inherited from Rectangle
public void setWidth(int w) {

this.setWidth(w);
this.setHeight(w);

}

C. either version would work

D. neither version would work

Programming in Java David G. Sullivan, Ph.D. 248

Accessing Methods from the Superclass

• The solution: use super to access the inherited version
of the method – the one we are overriding:

// Square version
public void setWidth(int w) {

super.setWidth(w); // call the Rectangle version
super.setHeight(w);

}

• Only use super if you want to call a method from
the superclass that has been overridden.

• If the method has not been overridden, use this as usual.

Accessing Methods from the Superclass

• We need to override all of the inherited mutators:

// Square versions
public void setWidth(int w) {

super.setWidth(w);
super.setHeight(w);

}

public void setHeight(int h) {
super.setWidth(h);
super.setHeight(h);

}

public void grow(int dw, int dh) {
if (dw != dh) {

throw new IllegalArgumentException();
}
super.setWidth(this.getWidth() + dw);
super.setHeight(this.getHeight() + dh);

}
getWidth() and getHeight()
are not overridden, so we use this.

Programming in Java David G. Sullivan, Ph.D. 249

is-a Relationships

• We use inheritance to capture is-a relationships.

• an automobile is a vehicle

• a taxi is an automobile

• a tractor trailer is a truck

Motorcycle Truck

TaxiLimousine TractorTrailerMovingVan

Automobile

Object

Vehicle

has-a Relationships

• Another type of relationship is a has-a relationship.

• one type of object "owns" another type of object

• example: a driver has a vehicle

• Inheritance should not be used to capture has-a relationships.

• it does not make sense to make the Driver class
a subclass of Vehicle

• Instead, we give the "owner" object a field that refers to
the "owned" object:

public class Driver {
String name;
String ID;
Vehicle v;
...

Programming in Java David G. Sullivan, Ph.D. 250

Polymorphism

• We've been using reference variables like this:

Automobile a = new Automobile("Ford", "Model T", …);

• variable a is declared to be of type Automobile

• it holds a reference to an Automobile object

• In addition, a reference variable of type T can hold a reference
to an object from a subclass of T:

Automobile a = new Taxi("Ford", "Tempo", …);

• this works because Taxi is a subclass of Automobile

• a taxi is an automobile!

• The name for this feature of Java is polymorphism.

• from the Greek for “many forms”

• the same code can be used with objects of different types!

Polymorphism and Collections of Objects

• Polymorphism is useful when we have a collection of objects
of different but related types.

• Example:

• let's say that a company has a collection of vehicles
of different types

• we can store all of them in an array of type Vehicle:

Vehicle[] fleet = new Vehicle[5];
fleet[0] = new Automobile("Honda", "Civic", …);
fleet[1] = new Motorcycle("Harley", ...);
fleet[2] = new TractorTrailer("Mack", ...);
fleet[3] = new Taxi("Ford", …);
fleet[4] = new Truck("Dodge", …);

Programming in Java David G. Sullivan, Ph.D. 251

Processing a Collection of Objects

• We can determine the average age of the vehicles in the
company's fleet by doing the following:

int totalAge = 0;
for (int i = 0; i < fleet.length; i++) {

int age = CURRENT_YEAR - fleet[i].getYear();
totalAge += age;

}
double averageAge = (double)totalAge / fleet.length;

• We can invoke getYear() on each object in the array,
regardless of its type.

• they are instances of Vehicle or a subclass of Vehicle

• thus, they must all have a getYear() method

Practice with Polymorphism

• Which of these assignments would be allowed?
Vehicle v1 = new Motorcycle(…);
TractorTrailer t1 = new Truck(…);
Truck t2 = new MovingVan(…);
Taxi t3 = new Automobile(…);
Vehicle v2 = new TractorTrailer(…);
MovingVan m1 = new TractorTrailer(…);

Motorcycle Truck

TaxiLimousine TractorTrailerMovingVan

Automobile

Object

Vehicle

Programming in Java David G. Sullivan, Ph.D. 252

Declared Type vs. Actual Type
• An object's declared type may not match its actual type:

• declared type: type specified when declaring a variable

• actual type: type specified when creating an object

• Recall this client code:

Vehicle[] fleet = new Vehicle[5];
fleet[0] = new Automobile("Honda", "Civic", 2005);
fleet[1] = new Motorcycle("Harley", …);
fleet[2] = new TractorTrailer("Mack", …);

• Here are the types:

object declared type actual type
fleet[0] Vehicle Automobile

fleet[1] Vehicle Motorcycle

fleet[2] Vehicle TractorTrailer

• The compiler uses the declared type of an object
to determine if a method call is valid.

• starts at the declared type, and goes up
the inheritance hierarchy as needed
looking for a version of the method

• if it can't find a version, the method call
will not compile

• Example: the following would not work:

Vehicle[] fleet = new Vehicle[5];
...
fleet[2] = new TractorTrailer("Mack",…);
...
System.out.println(fleet[2].getNumAxles());

• the declared type of fleet[2] is Vehicle

• there's no getNumAxles() method defined in
or inherited by Vehicle

Determining if a Method Call is Valid

Vehicle

Truck

TractorTrailer

Programming in Java David G. Sullivan, Ph.D. 253

• In such cases, we can use casting to create a reference with
the necessary declared type:

Vehicle[] fleet = new Vehicle[5];
...
fleet[2] = new TractorTrailer("Mack", …);
...
TractorTrailer t = (TractorTrailer)fleet[2];

• The following will work:
System.out.println(t.getNumAxles());

• the declared type of t is TractorTrailer

• there is a getNumAxles() method defined in
TractorTrailer, so the compiler is happy

Determining if a Method Call is Valid (cont.)

Determining Which Method to Execute

• Truck also has a getNumAxles method, so this would be
another way to handle the previous problem:

Vehicle[] fleet = new Vehicle[5];
...
fleet[2] = new TractorTrailer("Mack", …);
...
Truck t2 = (Truck)fleet[2];
System.out.println(t2.getNumAxles());

• The object represented by t2 has:

• a declared type of ______________

• an actual type of _______________

• Both Truck and TractorTrailer have a getNumAxles.
Which version will be executed?

• More generally, how does the interpreter decide which version
of a method should be used?

Programming in Java David G. Sullivan, Ph.D. 254

Dynamic Binding

• At runtime, the Java interpreter selects the version of a method
that is appropriate to the actual type of the object.

• starts at the actual type, and goes up the inheritance
hierarchy as needed until it finds a version of the method

• known as dynamic binding

• Given the code from the previous slide

Vehicle[] fleet = new Vehicle[5]
...
fleet[2] = new TractorTrailer("Mack", …);
...
Truck t2 = (Truck)fleet[2];

System.out.println(t2.getNumAxles());

the TractorTrailer version of getNumAxles would be run

• TractorTrailer is the actual type of t2, and that class has
its own version of getNumAxles

Dynamic Binding (cont.)

• Another example:
public static void printFleet(Vehicle[] fleet) {

for (int i = 0; i < fleet.length; i++) {
System.out.println(fleet[i]);

}
}

• the toString() method is implicitly invoked on each
element of the array when we go to print it.

• the appropriate version is selected by dynamic binding

• note: the selection must happen at runtime, because
the actual types of the objects may not be known when
the code is compiled

Programming in Java David G. Sullivan, Ph.D. 255

Dynamic Binding (cont.)

• Recall our initialization of the array:

Vehicle[] fleet = new Vehicle[5];
fleet[0] = new Automobile("Honda", "Civic", …);
fleet[1] = new Motorcycle("Harley", …);
fleet[2] = new TractorTrailer("Mack", …);
...

• System.out.println(fleet[0]); will invoke the
Automobile version of the toString() method.

• Motorcycle does not define its own toString() method,
so System.out.println(fleet[1]); will invoke the Vehicle
version of toString(), which is inherited by Motorcycle.

• TractorTrailer does not define its own toString()

but Truck does, so System.out.println(fleet[2]);

will invoke the Truck version of toString(), which is inherited
by TractorTrailer.

Dynamic Binding (cont.)

• Dynamic binding also applies to method calls on the
called object that occur within other methods.

• Example: the Truck class has the following toString method:

public String toString() {
String str = this.getMake() + " " +

this.getModel();
str = str + ", capacity = " + this.capacity;
str = str + ", " + this.getNumAxles() + " axles";
return str;

}

• The TractorTrailer class inherits it and does not override it.

• When toString is called on a TractorTrailer object:

• this Truck version of toString() will run

• the TractorTrailer version of getNumAxles()
will run when the code above is executed

Programming in Java David G. Sullivan, Ph.D. 256

The Power of Polymorphism

• Recall our printFleet method:
public static void printFleet(Vehicle[] fleet) {

for (int i = 0; i < fleet.length; i++) {
System.out.println(fleet[i]);

}
}

• polymorphism allows this method to use a single println
statement to print the appropriate info. for any kind of vehicle.

• Without polymorphism, we would need a large if-else-if:
if (fleet[i] is an Automobile) {

print the appropriate info for Automobiles
} else if (fleet[i] is a Truck) {

print the appropriate info for Trucks
} else if ...

• Polymorphism allows us to easily write code that works for
more than one type of object.

Polymorphism and the Object Class

• The Object class is a superclass of every other class.

• Thus, we can use an Object variable to store a reference
to any object.

Object o1 = "Hello World";
Object o2 = new Temperature(20, 'C');
Object o3 = new Taxi("Ford", "Tempo", 2000, "T253");

Programming in Java David G. Sullivan, Ph.D. 257

Summary and Extra Practice

• To determine if a method call is valid:

• start at the declared type

• go up the hierarchy as needed to see if you can find the
specified method in the declared type or a superclass

• if you don't find it, the method call is not valid

• Given the following:
TractorTrailer t1 = new TractorTrailer(…);
Vehicle v = new Truck(…);
MovingVan m = new MovingVan(…);
Truck t2 = new TractorTrailer(…);

• Which of the following are valid?
v.getNumAxles()
m.getNumAxles()
t1.getMake()
t1.isSleeper()
t2.isSleeper()

Truck
getNumAxles

TractorTrailer
getNumAxles
isSleeper

MovingVan

Vehicle
getMake

Summary and Extra Practice (cont.)

• To determine which version of a method will run (dynamic binding):

• start at the actual type

• go up the hierarchy as needed until you find the method

• the first version you encounter is the one that will run

• Given the following:
TractorTrailer t1 = new TractorTrailer(…);
Vehicle v = new Truck(…);
MovingVan m = new MovingVan(…);
Truck t2 = new TractorTrailer(…);

• Which version of the method will run?
m.getNumAxles()
t1.getNumAxles()
t2.getNumAxles()
v.getMake()
t2.getMake()

Truck
getNumAxles

TractorTrailer
getNumAxles
isSleeper

MovingVan

Vehicle
getMake

Programming in Java David G. Sullivan, Ph.D. 258

More Practice
public class E extends G {

public void method2() {
System.out.print("E 2 ");
this.method1();

}
public void method3() {

System.out.print("E 3 ");
this.method1();

}
}
public class F extends G {

public void method2() {
System.out.print("F 2 ");

}
}
public class G {

public void method1() {
System.out.print("G 1 ");

}
public void method2() {

System.out.print("G 2 ");
}

}
public class H extends E {

public void method1() {
System.out.print("H 1 ");

}
}

More Practice (cont.)

• Which of these would compile and which would not?
E e1 = new E();

E e2 = new H();

E e3 = new G();

E e4 = new F();

G g1 = new H();

G g2 = new F();

H h1 = new H();

• To answer these questions, draw the inheritance hierarchy:

Programming in Java David G. Sullivan, Ph.D. 259

Here are the classes again…
public class E extends G {

public void method2() {
System.out.print("E 2 ");
this.method1();

}
public void method3() {

System.out.print("E 3 ");
this.method1();

}
}
public class F extends G {

public void method2() {
System.out.print("F 2 ");

}
}
public class G {

public void method1() {
System.out.print("G 1 ");

}
public void method2() {

System.out.print("G 2 ");
}

}
public class H extends E {

public void method1() {
System.out.print("H 1 ");

}
}

More Practice (cont.)
E e1 = new E();
G g1 = new H();
G g2 = new F();

• Which of the following would compile and which would not?
For the ones that would compile, what is the output?

e1.method1();

e1.method2();

e1.method3();

g1.method1();

g1.method2();

g1.method3();

g2.method1();

g2.method2();

g2.method3();

G
method1
method2

F
method2

E
method2
method3

H
method1

Programming in Java David G. Sullivan, Ph.D. 260

	unit1-2
	unit1-3
	unit2-1
	unit2-2
	unit3-1
	unit3-2
	unit3-3
	unit3-4
	unit4-1
	unit5-1
	unit5-2
	Blank Page

