
In Proceedings of AAAI’96: The Fall Symposium on Flexible Computation in Intelligent Systems, Cambridge, MA, November 1996.

An Admission Control Paradigm for Value�cognizant Real�Time Databases�

Azer Bestavros

�best�cs�bu�edu�

Sue Nagy

�nagy�cs�bu�edu�

Computer Science Department

Boston University

Boston� MA �����

Abstract

We propose and evaluate an admission control paradigm for
RTDBS� in which a transaction is submitted to the system
as a pair of processes� a primary task and a compensat�
ing task� The execution requirements of the primary task
are not known a priori� whereas those of the compensating
task are known a priori� Upon the submission of a transac�
tion� anAdmission Control Mechanism is employed to decide
whether to admit or reject that transaction� Once admit�
ted� a transaction is guaranteed to �nish executing before
its deadline� A transaction is considered to have �nished
executing if exactly one of two things occur� Either its pri�
mary task is completed �successful commitment�� or its com�
pensating task is completed �safe termination�� Committed
transactions bring a pro�t to the system� whereas a termi�
nated transaction brings no pro�t� The goal of the admission
control and scheduling protocols �e�g� concurrency control�
I�O scheduling� memory management� employed in the sys�
tem is to maximize system pro�t� We describe a number of
admission control strategies and contrast �through simula�
tions� their relative performance�

� Introduction

The main challenge involved in scheduling transactions in
a Real�Time DataBase Management System �RTDBS� is
that the resources needed to execute a transaction are not
known a priori� For example� the set of objects to be read
�written� by a transaction may be dependent on user input
�e�g� in a stock market application� or dependent on sensory
inputs �e�g� in a process control application�� Therefore�
the a priori reservation of resources �e�g� read�write locks
on data objects� to guarantee a particular Worst Case Ex�
ecution Time �WCET� becomes impossible�and the non�
deterministic delays associated with the on�the�	y acquisi�
tion of such resources pose the real challenge of integrating
scheduling and concurrency control techniques�

Current real�time concurrency control mechanisms re�
solve the above challenge by relaxing the deadline seman�
tics �thus suggesting best�e
ort mechanisms for concurrency
control in the presence of soft and �rm� but not hard dead�
lines�� or by restricting the set of acceptable transactions to
a �nite set of transactions with execution requirements that
are known a priori �thus reducing the concurrency control

�This work has been partially supported by NSF �grant CCR�
���������

problem to that of resource management and scheduling���

In this paper� we propose and evaluate� through simula�
tion experiments� a paradigm that preserves the hard dead�
line semantics without assuming complete a priori knowl�
edge of transaction execution requirements� Our paradigm
allows the system to reject a transaction that is submitted
for execution� or else admit it and thus guarantee that one
of two outcomes will occur by the transaction�s deadline�
either the transaction will successfully commit through the
execution of a primary task� or the transaction will safely ter�
minate through the execution of a compensating task� The
system assumes no a priori knowledge of the execution re�
quirements of the primary task� but assumes that theWCET
and read�write sets of the compensating task are known�
Through the use of appropriate admission control policies�
we show that it is possible for the system to maximize its
pro�t dynamically�

Our research is motivated by research problems in ap�
plication areas such as the stock market and robotics� Con�
sider� for example� automated �nancial trading �
��

� in
which security transactions are made to buy and sell stocks
�as well as other types of securities�� Information concerning
each stock �e�g� stock id� description� current market price�
broker dealers� broker dealers� shares� etc�� is stored in a
database� Since a transaction is dependent upon user input�
the set of database objects to be read and written cannot
be determined a priori�

Security transactions are submitted to the system for
execution and for those which are accepted� the trade� also
known as the purchase or sale of securities� is executed� The
settlement date or deadline of a security transaction is the
time by which the transfer of the securities �for the seller�
or the cash �for the buyer� must be completed� The pri�
mary task of each security transaction performs the follow�
ing operations� veri�es the trade order� transmits the order�
checks for an order match between the seller and buyer� and
performs any necessary follow�up actions� If any of these
operations fail� the compensating task� which is scheduled
to start� prior to the settlement date� is executed and the
corresponding primary task is aborted� The compensating
task� which possess knowledge �i�e� buyer�seller name� ad�
dress� phone number� email address� etc�� concerning the
buyer and seller� will notify both parties that the trade has
not gone through�

�In this paper	 we do not consider approaches that attempt to
relax ACID properties
serializability in particular�

�The exact start time is determined by calculating the time to
process the read�write set of the compensating task and subtracting
that sum from the transaction�s deadline�

Another motivating application is industrial automa�
tion processes ���� which commonly employ robots� typically
in hazardous environments� Here� a real�time database is
used to represent the state of the world� i�e� the location of
the robot arms and of the physical components which are
moved by the robots arms� The robot may be required to
complete certain actions by a speci�ed time before proceed�
ing to the next set of actions� Compensating actions are
needed� for example� if a robot arm drops the object that
it is holding �e�g� mechanical grasp failure� or if one arm is
moving but its path is obstructed by another arm� we must
be able to recover from these potentially precarious situa�
tions� We assert that the assumption of a priori knowledge
of compensating actions for these types of applications is a
fair one�

We start in section � with an overview of our transac�
tion processing model and the di
erent components therein�
Next� in section
 we describe the various Admission Control
Strategies to be used in our simulations� Next� in section �
we present and discuss our simulation baseline model and
results� In section �� we review previous research work and
highlight our contributions� We conclude in section � with
a summary and a description of future research directions�

� System Model

Each transaction submitted to the system consists of two
components� a primary task and a compensating task� The
execution requirements for the primary task are not known a
priori� whereas those for the compensating task are known
a priori�� Figure � shows the various components in our
RTDBS�

CTQ

PTQ

CPU

Finish
Sink

Sched

Preempt

Source

WACM CACM

ACM
Admit

Submit

Reject

CCM

Commit/Terminate

Figure �� Major System Components

When a transaction is submitted to the system� an Ad�
mission Control Mechanism �ACM� is employed to decide
whether to admit or reject that transaction� Once admit�
ted� a transaction is guaranteed to �nish executing before
its deadline� A transaction is considered to have �nished ex�
ecuting if exactly one of two things occur� either its primary
task is completed� in which case we say that the transaction
has successfully committed� or its compensating task is com�
pleted� in which case we say that the transaction has safely
terminated� A committed transaction brings a positive pro�t
to the system� whereas a terminated transaction brings no

�While the execution time of a transaction�s primary task is not
known a priori	 we assume that this execution time cannot exceed
the di
erence between the transaction�s deadline and its submission
time�

pro�t� The goal of the admission control and scheduling
protocols employed in the system is to maximize pro�t�

When submitted to the system� each transaction is as�
sociated with a deadline and a value� The value of a trans�
action represents the pro�t that the system makes if the
transaction is successfully committed �i�e� its primary task
is committed by its deadline�� In this paper we consider
only hard deadlines and thus assume that no transaction
will �nish �i�e� successfully commit or safely terminate� past
its deadline�� Also� we assume that all transactions bring
in equal pro�t when committed on time� Moreover� once
admitted to the system� a transaction is absolutely guaran�
teed �as opposed to conditionally guaranteed� to �nish and
cannot now be rejected in order to accommodate a newly
submitted transaction�

The ACM consists of two major components� a Con�
currency Admission Control Manager �CACM� and aWork�
load Admission Control Manager �WACM�� The CACM is
responsible for ensuring that admitted transactions do not
overburden the system by requiring a level of concurrency
that is not sustainable� The WACM is responsible for en�
suring that admitted transactions do not overburden the
system by requiring computing resources �e�g� CPU time�
that are not sustainable�

In this paper we assume that an Optimistic Concur�
rency Control �OCC� Algorithm with forward validation
�such as OCC�BC ���� or SCC�nS ���� is used to ensure se�
rializability� OCC techniques are better suited for systems
with controllable utilization ����� which is the case in a sys�
tem with admission control like ours��

We adopt a ��level priority scheme to schedule system
resources �e�g� CPU�� In particular� all compensating tasks
are assumed to have a higher priority than primary tasks�
Thus� a primary task may be preempted �or aborted� by a
compensating task� whereas a compensating task cannot be
preempted by either a primary task or another compensating
task under any condition�

��� Workload Admission Control Manager

The source contains a set of transactions which are gen�
erated o
�line� Each enters the system at a random time
and is �rst processed by the ACM� The decision of whether
to admit or reject a transaction submitted for execution is
based upon a feedback mechanism that takes into consid�
eration the current demand on the resources in the system�
This decision is motivated by the overall goal for maximizing
pro�t by maximizing the number of successful commitments
�when primary tasks �nish� and minimizing the number of
safe terminations �when compensating tasks �nish�� For ex�
ample� if the percentage of the CPU bandwidth committed
to compensating tasks �of admitted primary tasks� within
the interval from the current time to the deadline of the sub�
mitted transaction is high� it may prudent for the WACM
to reject the submitted transaction� For transactions which
successfully pass through the admission control process� the
WACM attempts to schedule the compensating task in the
Compensating Task Queue �CTQ� whose organization is dis�
cussed in section ��
� Even if the demand on the system�s

�Our current research involves extending our results to soft and
�rm deadline systems by allowing for a pro�t�loss past a transaction�s
deadline� This is similar to our work in ����

�Our choice of an OCC�based algorithm is not crucial for the pur�
pose of this paper� In particular	 all of our algorithms could be
adapted to a Pessimistic Concurrency Control �e�g� �PL�HP��

resources is low� a transaction is rejected if it is not fea�
sible to schedule its compensating task �e�g� it cannot be
accommodated in the CTQ��

��� Concurrency Admission Control Manager

In order to ensure that compensating tasks can execute
unhindered �and thus complete within their WCETs� the
CACM must guarantee that the admission of a transaction
into the system does not result in data con	icts between
the compensating task of that transaction and other already
admitted transactions� In a uniprocessor system employing
an OCC algorithm with forward validation� compensating
tasks �which cannot be preempted� are guaranteed to �nish
execution without incurring any restart delays� This is not
true in a multiprocessor system� where multiple compensat�
ing tasks may be executing concurrently� In such a system�
the CACM ensures that only those compensating tasks that
do not con	ict with each other are allowed to overlap when
executed� The dotted box around the CACM in �gure �
denotes that it has not yet been implemented�

��� Processor Scheduling Algorithm

There are two queues managed by the processor scheduler�
the Primary Task Queue �PTQ� and the Compensating Task
Queue �CTQ�� Each admitted transaction contributes one
entry in each of these queues� A primary task is ready to
execute as soon as it is enqueued in the PTQ� whereas a
compensating task must wait for its start time� speci�ed by
the ACM� As indicated before� compensating tasks execute
at a priority higher than that of the primary tasks� Thus�
the scheduling algorithm will always preempt a primary task
in favor of a compensating task which is ready to execute�

Since all tasks in the PTQ are ready to execute� a
scheduling algorithm must be used to apportion the CPU
time amongst these tasks� We use the Earliest Deadline
First algorithm �EDF� ����� which is optimal for a unipro�
cessor system with independent� preemptible tasks having
arbitrary deadlines ����

The CTQ is organized as a series of slots� one for each
compensating task� Each slot contains the compensating
task id as well as its start and end times� Slots are order
according to ascending start time� The CPU continues to
service primary tasks until all are �nished or a compensating
task must begin executing� i�e� its start time has arrived� In
the later case� the primary task currently using the CPU is
preempted and enqueued back into the PTQ where it awaits
further processing� if the compensating task is associated
with a di
erent primary task� Otherwise� the primary task
is aborted and its compensating task executes�

��� Concurrency Control Manager

As each transaction �nishes its execution� either by the com�
mitment of its primary task or by the safe termination of
its compensating task� the CCM must ensure that all other
active transactions �i�e� primary tasks admitted to the sys�
tem� that have data con	icts with the �nished transaction
are handled according to the concurrency control protocol
in e
ect� In the case of OCC�BC� con	icting �primary tasks
of� transactions are restarted whereas with SCC�nS� we roll�
back the �primary tasks of� transactions to a point preced�
ing the con	icting action� There is no need to check for

data con	icts with other compensating tasks in either a uni
or multiprocessor system� In the former case� only � com�
pensating task is active at a time� and in the later case�
the CACM prohibits compensating tasks which access the
same data to overlap their executions� Upon the success�
ful commitment of a primary task� the CCM removes the
corresponding compensating task from the CTQ and marks
its slot as free� All transactions� whether �nished or re�
jected� are removed from the system and sent to the sink
which generates statistical information used to evaluate the
system performance�

� Optimizing Pro�t through ACM

In order to maximize the value added to the system from
the successful commitment of transactions� the ACM must
admit �enough� transactions�but not too many�to make
use of the system capacity� Admitting too many transac�
tions results in the system being overloaded� which results
in having to be content with most transactions safely termi�
nating �i�e� not successfully committing�� which minimizes
the pro�t to the system� We use the term thrashing to coin
this condition �i�e� the system is busy� yet doing nothing of
value��

As indicated before� the main determinant of whether
transactions are admitted into the system is the schedula�
bility of compensating tasks� In this section we present a
number of techniques that could be used by the WACM and
contrast their performance�

First�Fit �FF� Using this technique� the compensating task
of a transaction is inserted in the CTQ at the latest slot that
satis�es its WCET� If no slot is big enough to �t the com�
pensating task� then the transaction is rejected� otherwise it
is admitted�

Latest�Fit �LF� Using this technique� the compensating
task of a transaction is inserted in the CTQ at the latest
slot� If the slot is not large enough� then the compensating
tasks preceding that slot are rescheduled to start at earlier
times so as to �make room� for the new compensating task�
If this rescheduling is not possible�because it leads to a
compensating task having to be rescheduled before the cur�
rent time�then the transaction is rejected� otherwise it is
admitted�

Latest�Marginal�Fit �LMF� This technique is identical to
Latest�Fit� except that the scheduling of a compensating
task�and� if necessary� the ensuing rescheduling of other
compensating tasks�is conditional on whether or not the
percentage of CPU time allotted to compensating tasks� is
below a preset margin or threshold� If compensating tasks
scheduled so far utilize CPU bandwidth above that margin�
then the transaction is rejected� otherwise Latest�Fit �as de�
scribed before� is attempted�

Latest�Adaptable�Fit �LAF� This technique is identical to
Latest�Marginal�Fit� except that the threshold used to gauge
the CPU bandwidth alloted to compensating tasks is set
dynamically� based on measured variables� such as arrival
rate of transactions� distribution of computation times for
successfully committed primary tasks as it relates to the

�within a window of time determined by the current time and the
deadline of the submitted transaction

distribution of computation times for compensating tasks�
probability of con	ict over database objects �e�g� transaction
read�write mix��

Both FF and LF continue to admit transactions into
the system as long as compensating tasks are schedulable�
In other words� there is no feedback mechanism �admission
control� that would prevent thrashing� LMF implements
such a mechanism by refraining from admitting new trans�
actions� once the percentage of CPU bandwidth allocated to
compensating tasks reaches a preset static threshold� LAF
does the same� but allows that threshold to be determined
dynamically using a table lookup procedure� The table is
computed o
�line �using simulations� to determine the opti�
mum quiescent value for the threshold under a host of other
parameters�

� Performance Evaluation

We have implemented the above ACM policies for a unipro�
cessor system using OCC�BC� In this section we show the
value of admission control by comparing the performance
achievable through FF� LF� LMF� and LAF� Since we as�
sume that all transactions bring in equal pro�t when com�
mitted before their deadlines� we desire to maximize the
number of primary task completions while minimizing the
number of compensating task completions �i�e� primary task
abortions��

Table � shows the baseline parameters for our simu�
lations� We assume a �����page memory�resident database�
The primary task of each transaction reads �� pages selected
at random with a ��� update probability� The CPU time
needed to process a read or a write is ��� ms� Thus� in the
absence of any data or resource con	icts� the primary task
of each transaction would need a serial execution time of
�� ms CPU time�� The compensating task of each trans�
action follows a normal distribution with a mean of �� ms
and standard deviation of � ms� This amounts to an average
of � page accesses� Transaction deadlines are related to the
serial execution time through a slack factor� such that �dead�
line time � arrival time� � SlackFactor � serial execution
time�

Parameter Meaning Value

ArrivalRate Transaction arrival rate � � ��� TPS
DBsize Database size in pages �����
Xsize Number of reads�transaction ��
CPUTime CPU time per page access �	� ms
UpdateProb Update Probability �	��
CTCompTime Mean Compensating Time �� ms
CTStdDev St	 Dev	 of CT Time �	� CTCompTime
SlackFactor Slack factor �
TaskSchd Task scheduling protocol EDF
CTSchd CT scheduling protocol FF� LF� LMF
Thrsh CT computation threshold �	���
CCntrl Concurrency Control protocol OCC�BC

Table �� Baseline Workload Parameters

The transaction inter�arrival rate� which is drawn from
an exponential distribution� is varied from � transactions per
second up to �� transactions per second in increments of ��

�Notice that these �gures �i�e� number of pages accessed and serial
execution time� are only needed to generate the workload fed to the
simulator� They are not known to the ACM�

which represents a light�to�medium loaded system� We used
two additional arrival rates of �� and ��� transactions per
second to experiment with a very heavy loaded system� Each
simulation was run four times� each time with a di
erent
seed� for ������� ms� The results depicted are the average
over the four runs�

Figure � shows the absolute number of successfully com�
mitted transactions� which is a measure of the value�added
to �or pro�t of� the system� under the baseline parame�
ters shown in table �� Under light�to�medium loads �arrival
rates � �� TPS�� the performance of FF and that of LF are
identical� Under medium�to�heavy �arrival rates � �� TPS�
loads FF performs slightly better� This is expected due to
LF�s tighter packing of compensating tasks via rescheduling�
which results in the admission of more transactions� thus
resulting in a more pronounced thrashing behavior� Under
light�to�medium loads� the performance of LMF is indistin�
guishable from that of FF or LF� but under medium�to�
heavy loads LMF manages to avoid thrashing� thus keeping
the system�s pro�t in check with its capacity�

 500

1000

1500

2000

2500

 0 20 40 60 80 100

LMF @ 0.125

of Commits
System Profit

LF

FF

Arrival rate (TPS)

Figure �� Performance of FF� LF� and LMF

The value of the threshold to be used in LMF is key
to its performance� As we explained before� the optimal
value for this threshold depends on many parameters� most
of which cannot be estimated a priori� One such parameter
is the arrival rate of transactions� To demonstrate this� we
ran a set of experiments using LMF� in which we varied the
value of the threshold and the transaction arrival rates� Fig�
ure
 shows the percentage of submitted transactions that
was successfully committed by LMF�

Figure
 shows that for lightly�loaded systems �arrival
rates less than �� TPS�� the performance is unimodal� thus
any threshold less than � is not optimal� This implies that
at such low loads all transactions should be admitted� mak�
ing the performance of LMF identical to that of LF� For
moderately�loaded and heavily�loaded systems� Figure
 in�
dicates that an optimum threshold exists for each arrival
rate� Setting the threshold to that optimal value yields
the highest percentage of successful commitments� and thus

Commit %

Threshold of LMF

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

0.00 0.20 0.40 0.60 0.80 1.00

100 TPS
75 TPS

50 TPS
45 TPS

40 TPS

35 TPS

30 TPS

25 TPS

20 TPS

15 TPS

10 TPS

 5 TPS

Figure
� E
ect of threshold setting on LMF performance

yields the highest possible pro�t� The sensitivity of the
pro�t to the value of that threshold is much more pro�
nounced under heavy loads �e�g�
����� TPS� than it is un�
der more moderate loads �e�g� ����� TPS��

To evaluate the e
ect of dynamically changing the thresh�
old in LAF� we ran a simulation of the system� in which we
varied the arrival rate� The parameters used were identical
to those in table � except that the update probability was
set to zero �thus making the results independent of the con�
currency control protocol in use�� Our simulation consisted
of � consecutive epochs� each running for ������ ms� for a
total of ��� seconds� The arrival rate of transactions in these
epochs was set to ��� ���
�� ��� and ��� respectively�

Figure � shows the performance of LAF against that of
LMF for two threshold values� ����� and ����� For each one
of the three mechanisms� we plotted the mean number of
successful commitments observed over periods of ������ ms�
thus yielding �ve measurements per epoch for each mech�
anism �shown in Figure � as a scatter plot�� These data
points were used to �t a curve to characterize the perfor�
mance of each mechanism over the full ��� seconds of sim�
ulation� Overall� the performance of LAF is better than
both LMF �� ������ and LMF �� ������ As expected� when
the system is lightly loaded� the performance of LMF ��
����� is close to that of LAF� whereas the performance of
LMF �� ������ is meager as a result of its unduly restric�
tive admission control� When the system is heavily loaded�
the performance of LMF �� ������ is close to that of LAF�
whereas the performance of LMF �� ����� is meager as a
result of its excessively lax admission control� When the
system is moderately loaded� the performance of all three
techniques is similar�

In the above experiment� only the arrival rate of trans�
actions changes from one epoch to the other� and as a result�
LAF was allowed to adapt its threshold value to a single pa�
rameter� namely the arrival rate of transactions� In other
words� LAF optimized the value of its threshold along a

System Profit

65

70

75

80

85

90

95

100

105

110

115

120

Latest Marginal Fit (0.250)
Latest Marginal Fit (0.125)
Latest Adaptable Fit

Total Commits

60

Transaction Arrival Rate
15 TPS 25 TPS 45 TPS35 TPS 75 TPS

0 50 100 150 200 250

sec

Figure �� Dynamic Performance of LMF and LAF

single dimension�

In a typical system� more than one parameter is likely to
change over time� LAF could be easily used in such systems
by allowing it to optimize the value of its threshold along
multiple dimensions� In particular� assuming n di
erent di�
mensions �e�g� observed average arrival rate� average slack
factor� average read�write mix� and average compensating
task length� among others�� then using o
�line simulation
experiments �such as the one portrayed in �gure
�� the op�
timum threshold value for each node in an n�dimensional
mesh could be evaluated for later use by LAF in a manner
similar to that shown in �gure �� The identi�cation of the
appropriate dimensions for this optimization process is an
interesting research problem�

To illustrate the above process� consider the case in
which three parameters�namely� the arrival rate� the slack
factor and the compensating task computation time�are
likely to change and that LAF has to adapt to these changes
dynamically�� The �rst step involves the evaluation of the
optimum threshold value for each node in a
�dimensional
mesh� Table � shows the di
erent values we considered along
each dimension� All other parameters were identical to those
in table �� except that the update probability was set to zero�
i�e� all transactions were �read�only��

Parameter Value

ArrivalRate � � �� by �
s� ��� ��� ��� TPS
CTCompTime �� �� ��� �� ms
SlackFactor �	�� �	��
	�� �	�

Table �� Parameters� Ranges for
�dimensional mesh

We ran � simulations for each setting of ArrivalRate�

�One could also vary other parameters	 such as the transaction
length �i�e� number of pages read�	 or the write probability�

CTCompTime� and SlackFactor�a total of ��� combinations�
or �
� simulations� This process was repeated for a number
of threshold values in order to compute the optimal value
per setting� The bisection method ���� was used in order to
determine the optimal threshold value for each ArrivalRate�
CTCompTime� SlackFactor triplet�

To evaluate the relative performance of LAF� we ran
a set of experiments in which LAF optimized the value of
its threshold along all
 dimensions using the results from
the above experiments� The workload �WrkLd� for each
experiment was constructed by �xing the value along one
dimension to emulate a di
erent workload as described in
table
�

Wrkld Description Constant Parameter

WrkLd � Random none
WrkLd � Lax Deadlines SlackFactor � �	�
WrkLd � Tight Deadlines SlackFactor � �	�
WrkLd � High Arrival Rate ArrivalRate � ��� TPS
WrkLd � Low Arrival Rate ArrivalRate � �� TPS
WrkLd � Long Compensating Tasks CTCompTime � �� ms
WrkLd 	 Short Compensating Tasks CTCompTime � � ms

Table
� Workload Descriptions

Each experiment consisted of �� consecutive epochs of
� sec each for a total running time of �� sec� At the begin�
ning of each epoch� the values of the parameters were set
according to the speci�cations above� For example� under
WrkLd
� at the beginning of each epoch� the SlackFactor
and CTCompTime were chosen at random and used for trans�
actions generated during that epoch� while the ArrivalRate
remained at ��� TPS� All workloads were run � times�once
for each of LMF �� ����� LMF �� ��
�� LMF �� ����� and
LAF� The pro�ts achievable by each one of these compensat�
ing task scheduling techniques� for each workload is shown
in �gure ��

Figure � shows that LAF achieves the most pro�t when
all
 parameters are allowed to change �WrkLd ��� Under
all other workloads� LAF achieved either the best pro�t or
the second best pro�t� More importantly� unlike the other
LMF techniques� LAF shows consistent performance�

	 Related Work

The performance objective in most previous RTDBS studies
has been to minimize the number of transactions that miss
their deadlines in a hard or �rm deadline environment� or to
minimize tardiness� i�e� the time by which late transactions
miss their deadlines� in a soft deadline environment� The
assumption in these systems is that all transactions are of
equal value� In many systems� this assumption is not valid�
making it necessary to consider the worth of a transaction�
when making resource allocation and con	ict resolution de�
cisions� In such systems� the performance objective becomes
that of maximizing the system pro�t�

The notion of transaction values and value functions
���� ��� have been utilized in both general real�time sys�
tems ��� �� as well as in RTDBS ��� ���
��� In ��� ��� the
value of a task is evaluated during the admission control pro�
cess� The decision to reject a task or remove a previously
guaranteed task is based upon tasks� values� A task which

0

200

400

600

800

1000

1200

WrkLd 0 WrkLd 2WrkLd 1 WrkLd 3 WrkLd 4 WrkLd 5 WrkLd 6

LMF@0.1

LMF@0.3

LMF@0.8

LAF

Profit (# of commits)

Figure �� Pro�ts achievable by LMF and LAF in a dynamic
environment

is accepted into the system is conditionally guaranteed� to
complete its execution provided that no higher valued �crit�
ical� task �with which it con	icts� arrives� In all cases� the
WCET of the tasks is assumed to be known a priori� Huang
et al� ����� continuing with the work of �
�� use transactions�
values to schedule system resources �e�g� CPU� and in con�
	ict resolution protocols in a soft real�time environment�

Two recent PhD theses have proposed novel transac�
tion processing frameworks that allow RTDBS to apportion
their resources in a value�cognizant fashion� In ���� ���� Kim
establishes a RTDBS model which includes both hard and
soft real�time transactions� maintains temporal and logical
consistency of data �
��� and supports multiple guarantee
levels� Under this model� an integrated transaction pro�
cessing scheme is devised� providing both predictability and
consistency for RTDBS such that every application in the
system is assured to achieve its own performance goal �the
guarantee level� and maintain consistency requirement� A
simulation study shows that higher guarantee levels require
more system resources and therefore cost more than non�
guaranteed transactions�

In ���
�� Braoudakis takes a di
erent approach� whereby
transactions are associated with value functions that identify
the nature of their timing constraints� as well as their over�
all importance to the system�s mission� Under this frame�
work a whole spectrum of transactions could be speci�ed�
including transactions with no timing constraints� as well as
transactions with soft� �rm� and hard deadlines� The nov�
elty of this approach is that it allows a single transaction
processing protocol to be carried uniformly on all types of
transactions� The e�cacy of this approach has been demon�
strated by applying it to the concurrency control problem
in RTDBS� In particular� speculative concurrency control
algorithms ��� were extended to work under this framework

�This is in contrast to an absolute guarantee	 which speci�es that
once admitted to a system	 the task will complete its execution by its
deadline�

and were shown�in detailed simulation studies�to yield
superior performance�

Our work di
ers from previous research in that our sys�
tem model incorporates not only primary tasks� with un�
known WCET� but also compensating tasks� The admission
control mechanism used admits transactions into the system
with the absolute guarantee that either the primary task will
successfully commit or the compensating task safely termi�
nate� There have been a number of similar models suggested
in the literature� These are contrasted to our model below�

Liu et al� ��
� ��� ��� describe the imprecise computa�
tion model which decomposes each task into two subtasks�
a mandatory part and an optional part� The mandatory
part� which has a hard deadline� must be completed in order
for the task to produce an acceptable result� The optional
part� which has a soft deadline and executes upon comple�
tion of the mandatory part� re�nes the result produced by
the mandatory part� The error in the result produced by
a task is zero if the optional part completes its execution�
otherwise� it is equal to the un�nished processing time of
the optional part� The goal in this model is to minimize the
average error incurred by all tasks� Our work di
ers from
that of Liu et al� in that the WCET requirements of the
mandatory and optional parts are assumed� and both must
complete in order to obtain a precise result� Like the manda�
tory part� a compensating task must execute to completion
but only in the event that the primary task incurs a timing
failure� Given that a pro�t is returned to the system only by
the successful completion of primary tasks� our preference is
to solely execute primary tasks� In e
ect� our model is the
transposed version of the imprecise computation model�

A number of papers have employed the primary � alter�
native model in which the primary task provides good qual�
ity of service and is preferable to the alternative which pro�
duces an acceptable quality of service� Alternatives handle
timing faults in ���� �� and processor failures in ���� ��� ����
Our notion of a compensating task is indeed similar to that
of an alternative� execution of a compensating task provides
less attractive quality of service in comparison to the execu�
tion of the primary task� The similarities end here� however�
The alternatives in ���� are not subject to timing failures�
i�e� they have soft deadlines� whereas compensating tasks
have hard deadlines� Moreover� in ���� the alternatives are
periodic in nature� unlike compensating tasks which are not�

Admission control protocols and feedback mechanisms
have been employed in a variety of RTDBS components�
transaction scheduling ��
� ��� ��� memory allocation for
queries �
��� and B�tree index concurrency control ����� Har�
itsa et al� ��
� developed Adaptive Earliest Deadline �AED�
into order to stabilize the overload performance of EDF in
�rm RTDBS� As transactions are submitted to the system�
they are either placed into a Hit Group or Miss Group�
The Hit Group is the largest set of transactions which can
be completed by their deadline when scheduled according
to EDF while the Miss Group contains those transactions
whose deadlines are expected to not be met� The key to
AED is the determination of the dynamic control variable
Hit Capacity which demarcates the Hit Group from the Miss
Group� The Hit Capacity is calculated by using a feed�
back mechanism which collects output systemmeasurements
from previously completed transactions in order to derive
the new size of the Hit Group�

Hong et al� ���� introduce the Cost Conscious Ap�
proach �CCA� to scheduling transactions in a soft RTDBS�
CCA takes into account both static �i�e� deadline� and dy�

namic �i�e� e
ective service time� restart cost� aspects of
a transaction�s execution when dynamically computing the
priority of a transaction� Chakravarthy et al� ��� extend
CCA to adapt to the system load� CCA�ALF�Cost Con�
scious Approach with Average Load Factor� Like CCA�
CCA�ALF uses both static and dynamic information in cal�
culating the priority of a transaction� In addition� through
a feedback mechanism� CCA�ALF incorporates the average
load factor of the most recent N completed transaction�
Simulation experiments of a multiclass system are performed
in which
 transaction classes are speci�ed based upon the
cpu time needed per page access �i�e� transaction length is
varied�� Since only soft deadline transactions are considered�
there is no need for an admission control protocol�

The focus of Pang et al� �
�� is on admission control
and memory management of queries requiring large amounts
of computational memory in a �rm RTDBS� Their Prior�
ity Memory Management �PMM� algorithm consists of two
components� admission control and memory allocation� The
admission control component dynamically sets the target
MPL by using a feedback process based upon information
from previously completed queries� The memory allocation
component also utilized feedback obtained from previously
completed queries in order to determine the memory alloca�
tion strategy to follow �i�e� Max or MinMax��

Goyal et al� ���� describe an approach that allows trans�
actions to be rejected as part of an optimization of the Load
Adaptive B�link algorithm �LAB�link�� a real�time version
of index �B�tree� concurrency control algorithms in �rm�
deadline RTDBS� LAB�link ensures that the root of the B�
tree �disk� does not become a bottleneck by rejecting trans�
actions when the percentage of transactions missing their
deadlines is above a preset threshold� By tuning the system
based on the percentage of missed deadlines� their technique
does not guarantee a maximum pro�t� Also� the notion of a
guarantee �whether for commitment or safe termination by
the deadline� is non�existent in their work�

In all of the above research� the basic system model is
one of transactions �or queries� accessing information in the
database� after which� each transaction either completes by
its deadline or is aborted when its deadline is missed� The
only two possible transaction execution outcomes are com�
mitment and abortion� In �
��� when the number of transac�
tions admitted to the system exceeds the MPL� new trans�
actions are made to wait� This non�zero admission waiting
time is detrimental to the progress of these transactions com�
pleting by their deadlines� The situation is analogous in �����
When the load control mechanism is active and the utiliza�
tion of the bottleneck resource is above the preset threshold�
new transactions are not allowed to enter the system� Even�
tually� these transactions are aborted when it is discovered
that their deadlines have passed� When AED ��
� scheduling
algorithm is used� transactions which cannot be assigned to
the Hit Group are placed in the Miss Group and are likely
to miss their deadlines� especially in moderately to heavily
loaded systems�

Most previous RTDBS studies have assumed that the
only possible outcome of a transaction execution is either
the commitment or the abortion of the transaction� In many
systems� a third outcome of an outright rejection may be
desirable� For example� in a process control application�
the outright rejection of a transaction may be safer then at�
tempting to execute that transaction� only to miss its dead�
line� Our work allows the system to reject a transaction�
thus making it possible for compensating actions to be taken
in a timely fashion �possibly by the outside mechanism that

submitted that very same transaction�� Also� this 	exibility
allows the system to ration its resources in the most prof�
itable way� by only admitting high�value transactions when
the system is overloaded� while being less choosy when the
system is underloaded�

 Conclusion and Future Work

In this paper� we proposed a new paradigm for the execution
of transactions in a RTDBS� Our paradigm allows the sys�
tem to reject a transaction that is submitted for execution�
or else admit it and thus guarantee that one of two outcomes
will occur by the transaction�s deadline� either the transac�
tion will successfully commit through the execution of a pri�
mary task� or the transaction will safely terminate through
the execution of a compensating task� The system assumes
no a priori knowledge of the execution requirements of the
primary task� but assumes that the WCET and read�write
sets of the compensating task are known� Through the use
of appropriate admission control policies� we show that it is
possible for the system to maximize its pro�t dynamically�

In this paper� we considered only hard�deadline transac�
tions� This implied that once admitted� a transaction must
be successfully committed� or else safely terminated by its
deadline �due to the prohibitive loss to be incurred if that
deadline is missed�� If soft�deadline transactions are to be
managed� then it is possible for the system to �nish �com�
mit�terminate� a transaction past its deadline� which makes
the problem of compensating task scheduling much harder�

In this paper we singled out concurrency control and
CPU scheduling as representative activities within a RT�
DBS� In that respect� we showed how an admission control
strategy could be composed with these activities to optimize
the system performance dynamically� In a typical RTDBS�
other activities must be considered as well� In particular�
the admission control decisions may depend not only on the
CPU capacity and�or on the CCM capacity to deal with
data con	icts� but also on the capacity of other RTDBS
components� such as the I�O scheduler� memory manager�
and index concurrency control manager� Such a generalized
admission control manager is under development�

References

��� Robert Abbott and Hector Garcia�Molina� Scheduling real�time
transactions� ACM� SIGMOD Record	 �����������	 �����

��� Azer Bestavros and Spyridon Braoudakis� Timeliness via specu�
lation for real�time databases� In Proceedings of RTSS���� The

��th IEEE Real�Time System Symposium	 San Juan	 Puerto
Rico	 December �����

��� Azer Bestavros and Spyridon Braoudakis� Value�cognizant spec�
ulative concurrency control� In Proceedings of VLDB���� The
International Conference on Very Large Databases	 Zurich	
Switzerland	 Spetember �����

��� Sara Biyabani	 John Stankovic	 and Krithi Ramamritham� The
integration of deadline and criticalness in hard real�time schedul�
ing� In Proceedings of the �th Real�Time Systems Symposium	
December �����

��� Spyridon Braoudakis� Concurrency Control Protocols for Real�
Time Databases� PhD thesis	 Computer Science Department	
Boston University	 Boston	 MA �����	 November �����

��� G� Buttazzo	 M� Spuri	 and F� Sensini� Value vs� deadline
scheduling in overload conditions� In Proceedings of the �	th
Real�Time Systems Symposium	 December �����

��� S� Chakravarthy	 D� Hong	 and T� Johnson� Incorporating load
factor into the scheduling of soft real�time transactions� Tech�
nical Report TR������	 University of Florida	 Department of
Computer and Information Science	 �����

��� H� Chetto and M� Chetto� Some results of the earliest deadline
scheduling algorithm� IEEE Transactions on Software Engi�
neering	 ����������������	 October �����

��� M� L� Dertouzos� Control robotics� The procedural control of
physical processes� In Proceedings IFIP Congress	 pages ����
���	 �����

���� B� Goyal	 J� Haritsa	 S� Seshadri	 and V� Srinivasan� Index con�
currency control in �rm real�time dbms� In Proceedings of the

�st VLDB Conference	 pages �������	 September �����

���� Mikell P� Groover� Industrial Robotics� Technology� Program�
ming� and Applications� McGraw�Hill	 �����

���� Jayant R� Haritsa	 Michael J� Carey	 and Miron Livny� On being
optimistic about real�time constraints� In Proceedings of the
���� ACM PODS Symposium	 April �����

���� Jayant R� Haritsa	 Miron Livny	 and Michael J� Carey� Earli�
est deadline scheduling for real�time database systems� In Pro�
ceedings of the �
th Real�Time Systems Symposium	 December
�����

���� R� Hong	 T� Johnson	 and S� Chakravarthy� Real�time transac�
tion scheduling� A cost conscious approach� In Proceedings of
the ��th IEEE Real�Time Systems Symposium	 pages �������	
December �����

���� J� Huang	 J� A� Stankovic	 D� Towsley	 and K� Ramamritham�
Experimental evaluation of real�time transaction processing� In
Proceedings of the ��th Real�Time Systems Symposium	 De�
cember �����

���� E� Jensen	 C� Locke	 and H� Tokuda� A time�driven scheduling
model for real�time operating systems� In Proceedings of the
	th Real�Time Systems Symbosium	 pages �������	 December
�����

���� Lee W� Johnson and R� Dean Riess� Numerical Analysis� Addi�
son Wesley	 �����

���� Y� Kim and S� H� Son� An approach towards predictable real�
time transaction processing� In Proceedings of the �th Euromi�
cro Workshop on Real�Time Systems	 pages �����	 Oulu	 Fin�
land	 June �����

���� Young�Kuk Kim� Predictability and Consistency in Real�Time
Transaction Processing� PhD thesis	 Department of Computer
Science	 University of Virginia	 May �����

���� C� M� Krishna and K� G� Shin� On scheduling tasks with a
quick recovery from failure� IEEE Transactions on Computers	
�������������	 May �����

���� A� Liestman and R� Campbell� A fault�tolerant scheduling
problem� IEEE Transaction on Software Engineering	 SE�
����������������	 November �����

���� K� J� Lin	 S� Natarajan	 and J� W��S� Liu� Imprecise results�
Utilizing partial commputations in real�time systems� In Pro�
ceedings of the �th IEEE Real�Time Systems Symposium	 De�
cember �����

���� K� J� Lin	 S� Natarajan	 J� W��S� Liu	 and T� Krauskopf� Con�
cord� A system of imprecise computations� In Proceedings of
the IEEE Compsac	 October �����

���� C� L� Liu and J� Layland� Scheduling algorithms for multipro�
gramming in hard real�time environments� Journal of the As�
socation of Computing Machinery	 �����������	 January �����

���� J� W��S� Liu	 K� J� Lin	 and S� Natarajan� Scheduling real�time	
periodic jobs using imprecise results� In Proceedings of the �th
IEEE Real�time Systems Symposium	 December �����

���� C� Locke� Best E
ort Decision Making for Real�Time Schedul�
ing� PhD thesis	 Carnegie�Mellon University	 Department of
Computer Science	 May �����

���� D� Menasce and T� Nakanishi� Optimistic versus pessimistic con�
currency control mechanisms in database management systems�
Information Systems	 ����	 �����

���� D� Mosse	 R� Melhem	 and S� Ghosh� Analysis of a fault�
tolerant multiprocessor scheduling algorithm� IEEE Fault Tol�
erant Computing	 pages �����	 �����

���� Y� Oh and S� Son� An algorithm for real�time fault�tolerant
scheduling in multiprocessor systems� In Fourth Euromicro
Workshop on Real�time Systems	 �����

���� H� Pang	 M� J� Carey	 and M� Livny� Managing memory for
real�time queries� In Proceedings of the ���� ACM SIGMOD
Conference on Management of Data	 pages �������	 �����

���� Krithi Ramamritham� Real�time databases� International jour�
nal of Distributed and Parallel Databases	 ������������	 �����

���� Michael T� Reddy� Securities Operations� A Guide to Opera�
tions and Information Systems in the Securities Industry� New
York Institute of Finance	 �����

���� David L� Scott� Wall Street Words� Houghton Mi�in	 �����

���� John Stankovic and Wei Zhao� On real�time transactions� ACM�
SIGMOD Record	 ����������	 �����

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

