In Proceedings of AIRTC’91: The 3rd IFAC Workshop on Artificial Intelligencein Real Time Control, Sonoma, CA, September 1991

Planning for Embedded Systems:
A Real-Time prospective

AZER BESTAVROS

Department of Computer Science
Boston University

bestavros@cs.bu.edu

September 1991

Abstract: We investigate the problem of plan-
ning for embedded systems where issues of safety,
liveness, and responsiveness are much more impor-
tant than intelligence. We argue that in such sys-
tems, a planning agent should produce a behavioral
specification that, when superimposed on running be-
haviors, preserves the properties critical to the mis-
sion of the system. In this respect, we propose the
Time-constrained Reactive Automata (TRA) formal-
ism [Best91b] for plan generation and verification.

Keywords: Embedded systems; Artificial intel-
ligence; Automata theory; Modeling; Specification
languages; Planning; TRA.

1 Introduction

Embedded computing systems are characterized by
the rigidity of their performance and reliability re-
quirements, which are dictated by the critical nature
of their missions and the demanding and often hostile
environments with which they interact.

A computing system is embedded if it is explic-
itly viewed as being a component of a larger system
whose primary purpose is to monitor and control an
“unintelligent” environment. Examples of such sys-
tems include ballistic-missile-defense systems, com-
mand and control systems, nuclear reactors, indus-
trial process-control plants, robotics, space shuttle
and aircraft avionics, aircraft collision avoidance sys-
tems, automotive control, switching circuits and tele-
phony systems, data-acquisition systems, and real-
time databases, just to name a few. The leaping
advances in computing technologies witnessed in the
last few decades have resulted in an explosion in the
extent and variety of such systems. This trend is
only likely to continue in the future.

Viewed simply, any embedded system has two
parts: an external interface and a programmed sys-
tem. The external interface consists of a number of
devices such as sensors and actuators that interact
with the environment. The programmed system col-
lects information from the sensors and responds by
producing actions to drive the actuators. The sus-
tained demands of the external environment pose

relatively rigid and urgent requirements on the per-
formance of the programmed system. These require-
ments are usually stated as constraints on the real-
time behavior of the system. Wirth [Wirt77] singled
out this processing-time dependency as the one as-
pect that differentiates embedded systems from other
sequential and parallel systems.

The complexity of embedded systems coupled
with the critical nature of their missions makes the
importance of their safety, liveness and responsive-
ness unquestionable. On the other hand, the dy-
namic, unpredictable, and often hostile nature of
their external environments dictates the incorpora-
tion of some level of intelligence to cope (react) with
environmental changes or even to adopt new behav-
iors (plan) to insure missions success. Research in the
real-time aspects of embedded systems has focussed
on issues of specification, verification, analysis, lan-
guages, models and semantics [Stan88], whereas re-
search in the intelligence aspects of these systems was
geared towards planning, learning, knowledge repre-
sentation and logic.

With research in real-time and intelligence as-
pects of embedded systems drifting apart, it has be-
come evident that some kind of “common ground” is
needed to make embedded systems both intelligent
and reallistic. Recently several attempts were made
to achieve that goal. Most of these attempts were
initiated by the AI research community in an effort
to make planning applicable to embedded systems.
Among these we cite: Brook’s subsumption architec-
ture [Broo86], Maes’ situated agents [Maes90], Nils-
son’s action networks [Nils88], Lyons’ RS process
algebra [Lyon90c, Lyon90a], Allens’ formal tempo-
ral logic [Alle86, Pela88], and Rosenschein’s situated-
automata [Rose85]. One problem with most of these
attempts is the way planning for embedded systems
is perceived. Planners are considered an integral part
of the tight (continuous) loop of sensing and act-
ing on the environment. This led to the notion of
reactive planning [Maes89], [Lyon9la] where plans
are described as a selection algorithm between pre-
compiled (or hardwired) behaviors based on the state
of the environment. Although closer to reality than
traditional planners, reactive planners fail in one or
both of the following aspects. First, they do not al-
low for derived (creative or learned) behaviors. Sec-

ond, they deal with time as an afterthought making
the verification of safety conditions (in the form of
timing properties) much harder. As we mentioned
earlier, this latter deficiency is unacceptable. In a
way, customers would prefer an unintelligent safe sys-
tem over an intelligent potentially unsafe one!

2 Levels of Reactive Control

We single out four levels of real-time control Servo,
Selective, Teleo-selective, and Intelligent. One com-
mon aspect shared between these types of control is
that, at any given point in time, a unique reactive be-
havior — certified to preserve the safety, liveness and
responsiveness of the embedded system — is followed.
This notion of continuous reactiveness is crucial to
embedded systems [Nils90].

A servo control system consists usually of a
unique behavior that uses feedback to guarantee a
tight coupling between its input and output sig-
nals. Designers of servo systems are often concerned
with questions of stability, transient and steady state
responses!, compensation, ...etc. Power steering is
an example of a servo control system. It has one
behavior, to keep the steering wheel (input) and the
front wheels (output) tightly coupled.

Using selective control, a system’s behavior is
selected from amongst a fixed number of competing
behaviors based on stimuli from the external environ-
ment (world) in order to achieve a unique goal. Tem-
perature control is an example of a reactive control
system where either a cooling or heating behavior is
selected depending on the ambient temperature. The
cooling/heating behaviors might themselves be servo
controlled. Examples of reactive control systems in-
clude Brooks’ subsumption architecture and Brock-
ett’s Motion Description Language (MDL) [Broc88].

Using teleo-selective control, a system’s behav-
ior is selected from amongst a fixed number of
competing behaviors based on stimuli from the en-
vironment and motivations to achieve one of a
set of pre-determined goals. Examples of teleo-
selective systems include Nilsson’s action networks
[Nils88], Maes’ situated agents [Maes90], and our
earlier work using Input Output Timed Automata
[Best90a, Best90c, Best90b].

In intelligent control, a system’s behavior is se-
lected from amongst a number of fixed and super-
imposed synthesized behaviors based on stimuli from
the environment and motivations to achieve a run-
time goal. The process of synthesizing a behavior
is carried out by a planning agent outside the sens-
ing/acting loop based on a perceived model of the
world and a set of goals to be achieved. Figure-1
shows the architecture of an intelligent control sys-
tem.

The success of the planning process, which en-
tails a safe progress towards achieving the planner’s
goals, depends heavily on the existence of an accurate
description of the behavior of the world. This can be
achieved in two different ways. On the one hand, a
cognition agent might be able, through observation

IFor example overshoot, settling time, steady state errors.

Competing
Actions

Favorite
Action

Sensory

Data
Sub- Resource
Behaviors Manager
.
.

Planning

Cognition
Agent

Goals

Figure 1: Intelligent control system architecture.

and learning, to provide the planning agent with a
perceived behavioral specification of the world. The
potential inaccuracy of this process — due, for ex-
ample, to a rapidly changing environment — dictates
that perceived world specifications be used only in
conjunction with the plan synthesis process. On the
other hand, the verification process can rely only on
invariants about the world’s behaviors, which are as-
serted and guaranteed by the system designers. We
call these assertions hardcore specifications.?

Most of the current research in real-time plan-
ning falls in the first three levels of control sys-
tems discussed earlier, where plans are pre-compiled
(hardwired) into the sensing/acting loop. During
run-time, the system is executing a pre-compiled
plan. Recent attempts at building intelligent embed-
ded systems [Kael86, Lyon91b, Lyon91a] are mostly
concerned with the dynamic, unpredictable, and of-
ten hostile nature of the environment. The consider-
ation of safety issues expressed as timing constraints
has been minimal. This is primarily due to the lack of
a computational model powerful enough to capture
timing properties relevant to real-time specification
and verification, and expressive enough to serve as a
framework for planning. In the next section, we pro-
pose such a framework, namely the TRA model, to be
used as a vehicle for planning in real-time systems.
In particular, it is suitable as a formalism for the
representation of actions as well as for verification
purposes.

3 The TRA Model

For a complete treatment of the model, we refer the
reader to [Best91a].

3.1 Novelties
The TRA model differs from others (like Hoare’s

2In embedded systems, it is usually assumed [Leve91] that
an external mechanism is responsible for securing the safety
of the system. Examples of such mechanisms include human
intervention, using limit switches, ... etc.

CSP model [Hoar85], Reed and Roscoe’s timed CSP
model [Reed88], Arbib and Lyons’ RS process-based
model [Lyon89], and Baeten and Bergestra’s real-
time process algebra [Baet91]) in that it does not
allow the specification of systems that are not re-
active. A system is reactive if it cannot block the
occurence of events not under its control. This prop-
erty is crucial for accurate and realistic modeling of
embedded and real-time systems. A sufficient condi-
tion to ensure that a model is reactive is the input
enabling property proposed in [Lync88]. The TRA
model is input enabled. It distinguishes clearly be-
tween environment-controlled actions, which cannot
be restricted or constrained, and locally-controlled
actions, which can be scheduled and disabled.

The TRA model is unique in that it admits the
causal nature of physical processes. A system is
causal if given two inputs that are identical up to
any given point in time, there exist outputs (for the
respective inputs) that are also identical up to the
same point in time. The TRA model enforces causal-
ity by requiring that any locally-controlled actions
be produced only as a result of an earlier cause.

Spontaneity is a notion closely related to causal-
ity. A system is spontaneous if its output actions at
any given point in time ¢ cannot depend on actions
occuring at or after time t. In particular, if an out-
put occurs simultaneously with (say) an input tran-
sition, the same output could have been produced
without the simultaneous input transition [Sree90].
Simultaneity is, thus, a mere coincidence; the out-
put event could have occured spontaneously even if
the input transition was delayed. The TRA model en-
forces spontaneity by requiring that simultaneously
occuring events be independent; time has to neces-
sarily advance to observe dependencies.

The TRA model distinguishes between two no-
tions of time, namely real and perceived. Real time
cannot be measured by any single process in a given
system; it is only observable by the environment.
Perceived time, on the other hand, can be specified
using uncertain real time delays. The TRA model,
therefore, does not provide for (or allow the specifi-
cation of) any global or perfect clocks. As a conse-
quence, the only measure of time available for sys-
tem processes has to be relative to imperfect, lo-
cal clocks. This distinction between real time and
perceived time is important when dealing with em-
bedded applications where specifications are usually
given with respect to real time, but have to be im-
plemented relying on perceived time.

3.2 Basic Definitions

An embedded system is viewed as a set of interact-
ing automata called TRAs (Time-constrained Reac-
tive Automata). TRAs communicate with each other
through channels (see Figure-2). A channel is an
abstraction for an ideal unidirectional communica-
tion. The information carried on a is called a signal,
which consists of a sequence of events. An event un-
derscores the instantiation of an action at a specific
point in time. TRA channels have finite capacities,
and the signals they carry are single valued; they
cannot convey more than one event simultaneously.

Similar to [Alur90, Lewi90], we adopt a continu-
ous model of time. We represent any point in time by
a nonnegative real t € R. Time intervals are defined
by specifying their end-points which are drawn from
the set of nonnegative rationals @ C . A time inter-
val is viewed as a set over nonnegative real numbers.
It can be an empty set, in which case it is denoted by
€, it can be a singleton set, in which case it is denoted
by the [¢,t], t € Q, or else it can be an infinite set,
in which case it is denoted by [t;, tu], (¢, tu], [t tw),
or (t,t,) — the closed, right-closed, left-closed, and
open time intervals, respectively, where ¢;,t, € Q
and t; < t,. The set of all such infinite time inter-
vals is denoted by D.

NER
&

TR

(o

G

TRA)¢ TRA
N2 NN

Figure 2: TRA objects and channels.

Figure-3 illustrates the notions of actions,
events, and signals of a channel MOVE of some TRA.
Let North, South, East, and West be the possible
values that can be signaled on MOVE. MOVE(East)
is, therefore, a possible action of the TRA. The in-
stantiation of MOVE(East) at time ¢; denotes the oc-
curence of an event (MOVE(East) : ¢1).The sequence
(MOVE(East) : t1)(MOVE(North) : t2)(MOVE(South) : t3)

...etc. constitutes a signal.
Move
West 4+ Events
/
East oreoeeeeee o)
South / .
North .
; s

t1 t2 t3 Time

Signal: ...

<Move (East) , t1> <Move (North), t2> <Move(South),t3> ...

Figure 3: Signals, events, and actions.

At any point in time, a TRA is in a given state.
The set of all such possible states defines the TRA’s
state space. The state of a TRA is visible and can
only be changed by local computations. Computa-
tions (and thus state transitions) are triggered by
actions and might be required to meet specific tim-
ing constraints.

3.3 The TRA Object
Formally, a TRA object (see Figure-4) is a sextuple
(X,00,I1,0,A,7), where

e Y, the TRA signature, is the set of all the chan-
nels of the TRA. It is partitioned into three dis-
joint sets of input, output, and internal chan-
nels. We denote these by Y., Yous, and iy,
respectively. The set consisting of both input
and output channels is the set of external chan-
nels (Xex). These are the only channels visible
from outside the TRA. The set consisting of both
output and internal channels is the set of local
channels (Xj0c). These are the locally controlled
channels of the TRA.

Input Channels

T |

Event-driven | ———Internal Time-constrained
Computations | Y——Channels—] Causal Relations
A K Y
State
0e®

Output Channels

Figure 4: Basic components of a TRA object.

e oy € Y, is the start channel.

e II, the signaling range function, maps each chan-
nel in ¥ to a possibly infinite set of actions
that can be signaled on that channel. Action
sets of different channels are disjoint. The func-
tion IT naturally generalizes to sets of channels
in the following manner: II(X;) = U, Il(04;),
where 0;; € ;. In particular, the set of all the
TRA actions is given by: II(X). The set of in-
put, output, internal, external, and local actions
are similarily given by II(%;,), II(Zout), I(Zint),
II(Xext), and II(X)oc), respectively.

e O is a possibly infinite set of states of the TRA.

e ACOXII(E) x O is a set of possible computa-
tional steps of the TRA. TRAs are input enabled
which means that for every 7 € II(X;,), and

for every § € O, there exists at least one step
(0,7,60") € A, for some 0’ € ©.

¢ T C ¥ X ¥e xD x 29 is a set of time con-
straints on the operation of the TRA. A time
constraint v; € T is a quadruple (oy,0},0;, ©;)
whose interpretation is that: if an action is sig-
naled at time ¢t € R on the channel ¢;, then an
action should be fired on the channel o} at time
t', where t' — t € §;, provided that the TRA does
not enter any of the states in ©; for the open
interval (¢,t"). The channel o; € ¥ is called the
trigger of the time constraint, whereas o} € Xio¢

is called the constrained channel. ©; C O de-
fines the set of states that disable the time con-
straint; once triggered a time constraint becomes
and remains active until satisfied or disabled. A
time constraint is satisfied by the firing of an ac-
tion on the channel ¢; within the imposed time
bounds; it is disabled if the TRA enters in one
of the disabling states in ©; before it is satisfied
(see Figure-5). The interval §; specifies upper
and lower bounds on the delay between the trig-
gering and satisfaction (or disabling) of the time
constraint v;.

Delay |[[min,max]|

i

Triggering Constrained
Channel | Channel
°, | ‘ ‘
1 G.I
1
yesT
Does 0 €©,?
State
0O

Figure 5: Time-constrained causal relationship.

As an example of a TRA specification, consider
the the up/down counter whose state diagram is
shown in Figure-6. The counter accepts commands
issued on the input channel cmd to count up or down
and signals the value of the current count (state) on
the output channel cnt. The counter starts its op-
eration once an action is fired on the init channel.
The value of the init signal determines the starting
state of the counter. The counter is constrained to
produce a count every at least 1.9 and at most 2.1
units of time, once it starts execution. The formal
TRA specification of the counter is shown in Figure-7.

3.4 The TRA Operational Semantics

In this section, we describe the rules governing the
reaction of a TRA object to the events occuring on its
input channels. Once these rules are specified, the
possible behaviors of a given TRA can be determined.

In standard automata theory, there is no distinc-
tion between choosing a transition and firing it; both
of them occur instantaneously. In the TRA model, a
distinction is made whereby choosing (scheduling) a
transition and executing (commiting) that transition
are not necessarily instantaneous activities. They are
“distinct” in that they may be separated in time. As
a matter of fact, a scheduled transition does not nec-
essarily have to be committed; it can be abandoned
due to unforeseable conditions. The distinction be-
tween the two activities is also pronounced in the
way the TRA model differentiates between input and
local events. Input events are uncontrollable; they
are not scheduled. Local events are.

The state of a TRA at an arbitrary point in time
is not sufficient to construct its future behavior. To

cnt(-2) cnt(-1)
cmd(U)

init(-2) init(-1) init(0) init(1) init(2)

Figure 6: State diagram of up/down counter.

o X = X UXous Uiy is the signature of
the counter, where ¥;, = {cmd, init},
Eout = {Cnt}, and Eint = QZ&

© init € Y, is the start channel.

o The signaling range function is given by:
(init) = N, I(cmd) = {UP,DOWN},
and II(cnt) = N

o © =1{6; :i € N} is the set of states of
the counter.

¢ The set of computational steps is:

A = (U; jen (i, init(j),0;)}) U
(Uien{(6s, cmd(UP), 0;11)}) U
(UieN{(ei, Cmd(DUWN), 9,'_1)}) U
(UieN{(6i7 cnt(i), 01)})

o The set of time constraints is:

T = {(init, cnt, [1.9,2.1], ¢),

(cnt,cnt, [1.9,2.1],6)}.

Figure 7: TRA-specification of up/down counter.

explain why this is true consider the example shown
in Figure-8, where a TRA is known to be in some
state s at time ¢;. Assume that, due to a triggering
event at some earlier time tg, an action is scheduled
to fire at some point in a future interval given by
[to + ti0, to + thi]. Knowing only the state of the TRA
at time ¢; is obviously not sufficient to predict future
behaviors. In addition to the state, the intervals of
time where scheduled transitions might fire have to
be recorded. We encapsulate this knowledge in our
notion of intentions.

History Future

Intention

Trigger TRA in states

I s

o 1 time

e T To —

Time-constraint Enabled

Figure 8: The notion of a TRA status.

Let v; = (04,0},0;,0;) € YT be a time con-
straint. As we explained before, v; identifies a time-
constrained causal relationship between the events
signaled on o; and those signaled on o}. In par-
ticular, the occurence of a triggering event on o;
results in an intention to perform an action on o}

within the time frame imposed by §;. At any given
point in time, a TRA might have several such out-
standing intentions. We define the intention vec-
tor I = A to be a vector of r sets of intentions,
where r = |T|. Each entry in I is associated with
one of the TRA’s time constraints. In particular, if
v; = (04, 0},0;,0;) € T is one of the TRA’s time con-
straints, then [[Ui] = {(S,‘l, (S,‘Q, . ,(S,‘k, - 5im} de-
notes a set of m time intervals during which actions
on the channel ¢} are intended to be fired as a result
of earlier triggers on o;. Each one of the intervals in
A; can be thought of as an independent activation
of the time constraint v;. An empty intentions set,
Ifv;] = ¢, indicates the absence of any activations
of v;. The empty intention vector, Iy, consists of r
such empty sets.

At any point in time, the intention vector of a
TRA can be thought of as extending the TRA’s state.
This is captured in our notion of a TRA status.

Definition 1 We define the status of a TRA
(2,00,I1,0,A,Y) at any point in time t € R to be
the tuple (68,1), where 6 € © and I are the TRA’s
state and intention vector at time t, respectively.

A TRA changes its status only as a response to
the occurence of an input or an intended local event.
Five conditions have to be met for a status transition
to take place. We informally present these conditions
in the following definition. For a formal treatment
refer to [Best91b].

Definition 2 Assume that the status (6,1) of a TRA
was entered at time t as a result of an event (w : t),
where m € ll(0;),0; € ¥. Furthermore, assume that

at time t' (t' > t), an action 7' € 1l(0}) is fired,
where a; € X. As a result, the TRA will assume a new

status (0',1'). The status (0',1') is called a successor
of the status (0,1) due to the event (x' :t'), if and
only if the following conditions hold:

1. Legality:
(0,7',0") € A.

2. Spontaneity:
t' =t only if 7 and 7' are independent and occur
in different components.’

3. Safety:
None of the intentions in I expired at time t'.

4. Causality:
If 0’} € Yioc, then there exists an intention in I
to perform an action on o', and t' is a possible

J
time to commit that intention.

5. Consistency:

The intentions in I continue to exist in I' unless

otherwise dictated by the occurence of the event
(m" - t').

3TRA components represent a weak notion of spacial local-
ity. For a formal treatment, we refer the reader to [Best91b].

We use the notation (6, I) <ﬂ> (0", I") to denote
the direct status succession from (0, 1) to (6',1') due
to the firing of the event (7' : ¢'). Furthermore, we
use the notation (6,1) %, (6',1') to denote the ex-
tended status succession from (0,1) to (6',1') due to
the firing of the sequence of events a.

A TRA is said to have reached a stable status
(8,1), if all entries of the intention vector are empty

sets. That is I = I4. Obviously, a TRA will remain
in a stable status until it is excited by an external
input event. This follows directly from the causality
requirement for a status succession.

To start executing, a TRA (X,00,11,0,A,T) is
put in a stable status (6, Iy), where Iy = I, and
0o € ©. The status (0, Ip) is called an initial status.
The execution is initiated at time ty with the firing
of an action 7y on the start channel oy, where my €
II(op). The event (mp : to) is called the initiating
event.

An ezecution of a TRA is a possibly infinite string
of alternating statuses and events that starts with an
initial status and an initiating event. A schedule a
of an execution e is the sequence consisting of all the
events appearing in e. Since internal events are in-
visible from outside a TRA, we will often be interested
only in external events. We define 3 to be a behavior
of a TRA A, if it consists of all the external events
appearing in some schedule « of A. We denote the
set of all possible behaviors of A by behs(A). Obvi-
ously, behs(A) describes all the possible interactions
that A4 might be engaged in, and, therefore, consti-
tutes a specification of the system that A models.

A TRA A is said to implement another TRA B if
A does not produce any behavior that B could have
produced [Lync88]. In other words, all of A’s behav-
iors (the implementation) are possible behaviors of
B (the specification). The reverse, however, is not
true. There might exist behaviors of B that cannot
be generated by A. The notion of a TRA implement-
ing another is used mainly in verification [Best91a].

3.5 TRA Composition Operation

The composition of a countable collection of com-
patible TRAs, {A; : i € 7}, is a new TRA A =
Ao x Ay x ... x A; x ... = Iz A;. The execution of
A involves the execution of all its components A;c7,
each starting from an initial status and observing ev-
ery external event signaled by either the environment
(input) or by any TRA in the collection {A; : i € Z}.
The compatibility condition for composition insures
that, for each channel in the composition, there is
at most one writer, a finite number of readers, and
that the signaling ranges of readers and writers are
compatible to preserve the input enabled property.

The input signature of the composition A con-
sists of those channels that are inputs to one or more
of the component TRAs, and which are not outputs
of any of the component TRAs. The output signa-
ture of the composed TRA consists of all the outputs
of all the component TRAs. Similarily, the internal
signature of the composed TRA consists of all the in-
ternal channels of all the component TRAs. The start
channel of the composed TRA is the start channel of

one or more of its component TRAs.* The signaling
range function of the composed TRA is defined so as
to preserve its input-enabled property. In particular,
the signaling range of an input channel consists of
only those actions that can accepted by all readers of
that channel. A computational step of the composed
TRA is necessarily a step of one of its components.
Similarily the time-constrained causal relationships
of the composed TRA are exactly those of the compo-
nent TRAs. The formal definition for the composition
operation can be found in [Best91b].

The TRA composition operation is more general
than those reported in [Lync88, Tutt88, Best90a] in
that it allows the specification of both parallel and
sequential composition. In particular, the introduc-
tion of the start channel permits the execution of
two TRAs to be concurrent if they share the same
start channel, or to be serialized if the start chan-
nel of one (child) is an output of the other (parent).
Through appropriate composition, our model is ca-
pable of representing all of the composition opera-
tions in [Lyon89, Lyon90b].

3.6 CLEOPATRA

CLEOPATRA? is a convenient language for the speci-
fication of embedded systems under the TRA formal-
ism. CLEOPATRA specifications are executable and
can be transformed, mechanically and unambigu-
ously, into formal TRA objects for verification pur-
poses [Best91b]. Throughout this paper, we will use
CLEOPATRA to specify reactive behaviors.

In CLEOPATRA, systems are specified as inter-
connections of TRA objects. Each TRA object has a
set of state variables and a set of channels. Time-
constrained causal relationships between events oc-
curing on the different channels, and the computa-
tions (state transitions) that they trigger, are spec-
ified using Time-constrained Event-driven Transac-
tions. The behavior of a TRA object is described us-
ing TETs. TRA objects can be composed together to
specify more complex TRAs.

In CLEOPATRA, TRAs are defined in classes. For
example, Figure-9 shows the CLEOPATRA specifica-
tion of the class of integrators that use trapezoidal
approximation.

An integrator from the integrate TRA-class has
two parameters, namely TICK and TICK_ERROR. Its
signature consists of an input channel in, and an
output channel out. Both in and out carry actions
whose values are drawn from the set of reals. The
body of integrate specifies a state space consisting
of three real state variables x0, x1 and y. It specifies
two TETSs. The first specifies that the response to an
action on the input channel in is to store its value in
state variable x1. The second specifies a transaction
that is triggered initially by the init signal, and sub-
sequently with every firing of out. After an amount
of time bounded by a delay of TICK + TICK_ERROR
from when the transaction is triggered, an action of
value y is signaled on out, and a state transition that

4Without loss of generality, we assume that TRA to be Ag.

5A C-based Language for the Event-driven Object-oriented
‘Prototyping of .Asynchronous 7ime-constrained Reactive
Automata.

TRA-class integrate(double TICK, TICK_ERROR)
in(double) -> out(double)

state:

double x0 = 0, x1 =0, y = 0;
act:

in(x1) -> :

init(),out() => out(y):
within [TICK-TICK_ERROR"TICK+TICK_ERROR]
commit { y=y+TICK*(x0+x1)/2; x0 = x1;}

Figure 9: Specification of the integrate class.

updates the value of the state variable y and x0 is
committed.

4 TRA-based Specification

The TRA model and the CLEOPATRA language are
ideal for specifying reactive behaviors of embedded
systems. In this section we overview our experience
in specifying basic, subsuming, and competing reac-
tive behaviors, which correpsond respectively to the
servo, selective, teleo-selective classes of control sys-
tems that we discussed earlier.

In modeling embedded systems, it is important
that basic resources (e.g. actuators and sensors) be
included in the system specification. The TRA frame-
work has proven to be appropriate for representing
the behavior of such low level controls. In particular,
we used it to specify and simulate position and ve-
locity feedback linear and non-linear control systems,
as well as complex asynchronous digital circuits and
systems [Best91b].

For reactive behaviors at a higher level, Rodney
Brooks [Broo87] proposes the subsumption architec-
ture as a methodology for specifying and building
complex control systems. This architecture suggests
the use of a vertical decomposition of the control
system into a number of parallel independent task-
achieving behaviors organized in a hierarchy of domi-
nant and inferior behaviors. The subsumption archi-
tecture can be supported easily and effectively using
the TRA model. In [Best91b], we showed that the TRA
model is more general than the subsumption archi-
tecture. In particular, using the subsume TRA-class
shown in Figure-10, dominant and inferior behaviors
can be patched together to describe a complex be-
havior.

The subsumption architecture is suitable for the
specification of task-achieving behaviors that can be
statically organized as a hierarchy of dominant and
inferior behaviors. It cannot deal with applications
with dynamically changing priorities. In particular,
if the priority of a behavior depends on the task (or
goal) to be achieved, and if such a goal is dynamically
changing, then this behaviour can be dominant in
some situations and inferior in others. Rather than
dominant and inferior behaviors, such systems are
described in terms of competing behaviors.

typedef enum{0,1,X} tristate;

TRA-class subsume(double DELAY)
dominant (tristate),inferior(tristate)
-> behavior(tristate)

state:
tristate d_val = X, i_val = X ;
act:
dominant(d_val) -> behavior(d_val):
before DELAY
unless(d_val == X && i_val !'= X)
commit { i_val = X ;
inferior(i_val) -> behavior(i_val):
before DELAY
unless(d_val != X)

Figure 10: The subsumption TRA in CLEOPATRA

The TRA framework is ideal for the specifica-
tion of systems with competing behaviors. Exam-
ples of TRA behavioral specification of such systems
were given in [Best90a]. The use of the TRA model
in the specification and simulation of these systems
is similar to Nilsson’s action networks [Nils88], and
Maes’ situated agents [Maes90]. TRA specifications,
however, allow (potentially automated) analysis to
be performed on behaviors. For instance, given a
finite-state TRA description, it is possible to obtain a
finite-state description of all of its possible behaviors,
and thus, proving assertions about these behaviors.
This can be done using techniques similar to those
suggested in [Lewi89, Alur90]. In addition, the TRA
model provides a vehicle for efficient simulation and
implementation using CLEOPATRA. Silicon compi-
lation of CLEOPATRA specifications for simple be-
haviors is also a possiblity [Frie91].

As an example of TRA-specification of compet-
ing behaviors, consider the specification of Buggy, a
bug-like autonomous creature. Buggy has two actu-
ators to move in 2-D and two noisy sensors to lo-
cate predators, and detect floor cracks in a limited
neighborhood. Buggy has two potentially competing
behaviors, searching for food along cracks, and keep-
ing itself away from predators (or obstacles). Buggy
has only one goal: to survive (i.e. avoid starva-
tion and predators). Buggy’s urge to find food in-
creases as time elapses and no food is found. Its fear
from predators increases as its distance from them
decreases. Dynamically, the behavior that is more
important to Buggy’s survival subsumes the other.

Buggy’s competing behaviors were specified us-
ing CLEOPATRA. Figure-11 shows one of Buggy’s
simulated behaviors in a room with two cracks and
a predator going in a circle. In this behavior one can
identify some of Buggy’s basic behaviors. In partic-
ular, when Buggy’s sensors fail to detect any cracks
or obstacles in its immediate neighborhood, Buggy’s
behavior is to wander randomly until the sensors re-
turn some readings. The pace of this wandering be-
havior (speed and rate of direction change) depends
on the state of Buggy — its hunger and fear levels.
Other basic behaviors of Buggy include approaching
a crack, following a crack, and running away from ob-

stacles. In addition to the basic behaviors of Buggy,
one can also identify a number of emergent behav-
iors. An emergent behavior is not specified explic-
itly; it emerges from the composition of other basic
behaviors. For example, in Figure-11, two behavioral
patterns can be easily singled out. The first is a hes-
itant behavior, in which, driven by hunger and fear,
Buggy switches back and forth between approaching
a crack to find food and running away from it to
escape from the nearby rotating predator. The sec-
ond is a routine behavior, in which Buggy reaches a
limit-cycle of approaching a crack, following it, and
running away from it.

Y dimension

14.00

12.00

10.00

8.00

6.00

4.00

2.00

0.00

-2.00

-4.00

-6.00

-8.00

-12.00 .

-14.00

-10.00 -5.00 0.00 5.00 10.00

Figure 11: Basic and emergent behaviors of Buggy.

5 TRA-based Planning

As we argued earlier, planning in embedded systems
entails synthesizing reactive behaviors that, when
composed with existing behaviors (including the per-
ceived behavior of the world), would result in the
state of the world potentially progressing towards the
satisfaction of a given set of goals — while always pre-
serving system safety. We emphasize the word “po-
tentially” because, synthesized behaviors are gener-
ated based on a perceived state of the world that
might be inaccurate or dynamically changing. Also,
we emphasize the word “always” because, as we ex-
plained earlier, the safety of an embedded system is
far more important than its intelligence.

5.1 A simple planning example

Consider the robot Sneaky, who is assigned the task
of going into a high security room. A security alarm
sounds if the room’s door is left open for more than a
given amount of time. Also, an alarm will be signaled
if a password is not correctly input within a given

time frame after walking into the room. Figure-12
shows a partial CLEOPATRA specification of the per-
ceived environment and the basic behaviors of the
robot. The goal of the planner is to synthesize a
behavior that when composed with the world’s spec-
ification would result in Sneaky being in the room.
Figure-13 shows a partial specification of such a be-
havior. The safety of the system requires that the se-
curity alarm does not go off at any time (because of
Sneaky). This can be formaly proved by composing
the TRAs representing Sneaky’s behavior and the en-
vironment’s specification, and showing that starting
from an initially safe state, the composition cannot
reach a state where the alarm goes off.

5.2 Planning through learning

The architecture we proposed in figure 1 decouples
the planning agent from the tight loop between the
embedded system and its environment. In a way,
this architecture allows the agent to perform explicit
reasoning at execution time without interfering with
the system’s reactive and timely behavior. Another
advantage of such an architecture is that it allows
the planning agent to modify a synthesized behavior
based on its performance.

To exemplify this notion of planning by learning
from experience, consider the simulated behavior of
Buggy shown in Figure-11. A planning agent ob-
serving such a behavior will notice the reoccurence
of a limit cycle in which Buggy discovers food on a
crack, eats it while moving along the crack and, after
a while, realizing it became very close to an obstacle
leaves that path to get away from the wall. Even-
tually, however, it becomes hungry again, and goes
back to the crack repeating almost exactly the same

xamensonPath. On other occasions, however, Buggy looses

the crack and starts a random wandering phase away
from the crack where there is no food, and thus,

becomes threatened with starvation. A planning
agent can benefit from observing such a behavior in
a number of different ways. For example, by realiz-
ing that Buggy never starves when locked in a limit
cycle, it might develop a subsuming routine behav-
tor that makes it go blindly in that triangular limit
cycle, once it finds one.

Similar potentials for learning from reactive be-
haviors were explored in [Maes89] where an au-
tonomous mobile robot learned how to coordinate
the use of its actuators to move forward. This work
is limited in that the notion of “what to learn” is
defined and static throughout the life-span of the
creature — namely, coordination. In other words,
rather than learning a “new” behavior, the creature
is merely perfecting an existing behavior.

6 Conclusion

In this paper, instead of trying to adapt planning
to real-time systems, we followed the alternative ap-
proach of redefining planning in a way acceptable to
the real-time research community. In other words,
instead of making intelligent systems real, we try
to fit intelligence in real systems. This seems to be

GrabKnob -> :
within [275]
commit { Grabbing = TRUE ; }
ReleaseKnob -> :
within [275]
commit { Grabbing = FALSE ; }
Turn -> OpenDoor:
unless (!Grabbing)
within [40750]
commit { DoorOpen = TRUE ; }
OpenDoor -> Alarm:
unless (ValidPasswd)
within [40750]
commit { AlarmSet = TRUE ; }
OpenDoor -> Alarm:
unless (!DoorOpen)
within [1007110]
commit { AlarmSet = TRUE ; }
MoveIn -> :
unless (Grabbing || !DoorOpen)
within [20730]
commit { RobotIn = TRUE ; }
EnterPasswd -> :
unless (!RobotIn)
within [578]
commit { ValidPasswd = TRUE ; }
PressButton -> CloseDoor:
unless (!RobotIn)
within [40750]
commit { DoorOpen = FALSE ; }

Figure 12: Partial world model for Sneaky.

Init -> GrabKnob:
within [172] ;

GrabKnob -> Turn:
within [677] ;

Turn -> ReleaseKnob:
within [60760] ;

ReleaseKnob -> Moveln:
within [677] ;

MovelIn -> EnterPasswd:
within [35740] ;

MoveIn -> PressButton:
within [35780] ;

Figure 13: Partial synthesized plan for Sneaky.

the only viable approach especially in critical appli-
cations where lives and expensive machinery are at
stake. We believe that for such systems, planning
agents should produce behavioral specifications that,
when superimposed on running behaviors, preserve
the properties critical to the mission of the system.
In this respect, we propose the TRA model as a frame-
work for real-time plan generation and verification.

The TRA model is ideal for specifying reactive
behaviors for embedded systems. On the one hand,
its input enabled nature allows the specification of
task-achieving behaviors in a realistic manner. On
the other hand, its formal capabilities and compo-
sitional nature make possible the analysis and ver-
ification of safety conditions within a given envi-
ronment. We have developed a specification lan-
guage CLEOPATRA based on the TRA model. Be-
havioral specifications written in CLEOPATRA can
be compiled and executed efficiently for simulation
purposes.

Our experimentation with the TRA model as a
backbone for building intelligent control systems is
ongoing. In particular, we are working on an ex-

periment that involves the management of sensori-
motor activities for a robotics application that in-
cludes manipulative and active vision tasks executed
in a dynamic environment. Our experiment involves
research in three different areas: real-time systems,
software engineering, and artificial intelligence. The
use of the TRA framework provides the necessary link
between all three areas. It offers formal verifica-
tion and analysis capabilities to guarantee real-time
properties. It offers an expressive executable spec-
ification language to validate customers needs, and
defines clear interfaces between the different system
components. It offers a formalism suitable for the
specification and generation of reactive tasks.

References

[Alle86] J. Allen and R. Pelavin. “A formal logic of
plans in temporally rich domains.” IEEE Spe-
ctal Issue on Knowledge Representation, Oc-

tober 1986.

Rajeev Alur, Costas Courcoubetis, and David

Dill. “Model-checking for real-time sys-
tems.” In Proceedings of the 5th annual IEEE
Symposium on Logic in Computer Science,
Philadelphia, Pensylvania, June 1990. IEEE
Computer Society Press.

[Alur90]

[Baet91] J. Baeten and J. Bergstra. “Real time pro-
cess algebra.” Formal Aspects of Computing,

3(2):142-188, 1991.

Azer Bestavros. “The IOTA: A model for
Real-time Parallel Computation.” In Pro-
ceedings of TAU’90: The 1990 ACM Inter-
national Workshop on Timing issues in the
Specification and Synthesis of Digital Sys-
tems, Vancouver, Canada, August 1990.

Bestavros. “TRA-based real-time
executable specification using CLEOPA-
TRA.” In Proceedings of the 10th Annual
Rochester Forth Conference on Embedded Sys-
tems, Rochester, NY, June 1990. (revised May
1991).

Azer Bestavros, James Clark, and Nicola Fer-
rier. “Management of Sensori-Motor Activ-
ity in Mobile Robots.” In Proceedings of
the 1990 IEEE International Conference on
Robotics €4 Automation, Cincinati, Ohio, May
1990. IEEE Computer Society Press.

Azer Bestavros. “Specification and verifica-

tion or real-time embedded systems using the
Time-constrained Reactive utomat’%.” In
Proceedings of RTSS’91: The 12" IEEE
Real-time Systems Symposium, pages 244—
253, San Antonio, Texas, December 1991.

Azer Bestavros. Time-constrained Reactive
Automata: A novel development methodology
for embedded real-time systems. PhD the-
sis, Harvard University, Division of Applied
Sciences (Department of Computer Science),
Cambridge, Massachusetts, September 1991.

Roger Brockett. “On the computer control
of movement.” In Proceedings of the 1988
IEEE International Conﬁerence on Robotics
& Automation, Philadelphia, PA, 1988. IEEE
Computer Society Press.

Rodney Brooks and Jonathan Connell.
“Asynchronous distributed control system for
a mobile robot.” SPIE Proceedings, 727, Oc-
tober 1986.

Rodney Brooks. “A robust programming

scheme for a mobile robot.” In Ulrich
Rembold and Klaus Hérmann, editors, Lan-
guages for sensor-based control in Robotics -

[Best90a]

[Best90b] Azer

[Best90c]

[Best91a]

[Best91b]

[Broc88]

[Broo86]

[Broo87]

[Frie91]

[Hoar85]

[Kael86]

[Leve9l]

[Lewi89]

[Lewi90]

[Lync88]

[Lyon89]

[Lyon90a]

[Lyon90b]

[Lyon90c]

[Lyon9la]

[Lyon91b]

[Maes89]

[Maes90]

[Nils88]

NATO ASI series, pages 509-522. Springer-
Verlag/NATO, 1987.

Dan Friedman and James Clark. “Silicon

compilation of simple sensori-motor behav-
iors.” , 1991. Private communication of on-
going research.

C. A. R. Hoare. Communicating Sequential
Processes. Prentice-Hall, 1985.

Leslie Pack Kaelbling. “An architecture for in-
telligent reactive systems.” Technical Report
Technical Note 400, SRI International, 333
Ravenswood Ave., Menlo Park, CA 94025,
October 1986.

Nancy Leveson. “Software safety in embedded
computer systems.” Communications of the
ACM, 34(2), February 1991.

Harry Lewis. “Finite-state analysis of asyn-
chronous circuits with bounded temporal un-
certainty.” Technical Report TR-15-89, De-
partment of computer science, Harvard Uni-
versity, Cambridge, MA, June 1989.

Harry Lewis. “A logic of concrete time inter-
vals.” In Proceedings of the 5th annual IEEE
Symposium on Logic in Computer Science,
P%iladelphia, PA, June 1990. IEEE Computer
Society Press.

Nancy Lynch and Mark Tuttle. “An introduc-
tion to Input/Output Automata.” Technical
Report MIT/LCS/TM-373, MIT, Cambridge,
Massachusetts, November 1988.

Damian Lyons and Michael Arbib. “A for-
mal model of computation for sensory-based
robotics.” IEEE Transactions on Robotics
and Automation, 5(3):280-293, 1989.

D. Lyons, R. Pelavin, and A. Hendriks D.
Benjamin. “Task planning using a formal
model for reactive robot plans.” In Pro-
ceedings of the 1990 Spring Symposium on
Planning wn Dynamic and Uncertain Environ-
ments, Stanford, California, March 1990.

Damian Lyons. “A formal model for reactive

robot plans.” In Proceedings of the 2nd Inter-
national Conference on Computer Integrated
Manufacturing, Troy, New York, May 1990.

Damian Lyons. “A process-based approach

to task plan representation.” In Proceedings
of the 1990 IEEE International Conference on
Robotics €4 Automation, Cincinati, Ohio, May
1990. IEEE Computer Society Press.

D. Lyons and A. Hendriks. “Reactive plan-
ning.” Technical Report Philips TR-91-016
(MS-91-023), Philips Laboratories, Briarcliff
Manor, New York, April 1991. To appear in
the 2"? edition of the Encyclopedia of Artifi-
cial Intelligence (S. Shapiro, Editor-in-chief —
John Wiley & Sons, Inc.).

D. Lyons, A. Hendriks, and S. Mehta.
“Achieving robustness by casting planning as
adaptation of a reactive system.” Techni-
cal Report Philips TN-91-011, Philips Labo-
ratories, Briarcliff Manor, New York, Febru-
ary 1991.

Pattie Maes. “How to do the right
thing.” Connection Science journal, 1(3),
1989.

Pattie Maes. “Situated agents can have
goals.” Spectal issue of journal of Robotics

and Autonomous vehicle control, Spring 1990.
Also, in Designing Autonomous Agents - Pat-
tie Maes editor, MIT Press.

Nils Nilsson. “Action networks.” In Pro-
ceedings of the Rochester Planning Workshop:
From Formal Systems to Practical Systems,
University of Rochester, Rochester, NY, Oc-
tober 1988.

[Nils90]

[Pela88]

[Reed88]

[Rose85]

[Sree90]

[Stan88]

[Tutt88]

[Wirt77]

Nils Nilsson and Azer Bestavros, November
1990. Private discussions.

R. Pelavin. A formal approach to planning
with concurrent actions and external events.
PhD thesis, Computer Science Department,
University of Rochester, Rochester, NY, May
1988.

G. M. Reed and A. W. Roscoe. “A timed
model for Ccommunicating Sequential Pro-

cesses.” Theoretical Computer Science,
58:249-261, 1988.

Stanley Rosenschein. “Formal theories of
knowledge in AI and robotics.” Technical
Note 362, SRI International, 333 Ravenswood
Avenue, Menlo Park, CA 94025, September
1985.

Ramavarapu Sreenivas. Towards a system
theory for interconnected Condition/Event

systems. PhD thesis, Carnegie Mellon Uni-
versity, Pittsburgh, PA, September 1990.

John Stankovic and Krithi Ramamritham, ed-
itors. Hard Real-Time Systems. IEEE Com-
puter Society Press, 1988.

Mark Tuttle, Michael Meritt, and Frances-

mary Modugno. “Time constrained au-
tomata.” MIT/LCS, November 1988.

Niklaus Wirth. “Toward a discipline of real-
time programming.” Communications of the
ACM, 20(8), August 1977.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

