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Abstract— We envision the emergence of general-purpose,
well-provisioned sensor networks—which we call “Sensoria”—
that are embedded in (or overlayed atop) physical spaces,
and whose use is shared amongst autonomous users of that
space for independent and possibly conflicting missions. Our
conception of a Sensorium stands in sharp contrast to the
commonly adopted view of an embedded sensor network as a
special-purpose infrastructure that serves a well-defined, fixed
mission. The usefulness of a Sensorium will not be measured
by how highly optimized its various protocols are, or by how
efficiently its limited resources are being used, but rather by
how flexible and extensible it is in supporting a wide range of
applications. To that end, in this paper, we overview and present
a first-generation implementation of SNBENCH: a programming
environment and associated run-time system that support the
entire life-cycle of programming sensing-oriented applications.
The components of SNBENCH are analogous to those commonly
found in traditional, stand-alone general-purpose computing
environments. SNAFU (SensorNet Applications as Functional
Units) is a high-level strongly-typed functional language that
supports stateful, temporal, and persistent computation. SNAFU
is compiled into an intermediate, abstract representation of the
processing graph, called a STEP (Sensorium Task Execution
Plan). The STEP graph is then linked to available Sensorium
eXecution Environments (SXEs). A Sensorium Service Dispatcher
(SSD) decomposes the STEP graph into a linked execution
plan, loading STEP sub-graphs to appropriate individual SXEs
and binding those loaded sub-graphs together with appropriate
network protocols. The SSD may load many such programs
onto a Sensorium simultaneously, taking advantage of programs’
shared computation and dependencies to make more efficient use
of sensing, computation, network, and storage resources.

I. INTRODUCTION

To date, the emphasis of most research efforts targeting
Sensor Networks (SNs) has been on protocol refinements and
algorithmic optimizations of how underlying resources in SNs
are utilized to achieve a single static task or mission, subject
to stringent constraints imposed by the typically impoverished
resources of these SNs (e.g., battery lifetime, noisy radio
communication, limited memory, etc.) In many ways, an
inherent assumption of most SN research is that both the
SN infrastructure as well as the applications deployed on this
infrastructure are owned and controlled by a single entity. This
“closed system” mindset allows the designers of such SNs to
think of a SN as a “special-purpose” standalone system.

Motivation and Challenge: With the increased commoditiza-
tion of sensing, computing, networking, and storage devices, a
different model of SN infrastructures is emerging, whereby (1)
the owner of the SN and its users may be different entities, and
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(2) the users of the SN may autonomously deploy independent
applications that share the SN infrastructure.

To motivate this alternative “open system” view of a
SN, consider a public space such as an airport, shopping
mall, museum, parking garage, subway transit system, among
many other such examples. Clearly, there are many different
constituents who may have an interest in monitoring these
public spaces, using a variety of sensing modalities (e.g., video
cameras, motion sensors, temperature sensors, smoke detec-
tors, etc). In the case of a shopping mall, these constituents
may include mall tenants, customers, mall security, local police
and fire departments, etc. One alternative is for all these
different constituents to overlay the public space they share
with independent SN infrastructures – comprising separate
sensors, actuators, processing and storage server nodes, and
networks – each of which catering to the specific mission or
application of interest to each respective constituent. Clearly,
this is neither efficient nor practical, and for many constituents
may not be even feasible. Rather, it is reasonable to expect
that such a shared SN infrastructure will be an integral part
of the public space in which it is embedded, operated and
managed by an entity different from the entities interested in
“programming” it for their own use.

Harnessing the power of such shared SN infrastructures
will hinge on our ability to streamline the process whereby
relatively unsophisticated “third parties” are able to rapidly
develop and deploy their applications without having to un-
derstand or worry about the underlying, possibly complex
“plumbing” in the SN infrastructure supporting their appli-
cations.

Today, programming SNs suffers from the same lack
of organizing principles as did programming of stand-alone
computers some fourty years ago. Primeval programming
languages were expressive but unwieldy; software engineering
technology improved with the development of new high-level
programming languages that support more expressive and
useful abstraction mechanisms for controlling computational
processes, as well as through the wide adoption of common
software development platforms that leverage these abstrac-
tions. For SNs, we believe that the same evolutionary path need
not be (painfully) retraced, if proper abstractions, expressive
languages, and software engineering platforms are developed
in tandem with advances in lower-level SN technologies.

The SN workBench: In this paper, we overview and present
such a platform, which we call SNBENCH (SN workBench).
SNBENCH embodies a programming environment and associ-
ated distributed run-time system that support the entire life-



cycle of programming SN applications. Our primary focus
is not on optimizing the various algorithms or protocols
supporting an a-priori specified application or mission, but
rather on providing flexibility and extensibility for the rapid
development and deployement a of wide range of applications.

While SNBENCH is conceived (by design) to be oblivious
to the sensing modalities in a SN, in our current implemen-
tation we are naturally focusing on the particular SN infras-
tructure in our laboratories, which we call the “Sensorium”,
consisting of a web of wired and wireless networked video
cameras and motes [1] spanning several rooms, processing
units and a terabyte database, all of which are managed
together to be able to execute ad-hoc programs (or queries)
specified over the Sensorium’s monitored spaces. In many
ways, we view our Sensorium as prototypical of emerging
SN infrastructures whose use is shared amongst autonomous
users with independent and possibly conflicting missions.

Programmatic access to the Sensorium is provided via
a high-level task-centric programming language that is com-
piled, distributed, scheduled, and monitored by SNBENCH. A
SNBENCH program is specified in the SNAFU (SN Applica-
tions as Functional Units) language. SNAFU is a strongly-
typed functional-style programming language which serves
as an accesible, high-level language for developers to glue
together the functionalities of sensors, actuators, processing,
storage, and networking units to create stateful, temporal, and
persistent programs. In effect, SNBENCH presents program-
mers with an abstract, “single-system” view of a SN, in the
sense that SNAFU code is written for the Sensorium as a
whole, and not separately for each of its various subsystems.

A SNAFU program is compiled into a Sensorium Task
Execution Plan (STEP), which takes the form of a directed
acyclic graph (DAG), in which the nodes are the sampling
and computation operations required to execute the program.
An execution plan may consist of nodes that are either bound
(i.e. must be deployed on a specific resource) or unbound (i.e.
free to be placed wherever sufficient resources may be found).
A STEP is analogous to a program that has not been linked,
and has a straightforward serialized XML representation.

The Sensorium Service Dispatcher (SSD) is responsible
for the linking and scheduling of a STEP onto the SN
infrastructure. In general, the SSD solves a restricted form
of a graph embedding problem, finding resources capable
of supporting sub-graphs of the STEP graph and allocating
them as appropriate. The SSD optimizes the use of resources
and identifies common subexpressions across already deployed
execution plans such that computation resources may be shared
and/or reused. The SSD relies heavily on the Sensorium
Resource Manager (SRM), a registrar of computing and sens-
ing resources available in the system at present. The SSD
decomposes a single “unbound” STEP graph into several
smaller “bound” STEP graphs and dispatches those graphs
onto available Sensorium functional units.

Each Sensorium functional unit features a Sensorium
eXecution Environment (SXE), which is a run-time system
that realizes the abstract functionalities presented to SNAFU
programmers as basic building blocks. Such realizations may
rely on native code (e.g., device drivers, or local libraries)
or may entail the retrieval of programmer-supplied code from

remote repositories. An SXE interprets and executes partial
STEP graphs that have been delegated to it by the SSD. Such
a partial STEP graph may involve computing, sensing, storage,
or communication with other SXEs.

Paper Overview: In this paper, we discuss our first-generation
implementation of SNBENCH, highlighting the salient features
of its SNAFU programming paradigm and its SXE and SSD
run-time support. Section II offers a general overview of
SNAFU. Section III briefly illustrates the composition of a
STEP graph. Section IV describes how the SSD schedules
and deploys STEPs onto Sensorium resources, and Section V
describes the run-time systems available on those resources.
Finally, Sections VI and VII conclude the paper with a brief
exposition of related work as well as research work enabled
by SNBENCH.

II. THE SNAFU PROGRAMMING LANGUAGE

SNAFU is a strongly-typed programming language intended
primarily for “gluing together” the sensors, computational
resources, and persistent state that make up a Sensorium ap-
plication. SNAFU programs are written in a simple functional
style. As a functional language, SNAFU functions do not allow
for side effects, however a subset of the standard library func-
tions are stateful (i.e., they do have side effects). All SNAFU
program terms are expressions (i.e., their evaluation produces
values) as exemplified by the simple SNAFU program below
which inspects a single video frame, and returns either the
name of a person recognized in the frame, or NIL.

identify(facefind(snapshot(cam1)))

We impose specific restrictions on the composition of
SNAFU programs to ensure that a program can be represented
as an acyclic graph. Explicit recursion is forbidden in SNAFU
and is detected by the compiler/type engine. A user is not
allowed to assign functions to variables, and we statically
check for recursion (including transitive cases) by annotating
each function with the transitive closure of all functions called
by it; if a function calls such a function with its own name in
the annotation list, the type engine throws a type error.

Triggers and Repetition: In SNAFU, iterative executions are
carried out through the trigger construct, within which limited
forms of recursion are possible (as described towards the end
of this section). A trigger is a “cycle-safe” way to repeat
and predicate the evaluation of expressions in time. SNAFU
supports three general trigger types:

The “do-once” trigger construct trigger(x,y) will
continually evaluate x until it becomes true, at which point it
will evaluate y, returning y as the value of trigger(x,y).
The following SNAFU program will shutdown “MyComputer”
when its CPU temperature exceeds 65 degrees centigrade.

trigger(
greaterthan(cputemp(MyComputer),temp("65C")),
shutdown(MyComputer))

The “level-trigger” construct level trigger(x,y)
will continually evaluate x and every time x evaluates to true,
y is re-evaluated. Note that this expression will continually
re-evaluate in perpetuity. Intuitively, once such a term has
been evaluated, its evaluation tree can be “reset” and the



evaluation begun again, causing the value of the expression to
change regularly based upon new input values. The SNAFU
example below would run indefinitely, constantly sending a
notification to the owner of “MyComputer” as long as the
predicate evaluates to true.

level-trigger(
greaterthan(cputemp(MyComputer),temp("60C")),
notify(owner(MyComputer),

"Your CPU is very hot."))

The “edge-trigger” construct edge trigger(x,y)
will continually evaluate x and when x first becomes true (or
if it initially evaluates to true), y is evaluated once. When
x becomes false and subsequently becomes true again, y
will be re-evaluated, and so on. The SNAFU example below
would run indefinitely, sending a notification to the owner of
“MyComputer” only when the predicate evaluates to “true”
after having evaluated to “false” in the prior evaluation.

edge-trigger(
greaterthan(cputemp(MyComputer),temp("60C")),
notify(owner(MyComputer),

"Your CPU has become very hot."))

Both the level and edge triggers could be viewed as forms
of persistent queries which can be queried by other expressions
using trigger value retrieval functions (discussed in the next
section). In general, a persistent query will live until it goes
un-used for some configuration-specific period of time (e.g.,
60 minutes). This can be overridden using a flow type which
states a particular persistence policy, duration, or predication.

Trigger Value Retrieval: The transient values of edge and
level triggers can be accessed using reads that are either
blocking, non-blocking, or fresh.

A non-blocking read (denoted by nonblock and invoked
upon a single trigger argument) is only willing to wait if the
expression has never completed an evaluation; in all other
cases, it immediately returns the result of the last completed
evaluation of the trigger’s target expression. A blocking read
(denoted by block and invoked upon a single trigger argu-
ment) waits until the next (or currently ongoing) evaluation
of the target expression completes, then produces that value.
A fresh read (denoted by fresh and invoked upon a single
trigger argument) waits for a complete re-evaluation of the
trigger’s predicate and target and produces that value.

An edge or level trigger cannot be used in an expression
without wrapping it in one of these primitives; failure to do so
produces a type error. A one-time trigger does not need to be
accessed using these primitives, as it has an implicit blocking
semantic.

A trigger expression may wish to make use of its own
prior evaluations (e.g., to maintain a list of the last 10 results).
This is supported through the use of the LAST TRIGGER EVAL
token, which (syntactically) acts as a variable and (semanti-
cally) acts as a non-blocking read of the trigger which is its
closest enclosing parent, returning NIL if the trigger has not
yet evaluated.1

1A variation on this, which can refer to outermore containing triggers is
under consideration, but we expect that the same behavior can easily be
achieved using the simple form described here in combination with letonce
binding.

Let-Bindings: Most useful programming languages include
some notion of binding a single recurring symbol to either
some persistent value (state) or some repeated instantiation
of a more verbose program term (macro). SNAFU supports
this through “let-bindings.” For example, let-bindings allow
a programmer to take a single sample from a sensor or a
persistent expression and use that single value in several places
within an expression.

SNAFU offers four kinds of let-binding – functions, let-
each, let-once, and let-const – to support different useful
semantics. The particular (and peculiar to many functional
languages) semantics of triggers demand that we define three
different forms of variable let-binding.2

In some programs, it is desirable to compute the value
of an expression once and to re-use that result for the life
of the program. The letconst binding offers precisely that
behavior: the first time the execution envrionment encounters
a letconst-bound variable, it will evaluate the bound-in ex-
pression; all occurrences of the variable thereafter evaluate as
having that same value. Consider the assignment that allows
all further instances of the expression cam1 to resolve to the
single, eager evaluation of camera(“Grad Lab South”) which
will be only evaluated once.

letconst cam1 = camera("Grad Lab South") in ...

In other cases, programmers may wish to use symbols
as macros: to represent commonly-occurring subexpressions,
each instance of which is to be independently evaluated. A
leteach binding of the form “leteach x = y in z”,
replaces each occurrence of x in z with an independent copy
of y. Notice that it is possible that y will have a different
value in each such occurrence.

leteach prefContactMethod =
get_contact_mode(user("Michael J. Ocean"))
in ...

Sometimes it is useful to have a common subexpression
evaluated only once within an iteration of a trigger’s control
loop. For this purpose, we use letonce-bindings, of the form
“letonce x = y in z”. This allows the expression y to
be evaluated once per iteration of the containing trigger as
in the following program fragment, the intent of which is
for the trigger to repeatedly take samples from the camera,
and whenever a sample is found which contains a face (the
predicate), we would want to pass that same frame to the facial
recognizer.

letonce x = snapshot(cam5) in
level_trigger(

is_face_visible(x),
identify_face(x))

In general, this means that the children of a persistent
query are evaluated using an on-demand strategy; all children
which are needed to compute the predicate are enabled and
evaluate, and once a true predicate is detected, the remaining
children (which were not activated in that predicate computa-

2Notice that we do not support higher-order terms, in the sense of assigning
a function to a variable.



tion) are also activated to compute the trigger’s value.3

The behavior of a SNAFU program is undefined if a
letonce-bound variable is separated from the letonce statement
by more than a single persistent trigger (nested triggers) or
if the letonce-bound variable appears within several disjoint
persistent triggers (parallel triggers), as either of these cases
allows the letonce-bound expression to be re-evaluated under
the control of several simultaneously-executing triggers.

Type-checking and Flow-types: SNAFU is a strongly-typed
language; SNAFU programs are statically type checked to
identify errors. SNAFU disallows type casts and no explicit
data types are used in the program syntax. Instead, permissible
type promotions and coercions are handled automatically in
the type inference phase of compilation. We use standard
rules from the lambda-Calculus with subtyping [2] to type-
check SNAFU programs. The compiler also maintains a map
from type pairs (τ, τ ′) to “shim function” names; whenever a
promotion from τ to τ ′ takes place, if the function name so
identified is non-null then the promoted expression is passed
as an argument to the named shim function, which is then
treated as the promoted expression.

SNAFU allows program terms to be annotated with “flow
types”. Flow types provide programmers with a mechanism
via which they may constrain the manner in which their
programs are deployed and/or executed in the Sensorium. As
examples, the programmer may be interested in ensuring some
particular Quality of Service (QoS), say a minimal rate of
program evaluation, or may be interested in protecting the
results of some portion of the computation/commnunication
from using/traversing untrusted computers/networks, or may
be interested in ensuring that certain compute nodes are used
(even if others are available). Obvious examples of flow types
include labeling a term’s value as “private” (such that it may
only transit “trusted” network links unencrypted), labeling a
trigger as persisting in the network for no less than some
minimum lifespan, or labeling a trigger as evaluating its
predicate at no less than some (real-time) rate.4

public(facecount(private(snapshot(cam1))))

period(100ms,level_trigger(f(cam1),g(cam1)))

SNAFU Program Compilation, Linking, Loading, and Ex-
ecution: Owing to its functional style, SNAFU expressions are
easily mapped to a tree-like directed acyclic graph (DAG) with
a single root. The tree evaluates by having values percolate up
from the leaves through intermediary function nodes toward
the root. The value of any node in the tree depends upon its
children (leaf nodes), and a node is invoked once all of its
children have produced values.

3Systems programmers will readily recognize the relationship between this
property and “race conditions”; intuitively, if some action and its predicate
are both dependent upon a single value, it is usually undesirable for that value
to change between the evaluation of the predicate and the action.

4An exchaustive account of the nature (and semantic) of these flow types
is beyond the scope of this paper, and is indeed premature, in the sense
that much of these “types” will be closely matched to constraints that are
possible to enforce or guarantee through the SSD’s “linking” and “loading”
of compiled SNAFU programs. For example, supporting QoS flow types is
predicated on the ability of the SSD to reject a program whose flow types
are “incompatible” with the current state (capacity, available guarantee-able
resources, etc) of the resources under its control.

The SNAFU compiler transforms the Abstract Syn-
tax Tree (AST) of a SNAFU program into an inter-
pretable/executable target format, which we call a “Sensorium
Task Execution Plan” (STEP). A STEP is a DAG whose
nodes specify values, computations, sensing operations, or
communication tasks, and whose edges specify evaluation
dependencies. Simple programs will usually be transformed
directly into such STEP evaluation trees; the single-evaluation
let construct (see “Let-Bindings” above) can be used by
a developer to explicitly link a single subtree onto several
parents.

Generally, SNAFU compilation results in the creation of
an “unbound” STEP program – a STEP graph containing
one or more “unbound” nodes. An “unbound” STEP program
cannot be run until its constituent nodes are linked (bound)
to Sensorium resources. An “unbound” STEP program is
posted to the SSD, the entity responsible for linking and
dispatching STEP programs. Given the state of the available
system resources and the resources required by the nodes
comprising this graph, the SSD linking process attempts to
decompose the “unbound” STEP graph into one or more
“bound” sub-graphs (a “bound” graph is comprised entirely
of “bound” nodes). These generated sub-graphs are “bound”
STEP programs which are deployed by the SSD to available
devices in the Sensorium. Such devices are able to execute
STEP programs using a run-time interpreter.

Alternatively, in some cases, it may make more sense to
compile SNAFU ASTs directly into a more suitable target
language (e.g. C99, Intel asm, etc) or to translate them into
STEPs which are then translated by an intermediary for the
target.5

The dissection and dispatch of STEP graphs are explained
in IV, while the discussion of how STEP graphs are interpreted
and executed is provided in Section V.

III. SENSORIUM TASK EXECUTION PLAN (STEP)

A STEP graph could be construed as the “assembly language”
of SNBENCH.6 As we hinted earlier, a STEP graph is
comprised of STEP nodes, which must be “bound” by the
SSD before execution is possible. We note that there is not
a one-to-one mapping between the “unbound” STEP graph
(resulting from the compilation of a SNAFU program) and a
running “bound” STEP DAG. For example, a running STEP
DAG may be a sub-graph of a single STEP DAG, or it may be
the confluence of several STEP DAGs. To this end, we support
the encoding of general DAGs, through two techniques. First,
a STEP program file is an XML object with a non-program
root element, alowing us to encode several independent STEP
DAG roots as its “children” (for serialization purposes only).
Second, the DAG is encoded as a set of trees embedded
in the DAG which span all of its nodes (reaching each
exactly once). STEP nodes that require communication with
remotely deployed STEPS utilize special “socket” child nodes,

5In our current implementation, our primary consideration is on maintain-
ability and simplicity of the components, with secondary consideration given
to computational costs.

6The STEP “assembly language” is admittedly somewhat high-level and
although STEP programs are human-readable (they are serialized as XML
documents), it is a cumbersome language for direct program composition.



while STEPS that may be merged together for computational
reuse utilize “splice” nodes to correspond edges to reusable
components.

In the remainder of this section, we use the example STEP
program shown in Figure 1 as a backdrop against which we
briefly discus the various types of meaningful STEP nodes
that comprise a STEP graph. This STEP program is the result
of compiling the following SNAFU snippet, which returns the
maximum number of faces detected/observed from any one of
two cameras mounted on s05(.sensorium.bu.edu).

max(facecount(snapshot(sensor("s05","cam1"))),
facecount(snapshot(sensor("s05","cam2"))))

exp nodes represent calls to primitive functions analogous
to the fundamental operations supported by the SXEs (e.g.,
addition, string concatenation, image manipulation, etc). Each
exp node identifies a function/operation via its opcode
attribute. Actuator nodes are a sub-class of exp nodes that
specify “push-style” interactions with physical devices. Ex-
pressions involving the use of actuators are used to accomplish
tasks such as switching lights on and off, controlling HVAC
components, turning a camera on or off, and so on. The
children of exp nodes are the parameters/operands (if any)
of the operation.

sensor nodes are abstractions of physical hardware
input devices. When present, these nodes will always
be leaves in a STEP graph. Operationally, a sensor
node stands as a reference to a specific piece of sensor
hardware in the SN. For example, an exp node with
opcode “snapshot” may have a child node that is a
sensor node specifying the particular camera the frame
should be captured from). A sensor node has a type
attribute indicating the general type of input device that
this node abstracts. Types currently supported in SNBENCH
include image, video, audio, and temperature.
The value of a sensor STEP node is an HTTP URI
to the sensor device, generally via some SXE host (e.g.,
http://s05.sensorium.bu.edu:8080/snbench/sxe/sensor/image/2).

value nodes pass a value (string, integer, image, etc.) from
one point to another. These nodes are generally used as
parameters feeding exp nodes.

trigger, edge trigger, and level trigger nodes
specify persistent query evaluations that parallel the cor-
responding trigger, edge trigger, and level trigger SNAFU
constructs. Trigger nodes must have at least two children:
the predicate and the body, and may have zero or more
flowtype nodes. The opcode attribute determines whether
the trigger will be read via blocking, non-blocking, or fresh
reads.

read nodes indicate access to the values produced by trig-
ger nodes. They have at least one child: a single trigger
node.

socket nodes signify communication between SXEs over a
loosely-coupled network. These nodes are almost never present
in the STEP files produced by compilers; they are injected into
STEP DAGs by the SSD to allow distribution of a program’s
evaluation across SXEs.

A socket node has a role attribute which is set to either

sender or receiver. Recall that values perculate up from
the leaves to the root of a STEP graph. As such, a socket
node is a sender if it has no parents and a receiver if it has no
children. A socket cannot be both a sender and a receiver,
because the semantics of its attributes are dependent upon this
distinction. Such a node can be simulated with a two-node
graph connecting one receiver with one sender; we call this
construct a “rendezvous node”.

The protocol attribute determines which protocol
model this socket uses to communicate. Currently supported
models are GET (HTTP/1.1 pull) and POST (HTTP/1.1 push),
we also anticipate adding UDP, serial port, and SN radio
communication protocols. The peeruri attribute is used to
bind the communications to a particular (logical or physical)
address.

const nodes are used to prevent re-evaluation of their
children (e.g., a letonce binding). Each has exactly one child,
namely the subgraph whose evaluation we wish to block.

flowtype nodes encode run-time security, performance,
and persistance contraints. If they have any children, they
will be defined and validated using an independent XML
namespace. These nodes appear as children of the nodes that
they constrain.

splice nodes are used to describe how one partial STEP
graph should be spliced/grafted onto another. Splice nodes
allow independently compiled STEP graphs to share common
components. Specifically, after a STEP graph has been de-
ployed to a given SXE, another program may be admitted
by the SSD to that SXE so as it would share part of the
already-deployed STEP graph. Put differently, a newly admit-
ted STEP graph may have a subgraph in common with an
existing, running STEP graph and we may wish to re-use those
computations as appropriate.7

The splice node has a target attribute whose value
must be the id of another existing node. Structurally, a splice
resembles a socket insofar as it has either no children or no
parents. Splice nodes are only represented in “bound” STEP
files posted by the SSD to an SXE that already has active STEP
graphs. The splice nodes exist transiently, while an SXE’s
active STEP graph is being augmented to graft on the newly
added STEP graph at the splice node specified.

IV. THE SENSORIUM SERVICE DISPATCHER (SSD)

The SSD is responsible for scheduling the execution of a
STEP program on Sensorium resources, based on the avail-
ability/state of these resources as maintained and reported by
the SRM. The SSD’s role is analogous to both the register
allocation and dynamic linking phases of a conventional
compiler. In this section, by “scheduling” we mean assigning
a graph of STEP nodes to one or more appropriate SXEs for
execution.

At present, the SSD and SRM are implemented in the
Java programming language. Java provides a flexible and rapid
development platform for our first generation implementation.
Although a port to another language would certainly be

7The STEP graph posted to an SXE containing splice nodes are created
by the SSD through its knowledge of the “entire state” of the SN infrastructure.



<step id="202219@s00.sensorium.bu.edu">
<exp opcode="max" id="abcd" bindto="http://s05.sensorium.bu.edu:8080">

<flowtype name="persist" value="Mon Jul 25 23:59:59 EDT 2005" />
<exp opcode="facecount" id="bcde" bindto="http://s05.sensorium.bu.edu:8080">

<exp opcode="snapshot" id="cdef"><value id="defg">
<sensor type="snbench/image">

http://s05.sensorium.bu.edu:8080/snbench/sxe/sensor/image/1
</sensor></value></exp></exp>

<exp opcode="facecount" id="efgh" bindto="http://s05.sensorium.bu.edu:8080">
<exp opcode="snapshot" id="fghi"><value id="ghij">

<sensor type="snbench/image">
http://s05.sensorium.bu.edu:8080/snbench/sxe/sensor/image/2

</sensor></value></exp></exp>
</exp>

</step>

Fig. 1. STEP program for computing the maximum number of faces detected/observed from any one of two cameras mounted on s05(.sensorium.bu.edu).

feasible, at present we see little advantage to leaving the
Java platform. For signaling and communication between the
SSD/SRM and SXEs we use the HTTP/1.1 protocol. In using
HTTP, we have the advantage of using ubiquitous and mature
clients for testing (i.e., off-the-shelf web browsers). More
importantly, HTTP URIs provide a natural hierarchical name-
space for describing SN resources, and there is a natural
relationship between the HTTP protocol header methods (e.g.,
POST, PUT, DELETE, GET, etc), response codes (e.g., OK,
CREATED, ACCEPTED, MOVED, etc) and the general signal-
ing communication we must support.8

A. Operational Overview

The SSD maintains a master STEP DAG that reprsents the
composition of all SXE-deployed STEP DAGs under its con-
trol. The SSD does not execute this graph or store values for
any nodes; the graph is maintained for resource allocation
and scheduling purposes only. All STEP nodes within this
master graph indicate onto which physical SXE the STEP node
has been deployed. Conceptually, the nodes of the graph are
colored with each node’s color representing the SXE on which
it resides. Nodes are also labeled with load and performance
information from the Sensorium Resource Manager (SRM).

Each SSD is tightly coupled with an SRM, which tracks
the physical resources available within its managed Sensorium
(e.g., SXEs, Sensors, controlled SSDs etc). The individual
SXEs communicate with the SRM to indicate any Sensorium
state changes, and likewise an absence in communication from
a managed SXE represents a change in state.

B. SSD-Driven Events

A master STEP graph could be altered at an SSD by a number
of events, which we overview below.

Program Insertion: When a new STEP program DAG is
posted to the SSD, it must be inserted into the master STEP
DAG; all new “unbound” (uncolored) nodes within the pro-
gram must eventually be “bound” (colored) and transmitted to
particular available SXEs. The trivial approach is to insert a
new STEP program DAG as a disconnected subgraph, though
more interesting approaches try to identify re-usable common
subgraphs and avoid re-instantiating such common subgraphs.

8For example, a new STEP program DAG is uploaded to the SSD by an
HTTP post of an XML object to the URI “http://host:port/snbench/ssd” the
response to which will be either “201 Created” or one of several 400-level
error codes.

That is, the SSD should identify a common subgraph between
two STEP DAGs, which can be treated as a single subgraph
in the master DAG.

In its general form, this problem is an NP-hard graph
embedding problem. Fortunately, our problem is further con-
strained such that, at least in practice, there is probably a
much tighter bound. Our master STEP graph is directional
and acyclic, our nodes have labels (where the labels, i.e., node
classes and opcodes, must match), we only consider “leaf”
subgraphs (i.e., no node in the common subgraph has a child
which is not in the subgraph), and finally we only look for
subgraph matches within persistent (trigger) expressions.

Our initial implementation of the SSD only tries to match
identical “trigger-rooted” subgraphs of a new STEP program to
subgraphs of the master STEP graph; the reuse of a previously
deployed non-persistent sub-expression would return data that
is stale to the newly added program. To improve searching
performance, we maintain a hash table of all active trigger
nodes in the master STEP graph to avoid searching the master
STEP graph on every insertion. Our graph reuse algorithm
compares all trigger rooted subgraphs of the newly added
STEP with the entries of the hash table; If the two graphs
are “identical” then reuse is possible.

In practice there may be structural differences between
two graphs that are functionally equivalent (e.g. socket com-
munication nodes may be inserted to distribute the compu-
tation across two SXEs). Our matching algorithm “flattens”
STEP graphs into functional representations by considering
the node classes and opcodes and attempts to ignore such
differences.

It may be beneficial to widen the graph reuse to recently
deployed subgraphs within some time threshhold. The more
general case of the code-resuse problem is made all the
more interesting because we may be splicing around and onto
partially-evaluated terms, and our own resetting of child nodes
may introduce scheduling (and, in extreme cases, starvation)
issues. If graph reuse is possible, the master STEP graph will
be updated to contain a graft of the new nodes onto the existing
master STEP graph.

The SSD transforms the newly posted STEP graph into
a splice STEP graph in which the new matching subgraph
is replaced at its root with a single splice node with the
same ID as the already deployed match. The splice node
is a directive to an SXE that asserts the dependency between



the new nodes and the existing node at the specified point
in the graph. Section V-A has details about splicing from the
perspective of the SXE.

The remaining new nodes must be colored (assigned to
an SXE) and, in the case that no code reuse is possible, the
new STEP program is added as a disconnected subgraph.

In many cases a new STEP graph may need to be split
across SXEs for any number of reasons (e.g., insufficient
resource availability on a single SXE). Even in cases of
graph reuse, the SXE running the reusable graph component
may not have resources available for the new STEP nodes
(computations). In such cases, the STEP graph will need to
be split into smaller subgraphs, and those subgraphs deployed
onto SXEs with available resources.

The STEP node coloring algorithm attempts to assign
each unbound STEP node to an SXE with sufficient resources.
We group all unbound nodes and attempt to find a single SXE
with sufficient resources to host all of these nodes in the STEP
graph. If no SXE has enough resources available, the graph
is split into two or more connected subgraphs and we recurse
on each such subgraph.9

The SSD will insert socket nodes to join subgraphs that
span multiple SXEs across the same logical STEP program
graph. The algorithm to perform this is a straightforward graph
traversal; when a node’s color differs from that of its child,
socket nodes are inserted.

(Sub-)Program Deletion: If a program is deleted, reference
counts to the effected nodes must be reduced and nodes that
are no longer referenced must be removed. Hosting SXEs are
instructed to take action if nodes are to be deleted. Section V-D
has details about deletion from the perspective of the SXE.

C. SXE/SRM-driven Events

The SRM is responsible for direct communication with the
SXEs to determine the run-time state and general health
of Sensorium resources. As such, any SXE state changes
observed by the SRM will be forwarded to the SSD. We
describe these events next.

Evaluation Completion: When a single evaluation has com-
pleted its execution or when a persistent expression has passed
its lifespan without being renewed, its constituent nodes (if
not referenced by any other programs) should be deleted from
the master STEP DAG. Evaluation completion is reported to
the SRM via the SXE, and the SXEs require no additional
instruction from the SSD when natural evaluation completion
occurs.

SXE Graceful Shutdown: If an SXE notifies the SRM of
a shutdown, the SSD must re-color all of that SXE’s nodes
(and therein transmit them, along with the requisite “wiring
updates”, to other SXEs). If an evaluation cannot continue
without the shutting-down SXE (e.g., a node depends upon an
operation particular to that SXE), the evaluation is terminated
with an error condition.

9The graph splitting algorithm walks the graph from the head looking for
a node with multiple children. When such a node is reached all nodes on the
path until this node (and including this node) are the first subgraph, and each
child of this node is a separate subgraph. If the end of the graph is reached then
the graph is actually a list and any split will achive two connected subgraphs.

SXE Failure Detected: The SXE periodically sends a heart-
beat to the SRM indicating health, load, and other useful
resource information. Should an SXE miss three successive
heartbeats, or indicate that it is otherwise in trouble (e.g.,
missing deadlines required by the flowtype of a deployed
STEP node), the SSD will remove and relocate any affected
STEP graph nodes.

Should an SXE fail to report its state as expected, the
SRM assumes that the SXE has failed or has otherwise become
disconnected and notifies the SSD accordingly. The SSD must
reset all STEP nodes present on that SXE, migrate these nodes
to another SXE, and the evaluation must also be re-started
(since partial evaluation state may have been lost and sub-
evaluations may therefore need to re-transmit).

SXE Reset Detected: If an SXE should fail, yet come back
up before its failure is detected, the SRM will receive a
heartbeat message from the SXE indicating that the SXE
has no active program nodes without sending an evaluation
completion message. In this case the SSD must reset all STEP
nodes present on that SXE, and force all child STEP nodes
residing on other SXEs to re-transmit their last evaluation
results (if any).

D. Intra-SSD Events

In practice we anticipate that many SSDs may be deployed
simultaneously over a Sensorium. In this model, each SSD
would still administer its own “local” SN, yet the boundaries of
a local SN may shift for any number of reasons, and SSDs may
need to exchange events to collectively manage the Sensorium.
Our current implementation lacks complete support for the
management of multiple SSDs, however much of the practical
infrastructure to support this change is already in place (e.g.,
SSDs can pass “live” SXEs between each other). It remains
to be seen whether the management of multiple SSDs is best
achieved via a hierarchy featuring a “root” SSD (a la DNS)
or through a distributed (peer-to-peer) administration model.

V. SENSORIUM EXECUTION ENVIRONMENTS (SXES)

An SXE interprets and exectutes a partial STEP delegated
to it by the SSD. Through the STEP program abstraction, an
SXE provides a generic interface to SN resources, including
Sensor Elements (SEs) and Computing Elements (CEs) capable
of processing and storage of sensory data, as well as control
of actuators.

An SXE is responsible for enabling the concrete tasks
of a program’s execution, including communication with
other participant SXEs (usually via HTTP GET, POST, and
PUT operations). Our initial implementation of SXEs uses
Java technologies – namely, Java 1.5 for the runtime, Java
Media Framework for sensor interaction, and Java based
NanoHTTPD for HTTP communications. In addition to the
programming benefits of the strongly-typed Java language and
the protection benefits of its sandboxed runtime environment,
Java provides us with straightforward mechanisms for runtime
loading of functionality over the network (via JARs or dynam-
ically compiled source code). The GCJ suite also allows us
to compile Java programs into native bytecode when runtime
performance is an issue.



Each SXE instance has a UUID, which persists across
executions (shutdowns, crashes, etc) and is registered with
the SSD via the SRM. The SXE’s primary external in-
terface is via an HTTP Server under the URI root
“http://host:port/snbench/sxe/”. The SXE also acts as an HTTP
client to interact with the SSD, SRM, and other SXEs,
although the SXE also implements other communication pro-
tocols to interact with specialized SXEs or non-SXE elements
(e.g., motes). Each SXE periodically communicates with the
SRM to which it is assigned and reports its sensing and
computation capabilities at that instant in time. The SSD uses
this information in deciding which (partial) STEP programs
to dispatch to a given SXE. Partial STEP graphs are uploaded
to an SXE via an HTTP POST of an XML object. The SXE
executes a program specified as a STEP graph by continually
iterating over all execution-enabled (ready) nodes. Notice that
this approach to evaluating a STEP graph is not unique.10

The essential operations of the SXE can be divided
into four classes of algorithms: STEP program admission
(splicing), STEP program interpretation, STEP exp node
evaluation, and STEP program deletion (pruning).

A. STEP Admission (Graph Splicing)
When a new STEP program graph is posted to an SXE, the
new graph may need non-trivial integration (i.e., splicing) into
the existing SXE STEP DAG. This problem is made all the
more interesting because we may be splicing around and onto
partially-evaluated terms, and our own resetting of children
nodes may introduce scheduling (and, in extreme cases, star-
vation) issues.11 We refer to the two splicing operands as the
“base” and the “graft”. Every node in each graph has an,
globally unique ID. The base is a standard STEP DAG. The
graft interacts with the base using the following rules:

1. Node Connection: The graft includes splice nodes, each
of which is a placeholder to be filled by the node in the base
graph whose ID corresponds with the splice node’s targetID
attribute.

2. Node Replacement: The graft includes normal STEP nodes
with the same IDs as nodes in the base graph; we call the graft
node the doppelganger and the base node the original, where
the intention is for the doppelganger to replace the original.
If the doppelganger has no children, the original’s children
are re-parented to it; if the doppelganger has children, the
original’s children are orphaned. The doppleganger keeps its
parents from the graft graph as well as inheriting those of the
original node in the base graph (although those may also be
or have been replaced by other doppelgangers).

B. STEP Interpretation
Each SXE maintains an active STEP graph, consisting of all
partial STEP graphs it has received from its SSD. These partial
STEP graphs consist of a variety of STEP nodes (described in
above in Section III). Recall that a STEP graph is a DAG
in which values propegate up toward a single root; Tasks

10Indeed, the selection of which nodes to consider next amounts to a
scheduling decision which may be constrainted by QoS requirements, or other
considerations (e.g., frame rates, etc).

11For this reason, it may also be interesting to consider admission-control
algorithms for determining when a new partial STEP DAG is eligible for
splicing onto an existing STEP DAG.

appearing in nodes higher in the STEP graph are not be able
to be executed until their children have been evaluated. The
STEP interpretation algorithm iterates over all nodes of the
STEP looking for actionable nodes (i.e., nodes whose children
have evaluated and are currently non-stale values) and executes
these actionable nodes accordingly. Trigger evaluation largely
involves setting and resetting the state of nodes as stale or
ready after evaluation as appropriate.

C. STEP exp Node Evaluation

STEP exp nodes are analogous to the opcodes of the STEP
programming language. The SXE contains a library of basic
“opcodes” and their implementations in the Java programming
language, known as sxe.core. For example, there is a
class /sxe/core/math/add.java corresponding to the
opcode “sxe.core.math.add” as there is for each opcode
known to the SXE. We implement a custom Java ClassLoader
to support dynamic loading of new opcodes from trusted
remote sources.

Internally, all opcode methods manipulate snObjects. The
snObject is a first-class Java representation of a STEP value
node within a STEP graph. The snObject itself is a helper
classs that provides common methods that allow objects to be
serialized for transmission between SXEs (as XML) and for
viewing results via a standard web browser (using standard
mime-type appropriate content). Similarly, snObjects imple-
ment a method to parse an object from its XML represen-
tation. Specific snObjects exist including snInteger, snString,
snImage, snBoolean, snCommand, etc.

All STEP value nodes that are children of an exp
node will be passed to the appropriate opcode implementation
as the correct corresponding snObject. Likewise, The opcode
implementation is responsible for returning an snObject such
that its result may be passed further up the STEP graph.
Within the body of the method, any computation may take
place and this computation is not limited to Java calls (e.g.
communication with remote hosts, execution of C++ code via
the Java Native Interface, or generation and transmission of
machine code to a remote host). Two simple examples – the
if-then-else conditional and string concatenation – are given
below for illustrative purposes.

snObject Call(snObjectArgList argv)
throws EvaluationFailure

{
snBoolean cond = argv.popBoolean();
if(cond.equals(snBoolean.TRUE))

return argv.popObject();
else{

/* throw away the first */
argv.popObject();
/* return the second */
return argv.popObject();

}
}

snObject Call(snObjectArgList argv)
throws EvaluationFailure

{
StringBuffer b = new StringBuffer();
snString s = null;
while(argv.hasNext()){

s = argv.popString();
b.append(s.getString());

}
return new snString(b.toString());

}



D. STEP Program Deletion (Graph Pruning)
Pruning a STEP graph is required when the SSD requests that
an expression be removed from the SXE’s STEP. We support
removal at the granularity of nodes, where the removal of
a node terminates evaluation of any expressions which are
parents of that node. The SSD is responsible for reporting
the aborted status; the SXE does not immediately delete the
nodes from its URI namespace, rather they are marked to be
collected as garbage at some time in the future.

As such, pruning is a two-phase operation, consisting of
garbage marking and physical deletion. The garbage marking
algorithm is a straightforward postfix DAG ascent, while the
cleanup algorithm simply iterates over all nodes, removing
those which have expired.

VI. RELATED WORK

A. Similar Initiatives
We restrict our coverage of related work to efforts focusing
on the development of programming paradigms for the com-
position of services for a general purpose sensor network,
as opposed to efforts focusing on application development
frameworks for a particular class of SNs, or for a special-
purpose architecture (e.g., motes) [3], [4].

TAG [5] and Cougar [6] are examples of works that allow
the composition of a query with an abstract representation of
the underlying phyical sensor network. Unfortunately, these
solutions are limited to query style programs, whereby the SN
is viewed as a distributed data acquisition/storage infrastruc-
ture (following the conception of the “SN as a database” [7]),
and thus lacking extensibility and arbitrary programmability.

MagnetOS [8] provides greater flexibility with respect
to the programs that can be deployed and has a “single
system” programming model. In fact, MagnetOS provides
runtime components to pool SN resources to form a single
Java virtual machine (JVM). While this approach supports
extensible dynamic programming, it lacks in its inability to
share SN system resources across autonomous applications.
One may also argue that a JVM is not the best abstraction for
a SN. Impala [9] provides modularity and adaptivity though a
variety of runtime agents, though their solution is programmed
at the granularity of the individual sensor, and it too lacks
support for multitasking an entire SN.

The work in [10] shares our vision of a shared, heteroge-
neous SN, and in fact also uses XML formatted messages
over standardized web-based protocols (WSDL via SOAP)
to program nodes. Unfortunately, this work falls short in its
limited ability to deploy truly arbitrary computations and its
lack of a “single system” programming paradigm.

Perhaps the closest conception of a SN as a general-
purpose, programmable infrastructure is the Distributed Token
Machines (DTMs) work [11], which is in many ways similar
to that of Active Messages [12]. The DTM approach provides
participating sensors with a Token Machine runtime system
that is able to accept and execute tokens written in Token Ma-
chine Language (TML). TML may be generated from higher
level languages, so presumably one can generate programs at
the network-level.12 The DTM work is a highly-customized so-

12To date, no high-level language exists that compiles into TML.

lution aimed at the particular constraints of motes [1]. Indeed,
DTMs lack a middleware support infrastructure for application
deployment (deployment is part of the TML program).

B. Catalytic Work
We envision SNBENCH as a catalyzing agent for a number
of interesting research directions both intrinsic (i.e., research
that aims to improve future generations of SNBENCH) as
well as extrinsic (i.e., research that advances the state-of-the-
art in other areas). The following are examples, inspired by
the projected trajectories of active research projects currently
being pursued within our department.

Extrinsically, SNBENCH abstracts out the details of the
SN infrastructure allowing researchers to work on the prob-
lems they are best suited to deal with. For example, vision
researchers don’t need to understand communication proto-
cols, real-time schedulers, or network resource reservation
to research HCI approaches for assistive environments [13].
Similarily, SNBENCH provides researchers in motion mining
[14] and in stream database applications [15] with a unique
opportunity to implement and test proposed approaches and
algorithms in a real setting. The functional, and strongly-typed
nature of SNBENCH programs may inspire the development of
SNBENCH (domain-specific) programming languages that are
more expressive than SNAFU. In particular, SNAFU maps
to STEP in a fairly straightforward way; additional more
expressive front-end languages with less intuitive mappings
could also be developed.

Intrinsically, the ability of the SSD to guarantee system
performance could leverage advances in overlay network QoS
management [16], distributed scheduling [17], and on-line
measurement, inference and characterization of networked sys-
tem performance [18]. Moreover, the algorithmic efficiency of
the SSD will depend upon finding efficient solutions to labeled
graph embedding problems [19], where those labels will have
interesting interactions with the scheduling and performance
issues already raised. SXEs ought to be high-performance run-
time systems, and thus can benefit significantly from operating
systems virtualization [20] and optimization techniques [21].

VII. CONCLUSION AND ON-GOING RESEARCH

SNBENCH provides an accessible, flexible, and easily extensi-
ble platform for developing distributed sensing applications in
open SN networks. In this paper, we have provided more
of a bird’s eye view – as well as some details regarding
initial implementations – of its various elements. With a first-
generation, “proof-of-concept” SNBENCH prototype in place,
we are now turning our attention to a number of challenging
problems, which we briefly highlight below.

Performance Profiling/Benchmarking: For an SSD to make
judicious allocation of STEP subgraphs to SXEs requires
the availability of performance/benchmarking data about the
resource consumption of the various “opcodes” supported
within an SXE. Said differently, for an SSD to successfully
engage in scheduling and capacity-planning requires accurate
characterization of the resource needs of the basic functions
that comprise a STEP program. At present, we lack such char-
acterizations. We invision a solution in which SXEs generate
simple performance statistics about each opcode as it is run,



and these are reported to the local SRM to build opcode
performance profiles. Thus, as new opcodes are added their
profiles can be dynamically built and probabilistically refined.

Scheduling and RealTime Type Systems: Performance mon-
itoring infrastructure is clearly required to support runtime
type constraints, as are realtime modifications to the SXEs.
It is not clear what scheduling algorithms are best suited, or
to what granularity we expect a program to be able to change
the scheduling model on a given SXE to suit its needs (if
at all). Related to this issue is the question of identifying
appropriate type annotations to describe such scheduling and
resource management constraints.

Graph Segmentation (Coloring) and Affinity: Communica-
tion between STEP nodes on separate SXEs is orders of mag-
nitude more expensive than between STEP nodes on a single
SXE. As such, there is performance pressure to make large,
contiguous regions of the STEP graph the same color. At the
same time, some programs by their nature draw samples from
across an array of network-distributed sensors, and some very
heavyweight operations (e.g., face-finding) have computation
costs which dwarf communication costs, particularly if they
must share scarce resources; both of these (and other concerns)
pressure us to have smaller contiguous color regions. What is
the right balance, and how can it be stated algorithmically?
How close can an online version of this algorithm come to an
offline one? Can we also factor in a cost for re-coloring nodes,
allowing us to utilize the space between the online color-each-
node-once approach and the offline optimal-coloring one?

Expressive Naming and Name Resolution: Naming re-
sources in the Sensorium is a great area of interest to us. At
present we support naming of sensors via URI, relative to the
physical SXE (host) that the sensor is connected to. This ap-
proach requires the Resource Manager to maintain knowledge
of all sensors connected to each host and to prioritize some
STEP program segments to compute physical sensor resources.
Presently we can support a limited form of sensor naming
by identity, yet wish to generalize this naming further with
more powerful functions to support naming by identity (e.g.
“The webcam in Azer’s Office”), naming by property (e.g.
“Any two cameras aimed at Michael’s chair by 90 degrees
apart”), naming by performance or topological characteristics
(e.g. “Any processing element within 2msec from WebCam1
and WebCam2”), and naming by content (e.g. “Any webcam
which sees Adam right now”). Such naming conventions will
require persistent STEP queries to enable these lookups, and
it is unknown as of yet which such persistent queries should
be instantiated and run to produce the highest odds of success
at the lowest cost.

Security: Security issues in open environments (such as those
we target with SNBENCH) are paramount, requiring the in-
corporation of mechanisms that deal with authentication (e.g.,
to ensure that unauthorized persons do not upload STEPs to
the SSD or to SXEs), support for privacy constraints (e.g.,
ensuring proper encryption of data streams traversing unse-
cured links), and trust (e.g., certifiable enforcement of access
controls to sensors, actuators, and historical data). Currently,
we are considering the implementation of some of the more
basic security functionalities – e.g., using digest authentication
for SSDs and SXEs, public key authentication for SXEs and

SSL authentication for SSD, and using SSL (https) to preserve
the privacy of data-plane and control-plane communication.
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