
Technical Memorandum 45312-890707-01TM, AT&T, Bell Laboratories, Department 45312, Holmdel, NJ, July 1989.

IDA-based Disk Arrays

Azer Bestavros�

Harvard University

May 1991

Abstract

Parallel disks can improve I/O performance in a manner analogous to the use of parallel processors
to improve computation times. However, due to their data storage function, reliability issues become
very important for these parallel disk systems. Currently proposed schemes use shadowing or parity to
achieve reliability in parallel disks. In this paper we introduce the idea of using the Information Dis-
persal Algorithm (IDA) of Michael O. Rabin [Rabin:87] to distribute data and redundancy information
uniformly among multiple disks and compare the performance and reliability characteristics of shad-
owing, parity, and IDA. We discuss some ways to take advantage of the uniformity of data placement
and argue that IDA is the algorithm of choice for achieving reliability and performance in parallel disk
systems.

Index Terms: Reliability, Performance, Parallel I/O, RAID storage systems, Information Dispersal Algorithm.

Acknowledgement: I would like to thank Prof. Michael O. Rabin for his valuable comments. Also, I would
like to thank Wing Wong and Danny Chen from Bell Labs for their help and suggestions.

�This work was done while the author was with AT&T Bell Laboratories, August 1989.

1



1 Introduction

Recently, parallel disk systems have emerged as a potential solution for achieving ultra-high capacity,
performance and reliability at a reasonably low cost. This emerging technology is likely to have a great
impact on the market of data-storage devices for mainframe computers, massively parallel computers
and large database systems [Zachary:89]. The basic idea underlying the design of parallel disk systems
is to use a large number of inexpensive small disks to attain very large capacities. The relatively low
cost per megabyte of storage on these disks,1 combined with their better volumetric and power e�ciencies
[Patterson:89], makes them very attractive when compared to larger disks. In [Bestavros:89c], we discussed
a number of issues related to the design, performance and reliability of parallel disk systems (disk arrays).

A signi�cant drawback of using a large number of parallel disks to improve I/O performance is the
e�ect it has on reliability. More disks means more frequent failures and, thus, an increased probability of
data loss. Without taking additional protective measures, it is well known that the probability of losing
data increases almost linearly with the number of disks in the system. With large disk arrays, 2 the
reliability of the system drops to unacceptable levels. For example, even with a small disk array of 32-64
disks, the MTTF (Mean Time To Fail) is expected to drop to a few days.

There are two approaches that can be adopted to improve the performance of parallel disk systems:
fault-avoidance and fault-tolerance [Randell:79]. With fault-avoidance, the overall system's reliability is
enhanced by using higher quality components, better assembly, extensive testing, regular maintenance,
etc. This approach is not appropriate for parallel disk systems for several reasons. First, higher quality
components translates to more expensive small disks. This defeats the underlying philosophy of parallel
disk systems which relies on the fact that small disks are cheap! Second, with a large number of small disks,
regular maintenance and testing becomes impractical. Finally, the fault-avoidance approach does not scale
nicely. A fault-avoidance measure that works for a system of tens of disks is not likely to work for a system
of hundreds or even thousands of disks! Fault-tolerance, on the other hand, seeks the same goal of improving
the overall system reliability by using protective redundancy to recover from the e�ect of malfunctions. In
a sense, malfunctions are expected to happen, but, if they do, their e�ects are automatically counteracted
by the redundancy.

Interest in parallel disk systems has been spurred by the sharp decline in the price of small hard disk
drives. The current ratio between the cost per Megabyte for large and small disks is somewhere between 2
and 5, and, with current market trends, this �gure is only expected to rise. Previous research [Patterson:89]
used minimal redundancy primarily to ensure acceptable levels of fault-tolerance. Performance gains from
the added redundancy (if any) were viewed as a side e�ect. In our opinion, this should be reversed. With
the aforementioned pricing trends, more redundancy should be used, primarily, to boost performance with
fault-tolerance being a byproduct.

In this paper, we propose a novel technique for adding redundancy to disk arrays. Our approach is
based on the Information Dispersal Algorithm (IDA) of Michael O. Rabin [Rabin:87]. We show that IDA
is superior to current approaches, namely: shadowing [Bates:85] and parity [Gibson:88].

In shadowing, faults are tolerated by maintaining multiple identical copies of the data. In parity,
redundant information is computed and stored with the data to enable the system to compensate for
possible data losses. The IDA approach is similar to parity except that there is no distinction between
parity information and data. Using the results we obtained in [Bestavros:89c], we analytically compare all
three techniques and conclude that IDA is superior. It yields the best reliability and performance gains for
every percent of added redundancy.

1Roughly 3-10 Dollars per megabyte for 3.5-inch disks (e.g. Conners CP3100) compared to 20-45 Dollars per megabyte
for the 10.5-inch and the 14-inch disks (e.g. DEC RA-81, IBM 3380).

2Some of these are estimated to have as many as 1000 disks! (see [Gibson:88]).

2



2 Shadowing

This is the simplest and most straightforward approach for increasing the reliability of a system. The idea
is to keep (r + 1) replicas of every block of data. Each one of these replicas is striped over a group of
m = n=(r + 1) disks. This scheme tolerates up to r failures out of the n disks by an r-fold increase in the
required storage.

2.1 The Seek Time:

In this section, we analyze the seek time of a shadowed system and how it relates to the parameters n and
r.3 We do not assume that any intelligent arm scheduling algorithm is used. Thus, we assume that the
accesses are uniformly distributed over the disks diameter D. Notice that this assumption becomes invalid
if a scheduling algorithm like the ones described in [Biton:89] is used. Also, we assume that the disks are
asynchronous.4

Read Access:
To read a data block, the controller will have to wait for the �rst replica to become available. Since the
number of disks involved in reading a replica is m, the expected seek time becomes the expected maximum
of these m disk seeks.5 Using the results in [Bestavros:89c], we get:

E(Seek for a group read) =
D

2

�(m+ 1)

�(m + 1:5)

mX
i=1

�(i+ 0:5)

�(i+ 1)

Each one of these groups can be approximated with a logical disk having the same expected seek time. For
a single disk, however, the expected seek time is one third its maximum seek distance. Thus, the logical
disk would have a maximum seek distance of:

D0 = 3
D

2

�(m + 1)

�(m + 1:5)

mX
i=1

�(i + 0:5)

�(i + 1)

The seek time for reading in a shadowed system is, thus, the minimum of the r+1 logical disks. Using the
analysis in [Bestavros:89c], we get:

E(Shadowed read seek) =

�
3

2r + 3

�
D

2

�(m + 1)

�(m + 1:5)

mX
i=1

�(i + 0:5)

�(i + 1)

Table 7 in the Appendix shows the expected seek time for reading a shadowed organization with n
disks and tolerating r failures with D = 1. Notice that for a constant level of fault-tolerance, the seek time
tends to increase as the total number of disks per server increases. This is due to the fact that the number
of disks per group increases, resulting in an increase in the expected seek time of the group (logical disk).
Notice also that for a given number of disks per server, the expected seek time tends to decrease sharply
as the level of fault-tolerance increases. This is due to two factors. First, the number of groups increases

3We assume that the seek time is dominant compared to other delays (e.g. latency and overhead).
4This assumption is pessimistic. In a number of situations, one might argue that other assumptions are more appropriate.

For example, seek synchronization [Bestavros:89c] is a more appropriate assumption if the head movement of the di�erent
disks are correlated.

5For seek synchronous systems, the expected seek time should be Dover3 (see [Bestavros:89c]).

3



making the expected minimumseek time decrease. Second, the number of disks per group decreases making
the expected seek time per group decrease as well.

Write Access:
To write a data block, the controller will have to wait for all of the disks (all groups and all disks per
group) to respond. Using the analysis from [Bestavros:89c], we get:

E(Shadowed write seek) =
D

2

�(n+ 1)

�(n+ 1:5)

nX
i=1

�(i + 0:5)

�(i+ 1)

The seek time for writing in a shadowed system is, thus, independent of the level of fault-tolerance.
It increases as the total number of disks in the system increases.

When deriving the above estimate, we assumed that all the pieces (namely n) have to be written
before committing the write request. That was necessary to maintain the same level of fault-tolerance
throughout the whole operation. Another approach, however, would be to relax this restriction a little bit
to improve performance. We illustrate this using an the following example:

Assume that a shadowing system tolerates up to two faults by maintaining three replicas of each
stripe. Using the usual (conservative) approach, we will have to write all three stripes for every write
request. As we have shown above, this will cause the seek and latency delays to increase. In a sense, this
performance degradation is the price we have to pay for the increased protection against failures. The
question, of course, is whether this price is justi�ed! For instance, if we commit the write request after
writing only one copy (the �rst one to �nish), then the seek time would be changed from 0:543 to 0:143,
a decrease of about seventy-�ve percent. One might argue that, by doing so, the level of fault-tolerance is
jeopardized, since a failure in the disk with the only copy (before the other two copies get to be written)
might result in an unrecoverable error. Although true, this is unrealistic. First, the probability of having a
failure in the interval of time between the completion of the �rst write and the second is extremely small.
Second, even if that failure occur, the second and third writes can still go through unless the whole system
fails (say as a result of a power failure). As a matter of fact, we can still tolerate such unlikely situation
by adopting a more conservative solution where we commit the write request after two of the copies get
written (the �rst two to �nish). This will make the seek time 0:314, a decrease of over forty percent from
the original write-all approach. Assuming the occurrence of two failures before the third write is completed
is unquestionably overly pessimistic.

Read/Write Access:
For a read/write mix of �, the expected seek time is given by:

E(Seek time for an � read=write mix) = �E(Read seek) + (1� �)E(Write seek)

In typical applications, read requests tend to be much more frequent than write requests. However,
the use of bu�er caches makes the actual (physical) read/write mix more balanced. Tables 8, 9, and 10 in
the Appendix show the expected seek time in a shadowed system for a read/write mix of 0:25, 0:50 and
0:75, respectively.

4



2.2 The Transfer Time

Since the total number of disks per server is n, it follows that data can be striped into m = n=(r+1) pieces.
These pieces can be accessed in parallel, thus reducing the transfer time by a factor of m = n=(r + 1).

3 Parity

A major drawback of the shadowing approach is the excessive amount of redundancy needed to protect
against failures. Instead of replicating data, redundancy can be added to the system so as to correct the
erroneous information. In [Patterson:89], [Patterson:88] such an approach for tolerating a single failure
in a group of N disks was suggested and termed N+1 RAID. The idea is to calculate and store parity
information of a group of disks on a bit-per-disk basis. One parity block would be needed for everyNblocks
across the disks. Any single disk failure can be corrected simply by reading the rest of the disks in the
group to determine what bit values of the failed disk would result in getting the proper parity.6

In this section, we generalize the parity approach to be able to tolerate more than one failure. We
analyze the expected performance of such an organization and contrast it to the shadowing approach.

3.1 Level of redundancy and fault-tolerance

Let the number of data disks per server be m and assume that it is required to tolerate up to r simultaneous
faults using the parity approach. The parity disks will partition the system into a number of parity groups.
Each parity group consists of a number of data disks m and one parity disk.7 Obviously, each one of the
parity groups can tolerate at most one fault. To be able to tolerate up to r faults, we should have every
data disk in at least r parity groups. If no more than r faults occur, then the data on any disk is recoverable
since that disk is guaranteed to be in at least one parity group with at most one fault.

One way of organizing the data and parity disks to guarantee the above condition is to imagine that
the data disks are organized in an r-dimensional space.8 Obviously, every data disk will have r coordinates.
Each one of these coordinates identi�es a parity group that the data disk is a member of. For such an
arrangement, one parity disk is needed per coordinate for each dimension. Let the number of parity groups
(and thus the number of parity disks) needed to tolerate r faults be p. We have:

p = rd r

p
mer�1

� rm
r�1

r

To tolerate one fault, we get p = 1 which corresponds to the N+1 RAID of [Patterson:88]. To tolerate more
faults, the number of parity disks grows rapidly. For example, to tolerate 2 simultaneous faults amongst 64
data disks, we need 16 parity disks (25 percent added redundancy). In this case, the parity groups consist
of 8 data disks and one parity disk. To tolerate 3 simultaneous faults, however, we need 48 parity disks
(75 percent added redundancy). In this case, the parity groups consist of 4 data disks and one parity disk.

6The N information disks along with the parity disk form a parity group.
7Notice that an information disk can be in more than one parity group.
8The cases where r = 2;3 were examined in [Gibson:88].

5



3.2 Seek Time

In this section, we analyze the seek time of a parity system. However, before doing that, we will discuss
how reading and writing in such a system is accomplished. We assume that data is striped over the m
data disks.

To write a data block, all m + p disks are accessed in parallel to write all the data and parity
information to the disks. In case of no failures, the access would take as long as the slowest of the m + p
disks. In case of failures, data should be written on di�erent sectors or on standby units. Depending on
the seriousness of the failure, this process might be more complicated. To read a data block, all m disks
are accessed in parallel. In case of no failures, the access would take as long as the slowest of the m disks.
If failure(s) are detected, the system will have to:

[1] Lock all parity disks associated with the failed disk(s),
[2] Read all the necessary parity groups,
[3] Compute the data block that would give the correct parities,
[4] Write back the corrected data on di�erent sectors or on standby units,
[5] Unlock the parity disks.

Since failures are not expected to be frequent, this performance overhead can be neglected on the
average. In the above discussion, we have assumed that �ne grain striping is used, making it necessary for
every request to access all data disks. If coarse grain striping is used, it might be possible to ful�ll the
request by accessing fewer disks. For read requests, this might be an advantage, since the seek/latency
delays are expected to be smaller. Write requests, however, become very expensive [Patterson:89]. In
particular, to write data to a single disk in a parity system, the system will have to:

[1] Lock all the disks in all the parity groups associated with the disk to be written,
[2] Read the old data,
[3] Read the old parity,
[4] Perform the write request,
[5] Compute and write back the new parity using the formula:

New parity = (old data � new data) � old parity, and
[6] Unlock the parity disks.

For a system with even a small percentage of writes, the parity disks will quickly become a perfor-
mance bottleneck. Thus, in the following analysis, we will assume that �ne grain striping is used.

Read Access:
Using the formula for the expected seek time for the maximum of m seeks [Bestavros:89c], we get:

E(Read seek in a parity system) =
D

2

�(m + 1)

�(m + 1:5)

mX
i=1

�(i + 0:5)

�(i+ 1)

Write Access:
Using the formula for the expected seek time for the maximum of n = m+ p seeks [Bestavros:89c], we get:

E(Write seek in a parity system) =
D

2

�(n + 1)

�(n + 1:5)

nX
i=1

�(i + 0:5)

�(i + 1)

6



3.3 The Transfer Time

The transfer to/from the m data disks can be done in parallel, resulting in decreasing the transfer time by
a factor of m = n� p.

4 The Information Dispersal Approach

Recently, Michael O. Rabin [Rabin:87] devised a new algorithm for the secure and fault-tolerant commu-
nication and storage of information. The basic idea of this algorithm is to disperse the contents of a data
block into n di�erent pieces so that recombining any m of these pieces, m <= n, is su�cient to reconstruct
the original data block. Figure 1 illustrates the dispersal of m stripes into n stripes using IDA. Obviously,
such an approach would tolerate up to n�m faults. The algorithm uses irreducible polynomial arithmetic
to disperse or reconstruct the data. If the size of the data to be dispersed is S then the size of each of the
pieces is (1=m)S, making the total required storage (n=m)S. The major aspect of IDA is that the added
redundant information is not identi�able (as is the case with the parity approach). Rather, it is distributed
among the data blocks. This makes the di�erent pieces of information in the system uniform. That is,
there is no distinction between data and parity.

d

d

d

d
d

d

6

?

6

? -

-

-

-

-

-

-

nm

Dispersed DataOriginal Data

IDA

Figure 1: Data dispersal using IDA

7



4.1 Level of Redundancy and Fault-tolerance

To tolerate up to r simultaneous faults, IDA requires that the total number of dispersed stripes exceeds the
minimum number of stripes needed for reconstruction by r. Thus, a total of n = m + r stripes is needed
for every m stripes of data, a redundancy of 100(n � m)=m percent. Obviously, IDA requires the least
amount of redundancy compared to shadowing and parity.

4.2 The Seek Time

In this section, we analyze the seek time of IDA and how it relates to the parameters n and r. The estimates
we get should be thought of as upper bounds. A number of optimizations (using intelligent layout of data
stripes on the di�erent cylinders and appropriate arm scheduling algorithms) are possible which would
result in decreasing the seek times considerably.

Read Access:
To read a data block, all n disks are accessed in parallel and the �rst m of these to reply are used to
reconstruct the data block. If no more than r failure(s) are detected, the system will have to recompute
the missing stripes and rewrite them to di�erent sectors or standby disks. Notice that this will not cause
any delays for the read request. Using the formula for the expected seek time [Bestavros:89c] we get:

E(Read seek in an IDA system) =
D

2

�(n+ 1)

�(n+ 1:5)

nX
i=n�m+1

�(i+ 0:5)

�(i+ 1)

Write Access:
To write a data block, all the n disks are accessed in parallel to write all the stripes. In case of no failures,
the access would take as long as the slowest of the n disks. In case of a failure, data should be written on
di�erent sectors or on standby units. This, however, should not delay the commitment of the write request.
Using the formula for the expected seek time for the maximum of the n disks [Bestavros:89c], we get:

E(Write seek in an IDA system) =
D

2

�(n+ 1)

�(n+ 1:5)

nX
i=1

�(i + 0:5)�(i+ 1)

Read/Write Access:
We tabulate the seek time for the IDA approach for di�erent read/write mixes in the appendix (Tables
11, 12, 13, and 14.) Notice that these �gures should be thought of as upper bounds since, as it will be
explained later, much better write access performance can be achieved through intelligent arm scheduling,
optimized layout of data blocks and adoption of a delayed write policy.

An important property of IDA can be inferred by looking at these tables. The larger the number
pieces dispersed, n , the worse the seek time of both read and write accesses for a constant level of
redundancy. Table 1 shows this trend for di�erent values of n. The write seek time depends only on
n , whereas the read seek time depends on the available redundancy (we show the read seek time for
redundancy levels of 25, 50, and 75 percent). Despite this deterioration in the seek time, we might still
favor a larger n to cut on the transfer time, especially with fairly large block sizes. Obviously, an optimum
level of dispersion can be determined once the system parameters (block size, transfer rate, maximum seek
time,... etc.) are given.

8



Expected seek time
Read access Write access

n n�m

n
= 0:25 n�m

n
= 0:50 n�m

n
= 0:75

4 0.3905 0.2381 0.1111 0.5937
8 0.4384 0.2629 0.1216 0.7005
16 0.4671 0.2771 0.1275 0.7835
32 0.4830 0.2848 0.1307 0.8451
64 0.4914 0.2888 0.1323 0.8899
128 0.4956 0.2903 0.1331 0.9219
256 0.4978 0.2919 0.1336 0.9447

Table 1: Trend of read and write seek times

4.3 The Transfer Time

The transfer to (or from) the n (or m) disks can be done in parallel, resulting in decreasing the transfer
time by a factor of m.

4.4 The Overhead Time

To assemble/disassemble blocks of data using IDA, some computations have to be done. If �ne grain
striping is used, this overhead can be kept very small. In [Bestavros:89], we presented an architecture for a
VLSI chip to implement IDA in real-time. The chip has been fabricated by MOSIS and tested in the VLSI
lab, Harvard University. The performance of the chip was measured to be about 1 megabyte per second.
This corresponds, to an overhead of 1 micro-second for a stripe of 8 bits. By using proper pipelining and
more elaborate designs, we believe that the overhead delay can be reduced signi�cantly. Even, if hardware
support is not available to assemble/disassemble the data, the overhead time will still be minimal compared
to seek and latency delays. As a matter of fact, the overhead time of IDA becomes an issue only when it
exceeds the transfer time of that block.

4.5 Arm Scheduling

In [Bitton:88], arm scheduling algorithms were proposed for shadowed systems in order to decrease the
seek delays for read requests. These algorithms are impossible to use with parity systems since there is no
choice with respect to which disks to be accessed. With the IDA approach the system can select out of
the n disks the best m disks to use for accessing the requested block. Notice that using such an algorithm
for arm scheduling does not change our previous estimate of the seek time since the system is, in a way,
predicting which disks will have the smallest seek time.

4.6 Delayed Write Optimization

The main advantage of the IDA approach is the symmetry of the di�erent stripes. There is no distinction
between data and redundancy. As we have shown earlier, this property can be exploited to enhance the
performance of read requests. However, when writing the dispersed information to the di�erent disks, we
have assumed that the system has to wait until all the pieces are written before committing the write
request. This restriction results in a degradation of the performance of the write requests compared to the

9



read requests. In systems where disk cashing is used, the percentage of write requests is high. This means
that the overall system performance is likely to deteriorate.

The requirement of writing all the pieces before committing the write request stems from the need
to sustain the level of fault-tolerance. This might be necessary if that level is low. However, in a system
where redundancy is introduced to boost performance as well as fault-tolerance, this restriction becomes
questionable. To illustrate this point, consider a system where data blocks are dispersed into 16 pieces,
of which any 8 are su�cient to reconstruct the original blocks. In such a system, the read seek time will
be as low as 0:27D, whereas the write seek time will be as high as 0:78D. Such a system, tolerates up
to 8 simultaneous faults. If we are willing to sacri�ce this ultra-high level of fault-tolerance a little bit
for a very short period of time, then a much better write seek time can be achieved. For instance, if we
commit any write request after physically writing only 9 pieces, then the write seek time becomes 0:31D,
an improvement of more than half (actually over 60 percent). One might argue that, by doing so, the level
of fault-tolerance is jeopardized since the system can only tolerate one failure right after the write request is
committed. This concern is true but unrealistic. First, the probability of having two failures in the interval
of time between the completion of the 9th and 10th writes is extremely small. Second, unless the failures
are coordinated, the rest of the writes should proceed normally, thus restoring the level of fault-tolerance
to its original level.

The 
exibility of not writing all the pieces before committing a write request can also be exploited to
increase the achievable concurrency. Again, we illustrate this by an example. Consider a system consisting
of 64 disks where data blocks are dispersed into 16 pieces of which only 8 are su�cient to reconstruct the
original data. If we insist on having all the physical writes go through before committing a write request
then, obviously, the system can respond to at most 4 write requests at any time. On the other hand, if we
adopt the policy of writing (say) only 9 of the pieces before committing a write request, then the system
can service up to 7 write requests at any time. This would result in boosting the throughput of system
by up to 75 percent and almost doubling the achievable concurrency. Moreover, the delayed writes can be
done cheaply { for instance by waiting until the head of a disk is at a favorable position (using a scheduling
algorithm similar to C-scan).

4.7 Controllable Redundancy and Dynamic Recon�guration

One of the major advantages of using IDA is that the amount of redundancy (and thus the level of fault-
tolerance and the performance gains) can be adjusted for the di�erent needs of the system. For instance,
critical �les would be assigned a higher level of redundancy thus insuring ultra-high accessibility and better
performance. On the other hand, less critical data can be assigned lower levels of redundancy (or even no
redundancy at all). This 
exibility is impossible to insure with parity systems. Another main advantage
of using IDA is that, with a careful design, it is possible to add new disks to the system (and thus increase
its capacity) dynamically. This is also possible with shadowed systems. For parity systems, however, the
distinction between parity information and data makes such a recon�guration more di�cult.

5 Comparison

We will compare the three approaches we have presented (shadowing, parity and IDA) using typical ex-
amples. The examples and �gures we will be presenting are only suggestive. As we have discussed in
[Bestavros:89c], the actual performance depends heavily on other factors as well.9

9Organization, Operating system optimizations, Tuning of parameters, etc.

10



First, we will examine all three approaches for a �xed level of fault-tolerance. We will compare
the required redundancy and the achievable performance. Next, we will �x the total capacity and the
percentage of redundancy and compare the achievable performance and fault-tolerance.

5.1 Fixed Fault-tolerance

Consider an example system consisting of n = 24 disks. We will examine two situations. First, we will
assume that it is required to tolerate one failure out of the 24 disks (r = 1). Next, we will assume that it
is required to tolerate up to two simultaneous failures (r = 2). The conclusions we will draw out of this
example can be easily extended for larger values of n or r.

Example-1: (n = 24,r = 1)
Table 2 shows the level of redundancy, the transfer speedup and the expected seek time for all three striping
approaches. The expected seek time is calculated for di�erent read/write mixes of 0, 20, 50, 80 and 100
percent reads.

Example-1 (n = 24; r = 1)
Striping approach

Shadowing Parity IDA
Redundancy (percent) 100.0 4.35 4.35

Transfer speedup 12.0 23.0 23.0
Seek Time (�= 0.0) 0.82 0.82 0.82
Seek Time (�= 0.2) 0.75 0.80 0.80
Seek Time (�= 0.5) 0.64 0.78 0.78
Seek Time (�= 0.8) 0.52 0.75 0.75
Seek Time (�= 1.0) 0.45 0.73 0.73

Table 2: Comparison for a �xed level of fault-tolerance (n = 24,r = 1)

From this table, we notice that the amount of redundancy for a shadowed system is much higher
than that of a parity system or a system using IDA. This means a much smaller capacity out of the available
space. This also means that less parallelism is available for striping. This is re
ected in the lower transfer
speedup of shadowed systems when compared to either parity systems or IDA systems. For write accesses,
the seek time is the same for all three approaches. The seek time for read accesses, however, is di�erent;
shadowing is the best followed by IDA and then parity.

Example-2: (n = 24,r = 2)
Table 3 shows the level of redundancy, the transfer speedup and the expected seek time for all three striping
approaches. The expected seek time is calculated for di�erent read/write mixes of 0, 20, 50, 80 and 100
percent reads.

5.2 Fixed Redundancy / Maximum Fault-tolerance

In the above examples, we have �xed the level of fault-tolerance. Our conclusion was that IDA requires
a much lesser amount of redundancy compared to the other approaches. What if IDA is allowed to use
as much redundancy as does shadowing or parity ? What would be the achievable performance and

11



Example-2 (n = 24,r = 2)
Striping approach

Shadowing Parity IDA
Redundancy (percent) 200.0 50.0 9.1

Transfer speedup 8.0 16.0 22.0
Seek Time (�= 0.0) 0.82 0.82 0.82
Seek Time (�= 0.2) 0.71 0.81 0.79
Seek Time (�= 0.5) 0.56 0.80 0.74
Seek Time (�= 0.8) 0.40 0.79 0.70
Seek Time (�= 1.0) 0.29 0.78 0.67

Table 3: Comparison for a �xed level of fault-tolerance (n = 24,r = 2)

fault-tolerance gains ?

Example-3: (n = 8,m = 4)
Consider an example system consisting of 8 disks where up to 4 can be used for redundant storage. When
comparing the cost per megabyte for small disks (5 to 10 Dollars/MB) with that for large disks (20 to 45
Dollars/MB), this level of redundancy is acceptable. Assume that the data is to be striped on the other 4
disks so as to achieve a transfer speedup of 4. With shadowing, 4 disks will be used to hold the redundant
copy of the striped blocks. Thus every stripe will be stored on two di�erent disks, thus, tolerating one
erasure. To read a data block, we will have to wait for1out of every 2 copies to become available. With
parity, the four data disks will be arranged in two dimensions, with two parity disks for row-parity and two
parity disks for column-parity, thus, tolerating up to2erasures. To read a data block, we will have to wait
for all of the 4 data disks to respond. To write a data block, we will have to write all of the data and parity
disks. With IDA, data blocks will be dispersed into 8 pieces such that any 4 will su�ce to reconstruct the
original data. To read a data block, we will have to wait for the �rst 4 pieces (any 4 pieces) to be available.
To write a data block, we will have to write all of the 8 pieces. Table 4 shows a comparison of the relative
performance and fault-tolerance of the three approaches.

Example-3 (n = 8,m = 4)
Striping approach

Shadowing Parity IDA
Tolerable Faults 1 2 4

Seek Time (�= 0.0) 0.70 0.70 0.70
Seek Time (�= 0.2) 0.63 0.68 0.61
Seek Time (�= 0.5) 0.53 0.65 0.48
Seek Time (�= 0.8) 0.43 0.61 0.35
Seek Time (�= 1.0) 0.36 0.59 0.26

Table 4: Comparison for a �xed level of redundancy (n = 8,m = 4)

From this table, we notice that IDA is superior to both parity and shadowing in terms of level
of fault-tolerance. Its performance is better (although close) to shadowing and a lot better than parity
(especially when the read percentage is high).

12



5.3 Fixed Redundancy / Fixed Fault-tolerance / Maximum Performance

In the example above, we have �xed the level of redundancy and sought the highest possible level of fault-
tolerance with any improvement in the performance seen as a side e�ect. As we have discussed earlier, one
might add redundancy to the system to enhance its performance in the �rst place! What would be the
achievable performance for a given level of redundancy and a given level of fault-tolerance ?

Example-4: (n = 8,m = 4)
Consider an example system consisting of 8 disks where up to 4 disks can be used for redundant storage.
Also, assume that the system is required to tolerate at least one erasure at any point in time. With a pure
shadowing approach, the best we can do is to use all of the available redundancy to guarantee the required
level of fault-tolerance in an organization identical to that used in Example-3 (4 disks for data and 4 disks
for the shadow). With parity, one can suggest an organization similar to the one in Example-3, except
that a delayed write policy is used with one of the groups of parity disks (row-parity or column-parity).
In this case, to write a data block, we will have to wait until 6 writes terminate (instead of 8). With
IDA, we can use a delayed write policy with an arrangement identical to that of Example-3. To write a
data block, we will have to write any 5 pieces. Table 5 shows a comparison of the relative performance
and fault-tolerance of the three approaches. We tabulate two measures for fault-tolerance: transient and
steady state. The transient level of fault-tolerance re
ects the reliability of the system before the delayed
writes terminate, whereas the steady-state level of fault-tolerance re
ects the eventual reliability once the
delayed writes are �nished. From Table 5, we notice that IDA is superior to both parity and shadowing in
terms of the achievable performance.

Example-4 (n = 8,m = 4)
Striping approach

Shadowing Parity IDA
Tolerable Faults (transient) 1 1 1
Tolerable Faults (eventual) 1 2 4

Seek Time (�= 0.0) 0.70 0.66 0.34
Seek Time (�= 0.2) 0.63 0.65 0.32
Seek Time (�= 0.5) 0.53 0.63 0.30
Seek Time (�= 0.8) 0.43 0.60 0.28
Seek Time (�= 1.0) 0.36 0.59 0.26

Table 5: Comparison for �xed redundancy/fault-tolerance (n = 8,m = 4)

In all of the above examples, we have assumed that only one of the three approaches is used. Is it possible
that a combination of (say) parity and shadowing might be superior (in terms of performance and/or
reliability) when compared to IDA ? The answer to this question is not obvious. For instance, we have
established that when tolerating up to 1 erasure, IDA and parity are identical in terms of the required
redundancy and the achievable performance. What if we use parity to tolerate failures and shadowing to
improve performance ? Our answer is No. To illustrate this, we consider the following example:

Example-5: (n = 10,m = 4)
Consider a system consisting of 10 disks where up to 6 disks can be used for redundant storage. Also,
assume that the system is required to tolerate at least one erasure at any point in time. Using IDA, the
solution is obvious: disperse data blocks into 10 pieces of which any 4 would be su�cient and use a delayed
write strategy. One can imagine another arrangement where data is striped over 4 disks and shadowed

13



onto another 4 disks. To tolerate 1 erasure, a parity disk will be used with every group of 4 data disks.
Table 6 shows the achievable performance and fault-tolerance for these two alternatives.

Example-5 (n = 8,m = 4)
Striping approach

Shadowing & Parity IDA
Tolerable Faults (transient) 1 1
Tolerable Faults (eventual) 2 6

Seek Time (�= 0.0) 0.350 0.270
Seek Time (�= 0.2) 0.356 0.260
Seek Time (�= 0.5) 0.365 0.240
Seek Time (�= 0.8) 0.374 0.220
Seek Time (�= 1.0) 0.380 0.210

Table 6: IDA compared to a combination of parity and shadowing

From this table, we notice that IDA is still superior to the combination of parity and shadowing in
terms of the achievable performance and reliability.

6 Conclusion and Future Work

In this paper we have examined the relative performance of three approaches for adding redundancy to disk
arrays; namely shadowing, parity [Patterson:89] and IDA (Information Dispersal Algorithm) [Rabin:87].

Shadowing is the simplest approach to add redundancy in a system of parallel disks. The idea is to
replicate the data enough to tolerate any required number of faults. It has the highest (even prohibitive)
cost for a given storage capacity and fault-coverage. It performs better than the other approaches especially
with high read/write mixes and intelligent arm scheduling algorithms [Bitton:89].

Using the parity approach, the data disks are partitioned into parity groups. Each group is assigned
a parity disk that can be used to recover from any failure of any disk in the group. The parity approach
has the worst performance when compared to shadowing and IDA.

The IDA approach is provably optimal with respect to the amount of added redundancy and the
achievable level of fault-tolerance. Its main advantage is its indi�erence in dealing with data and redun-
dancy. This makes it possible to make more use of the added redundancy to enhance performance. Other
advantages of using IDA include: intelligent arm scheduling, dynamic recon�guration and controllable
redundancy.

Previous RAID research [Patterson:89] used redundancy primarily to ensure acceptable levels of
fault-tolerance. Performance gains (if any) were viewed as a side e�ect. In our opinion, this should
be reversed. Redundancy should be used primarily to boost performance with fault-tolerance being a
byproduct. In this respect, we have demonstrated that IDA is the right choice. With an a�ordable level
of redundancy,10 IDA can be used to reduce disk access delays and improve concurrency while insuring
ultra-high levels of reliability.

In this paper we tried to show that IDA is an optimum approach for achieving internal parallelism
(striping) in RAID systems. Much more work remains in order to incorporate IDA with a RAID design.

10As a matter of fact, a level comparable to what shadowing or even parity will require to achieve a modest level of
fault-tolerance.

14



This includes: designing and possibly implementing appropriate hardware prototypes, investigating the
potential support available from operating systems, and analyzing the requirements of di�erent applications
in order to �ne tune the system parameters for an optimized performance. The full power of IDA will
prevail.

References

[Avizienis:76] Avizienis A., Fault tolerant systems, IEEE transactions on computers December 1976.

[Bates:85] Bates K.H. and TeGrotenhuis M., Shadowing boosts system reliability, Computer Design, April
1985.

[Bertsekas:87] Dimitri Bertsekas and Robert Gallager, \Data Networks," Prentice-Hall, Inc., Englewood
Cli�s, NJ, 1987.

[Bestavros:89a] Azer Bestavros, A VLSI chip for the real-time information dispersal and retrieval for se-
curity and fault-tolerance, Technical Report, TR-06-89, Dept. of Computer Science, DAS, Harvard
University, January 1989. Also, in Proceedings of the 19th International Conference on Parallel Com-
puting, August 1990.

[Bestavros:89c] Azer Bestavros, Danny Chen and Wing Wong, The Reliability and Performance of parallel
Disks Technical Memorandum 45312-890707-01TM, Bell Laboratories, July 1989.

[Bitton:89] Dina Bitton, Arm Scheduling in Shadowed Disks, COMPCON-89, the Thirty-fourth IEEE
Computer Society International Conference, March 1989.

[Gibson:88] Garth Gibson, Lisa Hellerstein, Richard Karp, Randy Katz and David Patterson, Coding Tech-
niques for Handling Failures in Large Disk Arrays, Technical Report UCB/CSD 88/477, Computer
Science Division, University of California, July 1988.

[Kurzweil:88] Fred Kurzweil, Jr., Small Disk Arrays { The emerging approach to high performance,
COMPCON-88, the Thirty-third IEEE Computer Society International Conference, March 1988.

[McKusick:83] Marshall McKusick, William Joy, Samuel Le�er, and Robert Fabry, A Fast File System for
UNIX, Technical Report UCB/CSD 83/147, Computer Science Division, University of California at
Berkely, July 1983.

[Ng:89] Spencer Ng, Some Design Issues of Disk Arrays, COMPCON-88, the Thirty-fourth IEEE Computer
Society International Conference, March 1989.

[Patterson:89] David A. Patterson, Peter Chen, Garth Gibson, and Randy H. Katz, Introduction to Redun-
dant Arrays of Inexpensive Disks (RAID), COMPCON-89, the Thirty-fourth IEEE Computer Society
International Conference, March 1989.

[Rabin:87] Michael O. Rabin, E�cient Dispersal of Information for Security, Load Balancing and Fault
Tolerance Technical Report, TR-02-87, Department of Computer Science, DAS, Harvard University
- April 1987. Also appeared in the Journal of the Association for Computing Machinery, Vol. 36, No.
2, April 1989, pp. 335-348. April 1989.

[Randell:79] Randell B., System reliability and structuring, Ch.1 Pp. 1-18 of \Computing systems reliabil-
ity", Cambridge press, 1979.

[Rennels:84] Rennels D. A., Fault-tolerant computing - Concepts and examples, IEEE transactions on com-
puters December 1984.

[Schulze:89] Martin Schulze, Garth Gibson, Randy Katz, and David Patterson, How Reliable is a RAID?,
COMPCON-89, the Thirty-fourth IEEE Computer Society International Conference, March 1989.

[Zachary:89] Pascal Zachary, Disk Arrays may reshape storage of computer data, The Wall Street-Journal
(Technology), July 19, 1989.

15



Appendix

Total Number of tolerable faults

Disks 0 1 2 3 4 5 6 7 8

1 0.33333

2 0.46667 0.20000

3 0.54286 0.20000 0.14286

4 0.59365 0.28000 0.14286 0.11111

5 0.63059 0.28000 0.14286 0.11111 0.09091

6 0.65901 0.32571 0.20000 0.11111 0.09091 0.07692

7 0.68174 0.32571 0.20000 0.11111 0.09091 0.07692 0.06667

8 0.70046 0.35619 0.20000 0.15556 0.09091 0.07692 0.06667 0.0588

9 0.71623 0.35619 0.23265 0.15556 0.09091 0.07692 0.06667 0.05882 0.05263

10 0.72974 0.37835 0.23265 0.15556 0.12727 0.07692 0.06667 0.05882 0.05263

15 0.77671 0.40904 0.27025 0.18095 0.14805 0.10769 0.09333 0.05882 0.05263

20 0.80545 0.43784 0.28243 0.21020 0.16190 0.12527 0.09333 0.08235 0.07368

25 0.82536 0.45110 0.30020 0.21967 0.17198 0.13700 0.10857 0.09580 0.07368

30 0.84019 0.46602 0.31275 0.22725 0.17973 0.14552 0.11873 0.09580 0.08571

35 0.85178 0.47380 0.31778 0.23349 0.18593 0.14552 0.12612 0.10476 0.08571

40 0.86117 0.48327 0.32615 0.24325 0.19104 0.15208 0.12612 0.11128 0.09373

45 0.86898 0.48852 0.33287 0.24716 0.19533 0.15732 0.13180 0.11128 0.09957

50 0.87560 0.49522 0.33577 0.25061 0.19902 0.16165 0.13635 0.11630 0.09957

Table 7: Expected seek time for shadowed systems (�= 1.00)

Total Number of tolerable faults

Disks 0 1 2 3 4 5 6 7 8

1 0.33333

2 0.46667 0.40000

3 0.54286 0.45714 0.44286

4 0.59365 0.51524 0.48095 0.47302

5 0.63059 0.54294 0.50866 0.50072 0.49567

6 0.65901 0.57568 0.54426 0.52203 0.51698 0.51349

7 0.68174 0.59273 0.56131 0.53908 0.53403 0.53054 0.52797

8 0.70046 0.61439 0.57535 0.56424 0.54807 0.54458 0.54201 0.54005

9 0.71623 0.62622 0.59533 0.57606 0.55990 0.55640 0.55384 0.55188 0.55033

10 0.72974 0.64189 0.60547 0.58615 0.57918 0.56658 0.56395 0.56201 0.56046

15 0.77671 0.68479 0.65009 0.62777 0.61954 0.60945 0.60586 0.59724 0.59569

20 0.80545 0.71355 0.67470 0.65664 0.64457 0.63541 0.62742 0.62468 0.62251

25 0.82536 0.73179 0.69407 0.67394 0.66201 0.65327 0.64616 0.64297 0.63744

30 0.84019 0.74665 0.70833 0.68695 0.67507 0.66652 0.65982 0.65409 0.65157

35 0.85178 0.75729 0.71828 0.69721 0.68532 0.67522 0.67037 0.66503 0.66026

40 0.86117 0.76670 0.72742 0.70669 0.69364 0.68390 0.67741 0.67370 0.66931

45 0.86898 0.77386 0.73495 0.71352 0.70057 0.69106 0.68468 0.67955 0.67662

50 0.87560 0.78050 0.74064 0.71935 0.70645 0.69711 0.69079 0.68577 0.68159

Table 8: Expected seek time for shadowed systems (�= 0.25)

16



Total Number of tolerable faults

Disks 0 1 2 3 4 5 6 7 8

1 0.33333

2 0.46667 0.33333

3 0.54286 0.37143 0.34286

4 0.59365 0.43683 0.36825 0.35238

5 0.63059 0.45530 0.38672 0.37085 0.36075

6 0.65901 0.49236 0.42950 0.38506 0.37496 0.36797

7 0.68174 0.50373 0.44087 0.39643 0.38632 0.37933 0.37420

8 0.70046 0.52833 0.45023 0.42801 0.39569 0.38869 0.38356 0.37964

9 0.71623 0.53621 0.47444 0.43589 0.40357 0.39657 0.39145 0.38753 0.38443

10 0.72974 0.55405 0.48120 0.44265 0.42851 0.40333 0.39820 0.39428 0.39119

15 0.77671 0.59288 0.52348 0.47883 0.46238 0.44220 0.43502 0.41776 0.41467

20 0.80545 0.62165 0.54394 0.50783 0.48368 0.46536 0.44939 0.44390 0.43957

25 0.82536 0.63823 0.56278 0.52251 0.49867 0.48118 0.46697 0.46058 0.44952

30 0.84019 0.65310 0.57647 0.53372 0.50996 0.49285 0.47946 0.46799 0.46295

35 0.85178 0.66279 0.58478 0.54263 0.51886 0.49865 0.48895 0.47827 0.46875

40 0.86117 0.67222 0.59366 0.55221 0.52610 0.50663 0.49365 0.48623 0.47745

45 0.86898 0.67875 0.60093 0.55807 0.53216 0.51315 0.50039 0.49013 0.48427

50 0.87560 0.68541 0.60569 0.56310 0.53731 0.51862 0.50597 0.49595 0.48758

Table 9: Expected seek time for shadowed systems (�= 0.50)

Total Number of tolerable faults

Disks 0 1 2 3 4 5 6 7 8

1 0.33333

2 0.46667 0.26667

3 0.54286 0.28571 0.24286

4 0.59365 0.35841 0.25556 0.23175

5 0.63059 0.36765 0.26479 0.24098 0.22583

6 0.65901 0.40904 0.31475 0.24809 0.23293 0.22244

7 0.68174 0.41472 0.32044 0.25377 0.23862 0.22813 0.22044

8 0.70046 0.44226 0.32512 0.29178 0.24330 0.23281 0.22512 0.21923

9 0.71623 0.44620 0.35355 0.29572 0.24724 0.23675 0.22906 0.22317 0.21853

10 0.72974 0.46620 0.35692 0.29910 0.27789 0.24013 0.23243 0.22655 0.22191

15 0.77671 0.50096 0.39687 0.32989 0.30522 0.27495 0.26418 0.23829 0.23365

20 0.80545 0.52975 0.41319 0.35901 0.32279 0.29532 0.27136 0.26313 0.25663

25 0.82536 0.54466 0.43149 0.37109 0.33532 0.30909 0.28777 0.27819 0.26160

30 0.84019 0.55956 0.44461 0.38048 0.34484 0.31919 0.29909 0.28190 0.27433

35 0.85178 0.56829 0.45128 0.38806 0.35239 0.32209 0.30753 0.29152 0.27723

40 0.86117 0.57775 0.45991 0.39773 0.35857 0.32935 0.30988 0.29875 0.28559

45 0.86898 0.58364 0.46690 0.40262 0.36375 0.33524 0.31610 0.30070 0.29192

50 0.87560 0.59031 0.47073 0.40686 0.36816 0.34013 0.32116 0.30612 0.29358

Table 10: Expected seek time for shadowed systems (�= 0.75)

Total Number of tolerable faults

Disks 0 1 2 3 4 5 6 7 8

1 0.33333

2 0.46667 0.20000

3 0.54286 0.31429 0.14286

4 0.59365 0.39048 0.23810 0.11111

5 0.63059 0.44589 0.30736 0.19192 0.09091

6 0.65901 0.48851 0.36064 0.25408 0.16084 0.07692

7 0.68174 0.52261 0.40326 0.30381 0.21678 0.13846 0.06667

8 0.70046 0.55069 0.43837 0.34476 0.26285 0.18914 0.12157 0.05882

9 0.71623 0.57434 0.46793 0.37925 0.30165 0.23182 0.16780 0.10836 0.05263

10 0.72974 0.59461 0.49326 0.40881 0.33491 0.26840 0.20743 0.15082 0.09774

15 0.77671 0.66506 0.58132 0.51154 0.45049 0.39554 0.34516 0.29839 0.25454

20 0.80545 0.70818 0.63523 0.57443 0.52124 0.47336 0.42947 0.38872 0.35052

25 0.82536 0.73804 0.67255 0.61797 0.57022 0.52724 0.48784 0.45126 0.41697

30 0.84019 0.76028 0.70035 0.65041 0.60671 0.56738 0.53133 0.49785 0.46647

35 0.85178 0.77767 0.72209 0.67577 0.63524 0.59877 0.56533 0.53429 0.50518

40 0.86117 0.79176 0.73970 0.69631 0.65835 0.62419 0.59287 0.56379 0.53653

45 0.86898 0.80347 0.75433 0.71339 0.67756 0.64532 0.61576 0.58832 0.56259

50 0.87560 0.81340 0.76675 0.72787 0.69386 0.66324 0.63518 0.60912 0.58469

Table 11: Expected seek time for IDA systems (�= 1.00)

17



Total Number of tolerable faults

Disks 0 1 2 3 4 5 6 7 8

1 0.33333

2 0.46667 0.40000

3 0.54286 0.48571 0.44286

4 0.59365 0.54286 0.50476 0.47302

5 0.63059 0.58442 0.54978 0.52092 0.49567

6 0.65901 0.61638 0.58442 0.55778 0.53447 0.51349

7 0.68174 0.64196 0.61212 0.58726 0.56550 0.54592 0.52797

8 0.70046 0.66302 0.63494 0.61154 0.59106 0.57263 0.55574 0.54005

9 0.71623 0.68076 0.65415 0.63198 0.61258 0.59512 0.57912 0.56426 0.55033

10 0.72974 0.69596 0.67062 0.64951 0.63103 0.61440 0.59916 0.58501 0.57174

15 0.77671 0.74879 0.72786 0.71042 0.69515 0.68141 0.66882 0.65713 0.64616

20 0.80545 0.78114 0.76290 0.74770 0.73440 0.72243 0.71146 0.70127 0.69172

25 0.82536 0.80353 0.78716 0.77351 0.76157 0.75083 0.74098 0.73183 0.72326

30 0.84019 0.82021 0.80523 0.79274 0.78182 0.77198 0.76297 0.75460 0.74676

35 0.85178 0.83325 0.81936 0.80778 0.79765 0.78853 0.78017 0.77241 0.76513

40 0.86117 0.84382 0.83080 0.81996 0.81047 0.80193 0.79410 0.78683 0.78001

45 0.86898 0.85260 0.84032 0.83008 0.82112 0.81306 0.80567 0.79881 0.79238

50 0.87560 0.86005 0.84839 0.83867 0.83016 0.82251 0.81549 0.80898 0.80287

Table 12: Expected seek time for IDA systems (�= 0.25)

Total Number of tolerable faults

Disks 0 1 2 3 4 5 6 7 8

1 0.33333

2 0.46667 0.33333

3 0.54286 0.42857 0.34286

4 0.59365 0.49206 0.41587 0.35238

5 0.63059 0.53824 0.46898 0.41126 0.36075

6 0.65901 0.57376 0.50982 0.45654 0.40992 0.36797

7 0.68174 0.60218 0.54250 0.49277 0.44926 0.41010 0.37420

8 0.70046 0.62558 0.56941 0.52261 0.48166 0.44480 0.41102 0.37964

9 0.71623 0.64528 0.59208 0.54774 0.50894 0.47402 0.44201 0.41229 0.38443

10 0.72974 0.66217 0.61150 0.56927 0.53232 0.49907 0.46858 0.44028 0.41374

15 0.77671 0.72088 0.67901 0.64412 0.61360 0.58612 0.56093 0.53755 0.51562

20 0.80545 0.75682 0.72034 0.68994 0.66335 0.63941 0.61746 0.59709 0.57799

25 0.82536 0.78170 0.74895 0.72167 0.69779 0.67630 0.65660 0.63831 0.62116

30 0.84019 0.80023 0.77027 0.74530 0.72345 0.70378 0.68576 0.66902 0.65333

35 0.85178 0.81473 0.78694 0.76378 0.74351 0.72528 0.70856 0.69303 0.67848

40 0.86117 0.82646 0.80043 0.77874 0.75976 0.74268 0.72702 0.71248 0.69885

45 0.86898 0.83622 0.81166 0.79118 0.77327 0.75715 0.74237 0.72865 0.71578

50 0.87560 0.84450 0.82117 0.80174 0.78473 0.76942 0.75539 0.74236 0.73014

Table 13: Expected seek time for IDA systems (�= 0.50)

Total Number of tolerable faults

Disks 0 1 2 3 4 5 6 7 8

1 0.33333

2 0.46667 0.26667

3 0.54286 0.37143 0.24286

4 0.59365 0.44127 0.32698 0.23175

5 0.63059 0.49206 0.38817 0.30159 0.22583

6 0.65901 0.53114 0.43523 0.35531 0.28538 0.22244

7 0.68174 0.56239 0.47288 0.39829 0.33302 0.27428 0.22044

8 0.70046 0.58813 0.50389 0.43369 0.37226 0.31697 0.26629 0.21923

9 0.71623 0.60981 0.53000 0.46349 0.40530 0.35292 0.30491 0.26033 0.21853

10 0.72974 0.62839 0.55238 0.48904 0.43361 0.38373 0.33801 0.29555 0.25574

15 0.77671 0.69297 0.63017 0.57783 0.53204 0.49083 0.45305 0.41797 0.38508

20 0.80545 0.73250 0.67778 0.63219 0.59229 0.55638 0.52347 0.49291 0.46425

25 0.82536 0.75987 0.71075 0.66982 0.63400 0.60177 0.57222 0.54479 0.51906

30 0.84019 0.78026 0.73531 0.69785 0.66508 0.63558 0.60854 0.58343 0.55990

35 0.85178 0.79620 0.75451 0.71978 0.68938 0.66202 0.63695 0.61366 0.59183

40 0.86117 0.80911 0.77007 0.73753 0.70906 0.68343 0.65995 0.63814 0.61769

45 0.86898 0.81984 0.78299 0.75229 0.72542 0.70123 0.67907 0.65848 0.63918

50 0.87560 0.82895 0.79396 0.76480 0.73929 0.71633 0.69528 0.67574 0.65742

Table 14: Expected seek time for IDA systems (�= 0.75)

18


