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Abstract

Recently, parallel disk systems have emerged as a potential solution for achieving ultra-high capacity,
performance and reliability at a reasonably low cost. This emerging technology is likely to have a great
impact on the market of data-storage devices for mainframe computers and large database systems
[Zachary:89]. The basic idea is to disperse (or stripe data blocks over a number of small and cheap
physical disks. Accessing these disks in parallel guarantees a linear speedup in the transfer rates.
Moreover, introducing storage redundancy promises an ultra-high level of availability that is impossible
to achieve using usual approaches. This added redundancy can be exploited to further improve the
system performance by reducing the seek and latency delays of the overall system.

In this paper, we investigate a number of issues related to the design of systems of parallel disks.
We start with a detailed performance analysis of these systems. In this respect, we obtain expressions
for the di�erent delays incurred; namely the queuing, seek, latency, transfer and overhead delays.
Next, we consider the reliability requirements of these systems. We show that by adding a small
amount of redundancy, the reliability of parallel disks can be made very high. Next, we present a
number of potential hardware architectures; namely, bus oriented, sliced memory, and switching network
organizations. Finally, we discuss a number of design decisions concerning redundancy, synchronization
and grain size.

�This work was done while the author was with AT&T Bell Laboratories, August 1989.
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1 Introduction

Recently, parallel disk systems have emerged as a potential solution for achieving ultra-high capacity, per-
formance and reliability at a reasonably low cost. This emerging technology is likely to have a great impact
on the market of data-storage devices for mainframe computers and large database systems [Zachary:89].
Interest in parallel disk systems has been spurred by the sharp decline in the price of small hard disk
drives. The basic idea is to use a large number of inexpensive small disks to attain very large capacities.
The relatively low cost per megabyte of storage on these disks,1 combined with their better volumetric and
power e�ciencies [Patterson:89], make them very attractive when compared to larger disks. By responding
to a larger number of requests concurrently, the overall throughput of the system is increased. Moreover,
by accessing a number of disks in parallel in response to a single request, the response time per request may
be decreased. Finally, by introducing a relatively low level of redundancy, the availability/reliability of the
system can be made astronomically high. This added redundancy can be exploited to further improve the
system performance by reducing the seek and latency delays and enhancing concurrency. The enthusiasm
for parallel disk systems reects a growing concern that perhaps too much e�ort has been spent on build-
ing ever-faster processors at the expense of building better storage devices and other types of peripheral
equipment.

In this paper, we investigate a number of issues related to the design of systems of parallel disks.
We start with a detailed performance analysis of these systems. In this respect, we obtain expressions
for the di�erent delays incurred; namely the queuing, seek, latency, transfer and overhead delays. Next,
we consider the reliability requirements of these systems. We show that by adding a small amount of
redundancy, the reliability of parallel disks can be made very high. Next, we present a number of potential
hardware architectures; namely, bus oriented, sliced memory, and switching network organizations. Finally,
we discuss a number of design decisions concerning redundancy, synchronization and grain size.

2 Performance of Parallel Disks

The response time of a disk access consists of two components: the queuing time and the service time. The
queuing time, tQ, is the time it takes from when an access is presented to the disk server to when service
begins. This is basically the time spent waiting for the controller and/or the disk to become available. The
service time, tS , is the time it takes the server to complete the access.

There are two possible ways parallelism can be exploited to reduce the response time of a disk
access. On the one hand, by having more servers2 in the system, we can expect the queuing time to be
reduced. We call this kind of parallelism external. On the other hand, by having more physical disks per
server, we can expect the service time to be reduced. We call this kind of parallelism internal. Any parallel
disk system will, most probably, incorporate both internal and external parallelism. Figure 1 illustrates a
system where both external and internal parallelism are used.

In this section we analyze the potential performance gain in both the service time and queuing time
when parallelism is used.

1Roughly 5-10 Dollars per Megabyte for 3.5-inch disks (e.g. Conners CP3100) compared to 20-45 Dollars per Megabyte
for the 10.5-inch and the 14-inch disks (e.g. DEC RA-81, IBM 3380).

2groups of logical disks
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Figure 1: Internal Parallelism (Striping) versus External Parallelism

2.1 Disk Service Time

The service time, tS , consists of four components. The seek time, ts, is the time it takes for the head to
move to the appropriate track. The latency time, tl, is the time it takes for the requested sector to come
underneath the disk head. The transfer time, tt, is the time needed to transfer the requested block of data
to the memory. Finally, the overhead time, to, represents any delays imposed by the controller to process
the access. The service time, tS , is given by:

ts = ts + tl + tt + to

The relative contribution of these components might di�er by orders of magnitude. For instance, the
overhead time might be as small as few microseconds whereas the seek and latencies might be as large as
few milliseconds. This, however, might not always be the case. Thus, we will consider every one of these
components separately. For a given system, some of these components might be negligible.

The seek, latency, transfer and overhead delays are well de�ned for single disk systems. The service
time is simply their sum. For parallel disk systems, this is not the case. In a way, these delays can be
interleaved and/or correlated. In the analysis that follows, we consider each one of these delays separately.
This is a simpli�cation that would allow us to obtain an upper bound on the expected service time by
adding up the expected seek, latency, transfer and overhead delays. This is an acceptable simpli�cation
since, in most of the cases, one of these (usually the seek time) will dominate.
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2.1.1 Seek Time:

The seek time of an access is directly proportional to the distance the head will have to travel to service
that access. For simplicity we will assume that the constant of proportionality is 1. In a typical system, the
relation between the seek time and the traveled distance is non-linear. For instance, moving across 10 tracks
does not take 10 times the time it takes to move 1 track. For example, Figure 2 shows the seek characteristics
of a DEC RP06 system. The time to move across 1, 10, 100, and 200 cylinders is measured to be about 5,
8, 20, and 25 milliseconds respectively. For simplicity, however, we will assume a linear direct relationship.
Furthermore, we will assume that the head position is a continuous variable in the range [0; D] (another
simplifying assumption) and that the disk accesses are independent and uniformly distributed over that
interval. This latter assumption is not realistic. Data accesses tend to be correlated and non-uniformly
distributed over the disk cylinders (due to locality of references, hot spots, arm scheduling, and/or �le
system optimizations [McKosick:83]). Nevertheless, these assumptions are justi�ed since the e�ect of non-
uniformity and dependence of accesses is to reduce the average seek time. In a sense, these assumptions
make our analysis a worst case analysis.

Figure 2: Measured seek time of a DEC RP06 system
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Single Disk3

Consider a system consisting of a single disk. Let s be the random variable denoting the position of the
last access and r be the random variable denoting the position of the incoming access. Both s and r are
uniformly distributed in the range [0; D]. Let x be the random variable denoting the seek distance for the
incoming access.

x = jr � sj
Prob(x � z) = Prob(r � s � z) + Prob(s � r � z) = (1� z

D
)2

E(x) =

Z D

0

(1� z

D
)2 � dz = D

3

Thus, for a single disk system, we would expect an average of one third of the maximum seek for
every disk access in a single disk system.

When deriving the above estimate, we have assumed that the head remains at the cylinder it has
last accessed. A potential gain can be obtained if the head is automatically returned to the central cylinder
as soon as an access terminates. This would result in reducing the expected seek time from D=3 to D=4
(8.2 percent).

Multiple Disks
Consider a system consisting of n disks where an access can be serviced if at least m (where m � n) of
these disks respond. In this section, we will derive an expression for the expected seek time of such a
system. Notice that the single disk case is just a special case, where n = m = 1. The result we will get can
be used to obtain the expected seek time for the di�erent layout approaches.

Let t be the random variable denoting the seek time for the aforementioned system. Since only m
out of the n disks are needed to complete the access, it is obvious that t is the maximum seek time of the
set consisting of the minimumm seeks out of the n disks.

Prob(t � z) = Prob(At least n�m of the seeksare � z)

=
nX

r=n�m+1

�
n
r

�
P r(1� P )n�r

where P , the probability of a single disk having a seek of z or more is given by:

P = (1� z

D
)2

To compute the expected seek time, we proceed as follows:

ts = E(t)

=

Z D

0

"
nX

r=n�m+1

�
n
r

�
P r(1� P )n�r

#
� dz

=
nX

r=n�m+1

�
n
r

�Z D

0
P r(1 � P )n�r � dz

3The seek time for a single disk is a well known result. We derive it here for completeness.
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2 (1 � P )n�r � dP

=
nX

r=n�m+1

D

2

�(n+ 1)

�(n� r + 1)�(r + 1)

�(r + 0:5)�(n� r + 1)

�(n+ 1:5)

=
D

2

�(n+ 1)

�(n + 1:5)

nX
r=n�m+1

�(r + 0:5)

�(r + 1)

Notice that the above expression reduces to D=(2n+1) for n � m = 1. This corresponds to the case
where any one of the n disk accesses is enough to complete the request. This is the case for read requests
in systems where n replicas of each block of data are maintained on di�erent disks.4 The case where n = m
corresponds to the case where all n disk accesses are necessary to complete the request. This is the case for
write accesses in systems where a data block is spread or replicated over n disks. For a single disk system,
where n = m = 1, the above expression reduces to D=3.

2.1.2 Latency Time:

Let R be the time of one complete disk revolution. Thus, R, is the maximum latency time for any disk
access. We will assume that disk accesses are independent and uniformly distributed over the sectors.

Single Disk5

Consider a system consisting of a single disk. Let yi be the continuous uniformly distributed random
variable, 0 � yi � R, denoting the latency time for an access.

Prob(yi � z) = 1� z

R

tl = E(yi) =

Z R

0

(1� z

R
) � dz = R

2

Thus for a single disk system, we would expect a average latency delay of one half of the rotation
time.

Multiple Disks
Consider a system consisting of n disks where an access can be serviced if at least m (where m � n) of
these disks respond. In this section, we will derive an expression for the expected latency time of such a
system. Notice that the single disk case is just a special case, where n = m = 1. The result we will get
will be used to obtain the expected latency time for the di�erent striping approaches.

4These systems are called mirrored or shadowed systems.
5The latency time for a single disk is a well known result. We derive it here for completeness.
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Let t be the random variable denoting the latency time for the aforementioned system. Since only
m out of the n disks are needed to complete the access, it is obvious that t is the maximum latency time
of the set consisting of the minimumm latencies out of the n disks.

Prob(t � z) = Prob(At least n�m of the latencies are � z)

=
nX

r=n�m+1

�
n
r

�
P r(1� P )n�r

where P , the probability of a single disk having a latency of z or more, is given by:

P = (1� z

R
)

To compute the expected latency time, we proceed as follows:

tl = E(t)

=

Z R

0

"
nX

r=n�m+1
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r

�
P r(1� P )n�r
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� dz
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�
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�Z R

0
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dz = �R � dP

tl =
nX
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1

�RP r(1� P )n�r � dP

=
nX

r=n�m+1

�
n
r

�
D

Z 1

0
P r(1� P )n�r � dP

=
nX

r=n�m+1

R
�(n+ 1)

�(n� r + 1)�(r + 1)

�(r + 1)�(n� r + 1)

�(n + 2)

= R
m

(n+ 1)

2.1.3 Transfer Time:

Assume that the block size in bits is B and the baud rate in bps is b. Furthermore, assume that the transfer
is done in parallel using m disks. It is easy to show that the transfer time tt is given by:

tt =
1

m

B

b

The above expression is meant to emphasize the fact that the transfer time is directly proportional
to the block size and inversely proportional to the baud rate. It does not take into consideration other
important factors like possible bottlenecks in the system that might result in a larger transfer time. In
particular, we have assumed that there is no contention for resources (e.g. controller and/or bus). For
instance, if the transfer is done through a bus, then the transfer time is non-deterministic and highly
dependent on the tra�c on that bus.

7



2.1.4 Overhead Time:

In many systems, the disk controller performs some computations before, while or after accessing the data.
These computations are usually performed on chunks of data. These chunks are usually a small fraction
of the total block size. Let c denote the size of these chunks. Assuming the transfer of these chunks
and the processing by the controller to be pipelined activities, and assuming that the processing time is
smaller than the transfer time, it is obvious that an overhead of at least the transfer time of one chunk
is experienced per block transfer. Thus the overhead time is proportional to c. In all the analysis that
follows, we will assume that the overhead time is negligible.

2.2 Queuing Time

Let the total number of servers (logical disks) in the system be s. Assume that disk access requests follow
a Poisson process with rate � and that the service time for each request is exponentially distributed with
a mean ts = 1=�.

If any server can be used to service any pending request, then the system can be viewed as an
M/M/s process. In this process, the queuing time, tQ, can be derived. Using the analysis in [Bertsekas:87],
we get:

tQ = p0(
�

�
)s

1

s!(1� �
s�
)

1

(s� � �)

p0 =

"
s�1X
i=0

( �
mu

)i

i!
+

( �
mu

)s

s!(1� �
s�
)

#
�1

Obviously, the larger the value of s the smaller the queuing time will be. This performance gain,
however, depends on the value of �=�.

2.3 Response Time

The response time is simply the total delay experienced from when a request is submitted to when the
service is completed. The expected total delay, tD, is given by:

tD = tS + tQ

where, tS and tQ are the service time and queuing time derived before.

If the total number of disks in the system is limited to N (due to, say, cost constraints) and the
number of disks per server is n, it follows that s = N=n. A larger n would mean a higher level of internal
parallelism, but, a lower level of external parallelism. Obviously, for a given set of parameters (that is
b; B; �;D; ::: etc.) and a given type of workload (read/write mix), an optimal balance between internal
and external parallelism can be determined. For instance, Figure 3 illustrates that point. As the number
of servers increases, the queuing time decreases whereas the service time increases. The decrease in the
queuing time is rather sharp at the beginning but tends to slow down as the number of servers increases
(they will be idle anyway!) On the contrary, the service time deteriorates (increases) as the number of
servers increases (due to the decrease in internal parallelism). This deterioration depends on the technique
used to achieve internal parallelism and on the relative contribution of the seek, latency, transfer, and
overhead times to the service time.
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Figure 3: Response time versus the number of servers
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3 Reliability of Parallel Disks

The reliability of computing systems is of obvious importance to all who expect to bene�t from, or who are
in any way dependent on, the correct and continuous service that these system are supposed to provide.
The reliability requirements [Rennels:84] of di�erent environments may di�er enormously. One extreme is
the case of critical applications where no maintenance or manual repair activities are feasible, and incorrect
results or large delays are completely unacceptable. In the other extreme are environments where data
loss penalty is comparatively low and delays are tolerable. Another type of reliability requirement is
that of on-line databases where safeguarding the data held is usually much more important than providing
continuity of access [Avizienis:76]. In brief, di�erent systems might have di�erent reliability and availability
requirements.

Due to their mechanical nature, disk systems have been always the most unreliable and fragile
components in computing systems. This is why elaborate fault-avoidance and fault-tolerance [Randell:79]
techniques are usually used to increase their reliability and availability. Fault-avoidance enhances the
overall system's reliability by using higher quality components, better assembly, extensive testing, regular
maintenance, etc. to minimize the probability of a malfunction. Fault-tolerance, on the other hand, seeks
the same goal by using protective redundancy to recover from the e�ect of malfunctions. In a sense,
malfunctions are expected to happen, but, if they do, their e�ects are automatically counteracted by the
redundancy.

Fault-avoidance cost is usually attributed to the quality of the system components. It grows su-
perlinearly (usually exponentially) with the required level of reliability. Fault-tolerance cost, on the other
hand, is usually attributed to the level of redundancy and overhead in the system. It usually grows lin-
early with the required level of reliability. Fault-tolerance does not entirely eliminate the need for reliable
components; instead it o�ers the option to allocate part of the resources to include redundancy. As a
matter of fact, balancing the allocation of resources between fault-avoidance and fault-tolerance is required
to achieve the best reliability/cost ratio. For lower levels of fault coverage, the fault-avoidance approach
is usually more cost e�ective. For higher levels of fault coverage, fault-tolerance becomes more e�ective.
Figure 4 illustrates (qualitatively) the balance between quality and redundancy.

3.1 Terminology

A disk failure results from an abnormal physical change of the hardware (e.g. media failure). A fault is
any abnormal behavior of the system (i.e. not in accordance with the system's speci�cations). A fault
might be hard (permanent) or soft (transient). Hard faults are usually caused by failures, whereas soft
faults are caused by environmental factors (e.g. noise). A fault is manifested through the occurrence of
errors. Disk manufacturers classify errors as either recoverable, unrecoverable or undetectable. By adding
redundancy to the system, a larger class of errors can be made recoverable. For example, by using a single
Error Correcting Code (ECC), single bit errors can be corrected using the added redundancy, making these
errors recoverable. When the added redundancy is not enough to recover an error, it might be enough to
detect it. In this case the error is said to be unrecoverable. Unrecoverable errors are catastrophic since
they mean loosing data. It might be also possible for the added redundancy not to be able to detect errors
or to miscorrect them. In this case the error is said to be undetectable. Undetectable errors are, by far,
the most di�cult to deal with.
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Figure 4: Quality and Redundancy Trade-o�
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3.2 Reliability Computation

When internal parallelism is used, a data block is scattered over a number of disks. Assume that the Mean
Time To Fail (MTTF) for a single disk is Tf , and the Mean Time To Repair (MTTR) for a single disk
is Tr . Furthermore, assume that the data blocks are scattered over n disks and that only m out of these
are necessary to reconstruct the data back. Let pk denote the probability of the system having k failures.
Assuming the system can be approximated by an M/M/1 process with a �nite population of n, we have:

p0 =
1

Tr
p1

p1 =
1

Tr
p2 +

n

Tf
p0

p2 =
1

Tr
p3 +

n � 1

Tf
p1

. . . = . . .

pk =
1

Tr
pk+1 +

n� k + 1

Tf
pk�1

. . . = . . .

pn =
1

Tf
pn�1

The solution to the above system6 is given by:

pk = p0�
k n!

(n� k)!

p0 =

"
nX

k=0

�k
n!

(n� k)!

#
�1

� =
Tr
Tf

Obviously, for k � (n �m) any data blocks are retrievable. However, for k > (n � m) the system
fails. Thus:

Prob(System Failure) =
nX

k=n�m+1

pk

3.2.1 Single Disk System:

For a system consisting of a single disk, we have m = n = 1. Substituting in the above expression we get:

Prob(Single Disk System Failure) =
�

1 + �

6Refer to [Bertsekas:87] for a full derivation of the solution.
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3.2.2 Non-redundant Multiple Disk System:

For a system consisting of a multiple disks, with no added redundancy, we have m = n. Substituting in
the above expression we get:

Prob(Non � redundant System Failure) =
nX

k=1

pk = 1� p0

To compare this with the single disk system, we compute the ratio between the probability of a
failure in both cases as follows:

Q =
Prob(Non� redundant System Failure)

Prob(Single Disk System Failure)

Q =
1�

hPn

k=0 �
k n!
(n�k)!

i
�1

�

(1+�)

The value of � is typically very small. For instance, for a MTTF of one year (this is a typical
conservative estimate) and a MTTR of few hours, the value of � would be approximately 0.0001. Assuming
that n� is much smaller than 1 and neglecting higher order terms, we get:

Q =
n
1� �1 + n� + n(n � 1)�2 + . . .

�
�1
o (1 + �)

�

�
n
1� [1 + n�]

�1
o (1 + �)

�

� n�

(1 + n�)

(1 + �)

�
� n

Thus, for a system of multiple disks with no added redundancy, the probability of losing data
increases linearly with the number of disks in the system. For large values of n this level of reliability
becomes unacceptable. For instance, with n � 32, the MTTF drops from one year (for a single disk
system) to few days !

3.2.3 Redundant Multiple Disk System:

Assume that only m of the n disks are needed to reconstruct the data. Thus:

Prob(SystemFailure) =
nX

k=n�m+1

pk

Now, computing the ratio Q, we get:

Q =
Prob(Redundant System Failure)

Prob(Single Disk System Failure)

=

hPn

k=0 �
k n!
(n�k)!

i
�1Pn

k=n�m+1 �
k n!
(n�k)!

�
(1+�)
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Assuming � to be small enough, we get the following approximation:

Q � (1 + �)

�

�n�m+1 n!
(n�m+1)!

(1 + n�)

� n(�n)n�m

Notice that setting n = m, we get Q = n as before. For n = 9, m = 8, and � = 0:001 (very
conservative) the ratio Q evaluates to 0:081, making the redundant system much more reliable than the
single disk system. By adjusting the amount of redundancy (that is the value of m with respect to n), any
level of reliability can be guaranteed.

4 Hardware Organization

An issue of major importance in designing a system of parallel disks is how it would �t in the overall
architecture of the computing system. In this section, we consider a number of alternatives. For any
proposed organization, two issues are usually of utmost importance: scalability and transparency. In
addition, the cost, the feasibility, and the e�ect on performance of any proposed architecture are also
major concerns.

4.1 Bus Oriented Organization

This is the simplest and most straightforward organization. The server as well as the disks and memory are
hooked to a bus. Direct Memory Access (DMA) is used to transfer the data to/from every one of the disks
from/to the memory unit. The bus is time multiplexed amongst the di�erent disks. Figure 5 illustrates
this simple organization.

Figure 5: Bus Oriented Organization

The main problem with the above organization is that it does not scale up. With a larger number
of disks, the bus will eventually pose a serious bottleneck due to its limited bandwidth.
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4.2 Sliced Memory Organizations

In this organization (shown in Figure 6), requests are issued to the disk system using the disk request
bus. Instead of transferring the data directly to/from the main memory and thus creating an unnecessary
bottleneck, the data is stored in a distributed memory (one memory bank per disk), that is directly available
to the processor(s) through the memory bus. Each one of the memory banks is basically a dual-ported RAM
that can be accessed from the disks as well as from the memory bus. This is very similar to interleaved
memory designs. As a matter of fact, requests to the memory banks can be interleaved to achieve higher
throughput. It is also possible to augment this sliced memory with a contiguous single-ported memory (as
shown in Figure-6) to act as a shared main memory for the processors. This might be desirable, since
dual-ported memories are usually more expensive and their access by the processors (as a normal main
memory) might interfere with ongoing disk I/O operations.

One way of looking at the distributed memory is to envision it as being sliced amongst the di�erent
disks. This is shown in �gure 7. A request to read (write) a data block is basically a request for each disk
to read (write) one of the slices. The di�erent memory banks serve as the main memory of the system.
Any memory request should hit no more than one of these memory banks, or else, it should be available
in the contiguous memory unit (if any).

A major advantage of the sliced memory organization is its scalability. Adding more disks/banks
does not introduce any bottlenecks. This is due to the fact that the memory is sliced (partitioned) and
not shared. This organization, however, is not scalable in the number of processing units in the system.
In the uniprocessor case, neither the disk request bus, nor the memory bus pose any bottlenecks. In
a multiprocessor con�guration, however, both the disk request bus and the memory bus are potential
bottlenecks since they become shared resources. Cashing and bus arbitration become necessary. A nice
aspect of a sliced memory organization is its transparency. Ideally, an operating system need not be aware
of the fact that the memory is sliced or that a number of disks are involved in every disk access. Due to
this transparency, however, exible recon�guration of the system becomes extremely di�cult.

4.3 Switching Network Organization

In this organization, the di�erent servers (or processors) are allowed to access any subset of the available
disks through the use of a switching network (circuit or packet switching). Basically, the switching network
allows a number of designated disks to be connected to the bus of a processor upon its request. This
organization is illustrated in Figure 8. Notice that, the data transfer can be done through Direct Memory
Access (DMA).

The main advantage of this organization is its exibility in terms of the availability of the di�erent
groups of disks to the di�erent servers. In a sense, the operating system can adjust the level of reliability
/ performance on demand. The main problem with such an organization is the design of the switching
network. It does not scale nicely with the number of processors and/or disks. The complexity of this switch
as well as its cost and delay grow rapidly with the number of disks and servers. The switching network
organization solves the problem of potential contention over the disk request bus in a multi-processor
environment, but, does not solve the potential contention over the memory bus due to competing DMA
accesses between the disks and memory.
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Figure 6: Sliced Memory Organization
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Figure 7: Memory map amongst the di�erent slices
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Figure 8: Switching network organization
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4.4 Switching Network / Sliced Memory Organization

In this organization (see Figure 9), a cross-bar switch is used to connect a server's bus to any subset of disks.
Every subset of disks is connected to a memory bank (dual-port RAM). Transfer to/from the data banks
is done using Direct Memory Access (DMA). The number of disks per group is limited by the capacity of
the group bus, whereas the number of groups is limited by the complexity and cost of the communication
switch. This organization is suitable for systems consisting of a large number of disks. For instance a
system of 128 disks can be organized into 16 groups each consisting of 8 disks.

5 Software Organization

As we mentioned before, one key reason for building a system of parallel disks is to create a server (a logical
disk) that has a very high data transfer rate. This can be achieved by ganging together a set of physical
disks; striping data blocks across them; and transferring data to/from them in parallel. The performance
(namely the service time) of such an organization is highly dependent on a number of design decisions. In
this section, we discuss these in details. We make the assumption that data blocks are striped across n
disks and that reading m out of these (m � n), is enough to reconstruct the original data.

5.1 Level of Synchronization

There are three possible assumptions concerning the level of synchronization between the physical disks of
a given server. In the �rst, both the head movements and the cylinder rotations are synchronized. We call
such a system fully synchronous. In the second, the head movements are synchronized while the cylinder
rotations are not. We call such a system head synchronous. In the third, neither the head movements nor
the cylinder rotations are synchronized. We call such a system asynchronous.

In the analysis that follows, we compute the expected seek and latency delays for di�erent synchro-
nization assumptions. The sum of these expected values imposes an upper bound on the expected delay
of the system. It is an upper bound due to the existence of nonlinear operators (like max and min). For
instance, if m pieces out of n are su�cient to reconstruct the original data, then the expected delay due
to seek and latency should be the maximum of the smallest m out of n sums of the seek and latency
random variables. Computing the expected seek and latency delays separately and then adding them is an
acceptable simpli�cation since, in most of the cases, one of these (usually the seek time) will dominate.

5.1.1 Fully Synchronous Systems:

If the physical disks of a server are fully synchronized and if the di�erent stripes of a data block are located
on the same track and sector on every disk, then the average seek and latency times for that server are
basically the same as for a single disk system. From our previous analysis, we get:

ts =
D

3

tl =
R

2

The above estimates do not take into consideration any optimizations that might be possible due
to the determinism associated with the synchronous seek and rotation of the physical disks. For instance,
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Figure 9: Switching network / Sliced Memory Organization
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if n = 2 and m = 1, that is any one stripe out of two is su�cient, then by laying out the two stripes
180 degrees apart, the expected latency time of a read access can be reduced from 0:5R to 0:25R. Notice,
however, that for a write access, the latency actually increases from 0:5R to 0:75R. The same technique
can be used to reduce the read seek time by placing the stripes on di�erent cylinders of the physical disks.
For general values of n and m, and for a given read / write mix, the optimization of the combined seek
and latency delay might not be straightforward.

5.1.2 Seek Synchronous Systems:

If the physical disks of a server are seek synchronized and if the di�erent stripes of a data block are located
on the same track on every disk, then the seek time of the server is the same as that of a single disk,
whereas its latency is the maximum of the smallest m latencies out of the n physical disks. From our
previous analysis, we get:

ts =
D

3

tl =
m

(n+ 1)
R

The same notice we made about possible optimizations in fully synchronous systems can be applied
here. In particular, due to the determinism associated with the synchronous head movement, the read seek
time can be further reduced.

Seek synchronization can be assumed in two di�erent cases. First, if the hardware is built such that
the mechanical movement of the heads of the di�erent disks are synchronized then the seek synchronization
assumption is a valid one. Another situation, however, arises when the synchronization is imposed by the
software. For instance, if the operating system always stores the di�erent pieces of a �le on the same cylinder
(or on a small cluster of nearby cylinders) [McKusick:83] then the seek synchronization assumption can
be justi�ed. In a sense, we would expect all the drives to be at almost the same corresponding cylinder
following any �le access. While hardware imposed seek synchronization seems unrealistic,7 software induced
seek synchronization is likely to be common.

5.1.3 Asynchronous Systems:

In this case, the seek time of the server is the maximumof the smallestm seeks out of the n physical disks,
whereas the latency is the maximum latency exercised by any one of these m disks. From our previous
analysis, we get:

ts =
D

2

�(n+ 1)

�(n+ 1:5)

nX
r=n�m+1

�(r + 0:5)

�(r + 1)

tl =
m

(m + 1)
R

7For example, a bad track or sector in one of the disks will make the corresponding tracks or sectors on the other disks
inaccessible.
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5.2 Granularity

When data striping is implemented, an important design decision is the granularity of the stripes. In �ne
grain striping, the size of a stripe is fairly small (one or few bits or words). In coarse grain striping, the
size of a stripe is fairly large (one or few sectors or tracks).

An advantage of �ne grain striping over coarse grain striping is that the overhead time, to, for
assembling / disassembling the data blocks is small (often negligible). A disadvantage, however, is that no
matter how small the required data to be accessed is, all of the physical disks have to be accessed. This
will a�ect the achievable level of concurrency.

5.3 Redundancy

Di�erent approaches have been suggested in the literature to incorporate the necessary redundancy in a
system of parallel disks.

5.3.1 Shadowing:

This is the simplest and most straightforward approach for increasing the reliability of a system [Bates:85].
The idea is to keep (r+ 1) replicas of every block of data. Each one of these replicas is kept on a di�erent
disk. If one of these disks fails, the system uses one of the redundant copies until the failed disk is repaired.
This scheme tolerates up to r failures out of the n disks by an r-fold increase in the required storage.

5.3.2 Parity and Coding:

A major drawback of the shadowing approach is the excessive amount of redundancy needed to protect
against failures. Instead of replicating data, redundancy can be added to the system so as to correct the
erroneous information. In [Patterson:89], [Patterson:88] such an approach for tolerating a single failure
in a group of N disks was suggested and termed N+1 RAID. The idea is to calculate and store parity
information of a group of disks on a bit-per-disk basis. One parity block would be needed for every N
blocks across the disks. Any single disk failure can be corrected simply by reading the rest of the disks in
the group to determine what bit values of the failed disk would result in proper parity. This approach can
be generalized to be able to tolerate more than one failure. In [Gibson:88], a number of coding techniques
were devised for use in parallel disk systems.

5.3.3 Information Dispersal Approach:

Recently, Michael O. Rabin [Rabin:87] devised a new algorithm for the secure and fault-tolerant commu-
nication and storage of information. The basic idea of this algorithm is to disperse the contents of a data
block into n di�erent pieces so that recombining any m of these pieces, m � n, is su�cient to reconstruct
the original data block. In [Bestavros:89a] and [Bestavros:89b], we have proposed using IDA in designing
systems of parallel disks. Obviously, such an approach would tolerate up to n�m faults. If the size of the
data to be dispersed is S then the size of each of the pieces is (1=m)S, making the total required storage
(n=m)S. The major aspect of IDA is that the added redundant information is not identi�able (as is the
case with the parity approach). Rather, it is distributed among the data blocks. This makes the di�erent
pieces of information in the system uniform. That is, there is no distinction between information and
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redundancy. In [Bestavros:89b], we showed that IDA is superior to both shadowing and parity, and that it
has great potentials for being used in future RAID (Redundant Array of Inexpensive Disks) systems.

6 Conclusion and Future Work

In this paper we have covered a number of issues related to the design of parallel disk systems. We started
with an analysis of the performance and reliability of these systems. We showed that a balanced allocation
of the available resources between internal and external parallelism and between fault-tolerance and fault-
avoidance is crucial. Next, we considered a number of architectural and organizational design decisions
and discussed their e�ect on the system performance.

More work is needed to simulate, prototype and compare the design alternatives we proposed. Also,
the impact of using parallel disk systems on the design of controllers and device drivers is yet to be studied.
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