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F
OR  OV E R  A  year, a high-profile 
initiative spearheaded by 
the City of Boston and the 
Boston Women’s Workforce 
Council (BWWC) strived to 

identify salary inequities across vari-
ous employee gender and ethnic de-
mographics at different levels of em-
ployment, from executive to entry-level 
positions.11 While the effort was sup-
ported by a diverse set of more than 
100 employer organizations in the 
city—including major corporations, 
small businesses, and public/non-
profit organizations—it was stalled by 
concerns about the confidentiality of 
the data to be collected in order to cal-
culate aggregate metrics.2

A key enabling technology that al-
lowed this effort to move forward was 
a Web-based application (which can 
be seen at 100talent.org) that we de-
signed and implemented at Boston 
University to support the aggregation 
of sensitive salary data using secure 
multi-party computation (MPC).8 This 
application was used in a first-of-its-
kind collaborative effort to compute 
aggregate payroll analytics without 
revealing the individual datasets of 
contributing organizations. This de-
ployment of MPC, which received 
significant media attention,2,15 finally 
enabled the BWWC to conduct their 
analysis and produce a report pre-
senting their findings.4 

MPC privately shards users’ sensi-
tive data across multiple servers in 
such a way that analytics may be jointly 
computed and released while ensuring 
that (small collections of) servers can-
not learn any user’s data. Theoretical 
constructs for MPC have been known 
for 35 years, with several existing soft-
ware frameworks designed over the 
past 10 years.7,9

MPC techniques can possess sub-
stantial social value: they enable society 
to benefit from collective data aggrega-
tion and analysis in contexts where the 
raw data is encumbered by legal and 
corporate policy restrictions on data 
sharing. Other examples of deploying 
MPC for social good include tax fraud 
detection3 and disease surveillance.5 
Additionally, because MPC decouples 
computing and networking resources 
from data, users can leverage the bene-
fits of large data centers without ceding 
control over their sensitive data.

However, MPC’s social benefits can-
not be realized unless we empower 
participating organizations (that is, 
their executives, directors, and legal 
advisors) with a clear, confident under-
standing of exactly how MPC protects 
their sensitive data and mathemati-
cally guarantees compliance with data 
sharing restrictions. The design and 
implementation of our own unique 
MPC platform was informed by nearly 
two years’ worth of discussions with 

non-technical personnel (including 
CIOs, CTOs, HR executives, and law-
yers from key participating organiza-
tions), social scientists, and members 
of the city council that commissioned 
the study.13 These discussions had to 
take place in meetings and teleconfer-
ences where the only aids were white-
boards and slideshows; they involved 
both describing secret sharing in a 
concrete, hands-on way as well as pro-
viding details of the implementation 
and how it realized the capabilities and 
guarantees of this technique. Ultimate-
ly, these exchanges were necessary to 
demystify MPC for decision makers 
and, more generally, to help us under-
stand and mitigate what we have come 
to realize are the hurdles that face real-
world MPC deployments. 

The systems community has grap-
pled recently with the realization that 
its significant body of work on scalable 
platforms did not adequately consider 
the question of what minimum distrib-
uted computing configuration outper-
forms a single thread (COST).10 Analo-
gously, in this column we argue that 
the extensive body of MPC research 
to date has not adequately considered 
the needs and circumstances of the 
ultimate users of MPC. Our own expe-
rience echoes and confirms thoughts 
expressed by other researchers in the 
community:16 “Secure computation is 
a general scheme; in reality one has to 
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ditionally, our framework automati-
cally infers when sensitive data crosses 
trust boundaries in order to minimize 
usage of MPC. We tested this system to 
compute a market concentration met-
ric over 160GB of public NYC taxi trips’ 
fare information with just 8.3% over-
head over the corresponding insecure 
computation.14

Entrustment
At its heart, MPC permits a federation 
of trust among several computing enti-
ties such that each user only needs to 
trust that any one of them (or a small 
fraction) is honest. Most existing MPC 
research papers and software frame-
works envision homogeneous entities. 
By contrast, we design a more flexible 
MPC framework that allows contribu-
tors to entrust entities with different 
responsibilities.

Along these lines, we provide a tax-
onomy of roles for entities that partici-
pate in MPC: a large, potentially a priori 
unknown number of contributors with 
private data; an analyzer who specifies 
an analytic; a publicly accessible ser-
vice provider who collects encoded data 
from the contributors without requir-
ing them to be online simultaneously 
and who also participates in the dis-
tributed computation; additional serv-
ers who participate in the distributed 
computation; one or more repositories 
that host the secure computing soft-
ware; and the recipients of the analysis. 
Behind the scenes, there may also be 
privacy experts and software engineers 
who assemble one or more of the com-
ponents in this ecosystem. In practice, 
parties using MPC may take on several 
of these roles simultaneously.a MPC 
provides the recipients with the results 
of the analytic over the contributors’ 
data, and it provably guarantees that 
nobody learns anything else.

Just as each entity has different as-
signments, so too might they have dif-
ferent levels of trust in one another. For 
brevity, we focus here on the service 
provider, who must connect to all oth-

a Some readers may be familiar with a related 
technology: fully homomorphic encryption 
(FHE). Abstractly, FHE can be viewed as a spe-
cialization of MPC to the two-party outsourc-
ing setting in which the contributor, analyzer, 
and recipient are the same party and in which 
the service provider’s computation does not 
require interaction.1,7

in part because the policy may not be 
expressible by either the original data 
contributor (who may lack expertise in 
privacy-related matters) or the analyst 
(who doesn’t know the users’ prefer-
ences or other uses of the data). Exist-
ing techniques from the programming 
languages research and formal meth-
ods communities such as policy-agnos-
tic programming (in which the policies 
that govern inputs are specified inde-
pendently from the dataflows and logic 
of the algorithm), as well as static anal-
ysis (to automatically derive policies 
from algorithms and compare them to 
user-specified policies) can play a sig-
nificant role in validating whether an 
analytic is compatible with a specified 
privacy policy.

Scalability
Typically, MPC frameworks are evalu-
ated based on their computational 
efficiency for simple analytics over 
relatively small datasets. This is a 
situation in which all modern frame-
works perform rather well (that is, 
seconds to minutes).1

However, human time dominates 
computing time in scenarios involving 
small-scale data such as the pay equity 
effort, in which a window spanning 
multiple days may be required to col-
lect salary data from a large number 
of contributors operating according 
to incompatible schedules, rendering 
the computing time negligible by com-
parison. In this case, MPC frameworks 
should prioritize software development 
and IT infrastructure design over the 
speed of computing the analytic. At the 
other extreme, when aggregating large-
scale datasets, an MPC framework 
should optimize the computation that 
can be performed locally so as to mini-
mize the costs incurred due to MPC.

To resolve both challenges, we have 
integrated existing MPC frameworks 
into the Musketeer big data workflow 
manager.6 Whereas prior MPC frame-
works require that software engineers 
design analytics in a domain-specific 
language, we permit rapid development 
in the well-known SQL and MapReduce 
paradigms, with automated generation 
of code to execute in existing back-end 
distributed frameworks like Hadoop, 
Spark, or Naiad so that developers and 
administrators can “focus on the what 
rather than the how of security.”12 Ad-

choose an application, starting from 
a very real business need, and build 
the solution from the problem itself 
choosing the right tools, tuning pro-
tocol ideas into a reasonable solution, 
balancing security and privacy needs 
vs. other constraints: legal, system set-
ting, etc.” We draw from our experience 
to advocate for the design of platforms 
that address concerns along Usabil-
ity, Scalability, Entrustment, and Risk 
(USER) dimensions.

Usability
To meet the needs of our users, we re-
jected the most algorithmically expres-
sive MPC solutions available in the liter-
ature.7 Instead, we found that what we 
needed was the simplest of protocols: 
just expressive enough for the applica-
tion at hand while being comprehen-
sible enough to fuel adoption among 
corporate officers, legal representa-
tives, and rank-and-file employees. We 
also found that participants’ software 
platform and IT infrastructure inflexi-
bilities and limitations (legacy systems, 
restrictive policies, firewalls, and so on) 
required the most lightweight solution: 
a simple browser-based application 
that could accommodate the familiar 
look and feel of a spreadsheet, with 
transparent open source code to en-
able outside auditing. Finally, our MPC 
protocol needed to accept contributors’ 
data asynchronously to simplify coordi-
nation and idempotently to allow con-
tributors to fix errors.

Usable MPC is an enabling technol-
ogy with substantial potential for social 
good, but only if enough participants are 
willing to contribute toward the analysis. 
In the pay equity scenario, the usability 
of both the protocol and its implementa-
tion helped decision makers—after only 
a few conversations—gain confidence 
in their understanding of the technol-
ogy, appreciate that it would impose no 
significant burdens on their staff and in-
frastructure, and assured that features 
such as idempotence and asynchrony 
would make deployment logistically 
feasible and likely to produce meaning-
ful results. This, in turn, increased the 
willingness of participants to contribute 
their sensitive data. 

Usability also extends to the speci-
fication of policies governing proper 
uses of data. Existing MPC frameworks 
neglect to address privacy policies, 
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er entities and may require immense 
computing power. When both of these 
characteristics simultaneously apply, 
the service provider has a large attack 
surface and is well suited to being run 
within a cloud computing datacenter.

Our pay equity software enables the 
most powerful computing entity also to 
be the least trusted. Our service provider 
runs on Amazon Web Services to collect 
and store encoded data; however, con-
tributors can choose instead to entrust 
the BWWC to protect the confidential-
ity of their data. We envision a future 
in which cloud providers offer ‘secure 
computing-as-a-service’ deployments 
of MPC that decouple control over data 
from computing power.

Risk
MPC research studies four types of 
adversaries: semi-honest entities who 
execute software as provided but may 
attempt to glean information along the 
way, covert adversaries who cheat only 
if they are unlikely to be caught, ratio-
nal adversaries who cheat as long as 
the expected payout is larger than the 
expected penalty if caught, and fully 
malicious entities who perform any ac-
tion necessary to breach the confiden-
tiality or integrity of honest users. 

We advocate for the MPC commu-
nity to match cryptographic models of 
adversarial behavior with the econom-
ic (for example, reputation-based) and 
legal incentives that real-world users 
face. A more accurate and fine-grained 
characterization of risks can result in 
a faster, simpler MPC protocol that 
satisfies users’ needs. Our pay equity 
project exposed delicate economic and 
legal concerns whose impact upon risk 

models should be explored further.
First, the existing risk models fail 

to capture the subtlety of reputation-
based economic incentives. In the pay 
equity scenario, the analyzer and re-
pository have the capacity to alter the 
software to leak secrets; however, they 
should not execute this capability due 
to the long-term damage to their repu-
tation and economic viability. Analo-
gously to the differences between the 
oneshot and iterated prisoner’s dilem-
ma games, the rational model of MPC 
provides an incomplete view because it 
focuses on a single execution. 

Second, MPC has a complex inter-
connection with the law. In our pay eq-
uity scenario, even if the BWWC could 
somehow learn the contributors’ data 
by cheating, it has a strong legal incen-
tive not to acquire this data because 
it could then be exposed to lawsuits. 
Indeed, one of the major hurdles that 
faced BWWC prior to their use of our so-
lution was the unwillingness of any sin-
gle entity (including a major local uni-
versity, originally enlisted to perform 
the study) to assume the liability in case 
of leakage or loss of data entrusted to 
them. Moreover, following MPC honest-
ly may provide BWWC legal protections 
afforded by following best practices or 
by restricting data sharing. Hence, the 
BWWC has a strong legal incentive to 
act in a semi-honest manner. Converse-
ly, appropriately written legal contracts 
can enshrine MPC’s constraints (for 
example, operating in the best interest 
of another entity, or forbidding collu-
sion between entities) with enforceable 
civil penalties. We propose a greater ex-
amination of the implications of the law 
upon MPC and vice versa.

Conclusion
We are convinced that the empowering 
and enabling aspects of MPC will make 
substantial contributions to data-driven 
analysis and policymaking by enabling 
individuals and organizations at all 
levels to derive insights about their col-
lective data without requiring that they 
share that data, but only if the technol-
ogy is accessible both conceptually and 
technologically to a broad audience. 
In this column, we proposed a four-
pronged research agenda to make MPC 
more usable along a variety of dimen-
sions, increase its scalability for humans 
and computers alike, assign respon-

The empowering  
and enabling  
aspects of MPC  
will make substantial 
contributions to  
data-driven analysis 
and policymaking.

sibilities that align with existing trust 
relationships, and systematically un-
derstand the legal and economic risks 
when trust is violated. These recommen-
dations are informed by our prior work 
deploying MPC to aggregate wage data 
and compute pay equity metrics—work 
that is, in the words of BWWC co-chair 
Evelyn Murphy, “beginning to show how 
to use sophisticated computer science 
research for public programs.”15 
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