
Dynamic Cross Domain Information Sharing-
A Concept Paper on Flexible Adaptive Policy Management

Michael Atighetchi,
Jonathan Webb, Partha Pal,

Joseph Loyall
Raytheon BBN Technologies

10 Moulton St, Cambridge, MA, USA
001-617-873-1679

{matighet,jwebb,ppal,
jloyall}@bbn.com

Azer Bestavros
Department of Computer Science

Boston University
Boston MA, USA

best@cs.bu.edu

Michael J. Mayhew
Cross Domain

Innovation and Science Group
Air Force Research Laboratory

Rome NY, USA

michael.mayhew@rf.al.mil

ABSTRACT
Information exchange across domains is essential for today’s
asymmetric warfare environment to make mission-critical infor-
mation available to war fighters, no matter where it exists and
when it becomes available. Dissemination of new information
needs to carefully balance the need-to-know by consumers with
the responsibility-to-share by providers. The right amount of shar-
ing, governed by policies defining what information can cross
domain boundaries, when, and under what circumstances, is high-
ly context-dependent and dynamic. Dynamic management of
those policies is a key challenge. This paper describes the design
of concepts and services to support dynamic lifecycle manage-
ment and deconfliction of policies governing cross domain infor-
mation flows. We describe how the design provides scalable, on-
the-fly reconfiguration of both local and cross domain security
policies while confining sensitive policy information to their re-
spective local domains.

Categories and Subject Descriptors
D.4.6 Security and Protection, K.6.5 Security and Protection

General Terms
Algorithms, Management, Design, Security

Keywords
Dynamic Policy Management, Cross Domain Information Sharing

1. INTRODUCTION
Unauthorized disclosure, sharing, and modification of sensitive
information are critical issues in network-centric systems as the
value, volume and variety of information flowing through the
systems increase. The need to share such information is also rising
in order to support emerging applications requiring rapid set up
and dynamic reconfiguration of sharing requirements.

Controlling networked information flow solely by static enforce-
ment of security policies like the “no read-up, no write-down”
rule of the classical Bell-La Padula [1] model is becoming unten-
able because of the increasing need to seamlessly handle dynami-

cally unfolding events. Such events include amendment to exist-
ing policies because of organizational changes or availability of
new services, coalition formation, changes in the priority and
urgency of specific classes of information or information ex-
changes, e.g., due to geo-political events, or elevation of
risk/threat profile of a certain region or subjects, e.g., based on
intelligence reports. In addition to actual insertion or deletion of
policy rules, such changes often require changing attributes of
subjects and resolution of various identities. Any modification to
the policy mechanism must be integrity preserving; in particular,
there must not be any unauthorized disclosure (leakage) or denial
of permissible information access (blockage). That is why (re-)
accreditation of policy (changes) is so critical. Accreditation is a
manual process that takes months and in many situations such
delays between the change trigger and deployment of the mod-
ified policy are not acceptable.

What is needed is a capability that enables switching between
policies within minutes without introducing new risks or vulnera-
bilities through a system that provides dynamic authoring, selec-
tion, and deployment of security related policies of cross domain
solutions (CDSs). Technologies for providing such functionality
within domains are readily available in today’s enterprise envi-
ronments. Examples include the role-based access control services
of the Net-Centric Enterprise Services (NCES) [2] and network
management platforms based on SNMP that monitor and control
configurations of IT assets, such as hosts and routers. However,
COTS policy management solutions cannot be directly applied to
the cross domain context for a number of reasons.

This paper first outlines a solution that enables rapid and safe
deployment of appropriately updated policies responding to policy
change drivers in a cross-domain environment, and then presents
the fundamental concepts underlying the solution. The main vi-
sion is to decouple the authoring of accredited policies from dep-
loyment. Construction of new or modified policies for various
contingencies, e.g., coalitions or joint operations, anticipated troop
or command center migration, and changes in threat levels, and
their subsequent accreditation are done off line as planning exer-
cises. The resulting policies are appropriately tagged and indexed
in a secure and persistent store. Automated policy analysis is a
key enabler for constructing consistent policies to begin with,
which reduces the time spent in the authoring cycle. When a situa-
tion arises, and conversely when a situation normalizes, an auto-
mated process assists operators to quickly identify appropriate
policies based on the requirements at hand and the tags of already
accredited policies from the persistent store. Once identified, se-
lected policies are pushed out to appropriate CDSs reliably so that

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists, re-
quires prior specific permission and/or a fee.
SafeConfig’10, October 4, 2010, Chicago, Illinois, USA.
Copyright 2010 ACM 978-1-4503-0093-3/10/10...$10.00.

the new policies become effective quickly by means of domain-
specific enforcement mechanisms.

2. DYNAMIC POLICY MANAGEMENT OF
CDSs
We have identified the following key workflows required to im-
plement flexible and adaptive policy management for cross do-
main environments:

 Authoring & Persistence: Enable construction and persis-
tence of policy sets ranked by urgency/risk profiles through
reliable accreditation review (RAR) workflows.

 Context-based Selection: Provide an easy to use interface
which allows administrators to choose an appropriate policy
given a certain risk/urgency profile. In addition to manual se-
lection via browsing, the system also needs to automatically
evaluate changes in current status derived from sensors in-
puts and suggest policy reconfiguration actions to the admin-
istrator.

 Deployment: Provide generation and deployment of Data
Flow Configuration File (DFCF) [3] descriptions with trans-
actional deployment semantics to recover from partial fail-
ures during deployment of policy updates to enforcements
devices.

2.1 Challenge Problems
Any system implementing the three workflows in the cross-
domain context must address the following difficult challenges:

Policy Representation: How to transcribe existing policies into
forms amenable to automated analysis? Resulting policy represen-
tations need to be expressive enough to capture the complexities
of the security policies and concrete enough to enable systematic
analysis. Representations will also need to support both hierar-
chical and non-hierarchical domain relationships and allow for
self-referential policies, i.e., policies that describe restrictions on
themselves.

Secure Persistence and Tagging: How to enable trustworthy
interactions with the policy management system through strategic
use of protection and auditing mechanisms? This includes secure
storage of pre-approved policies in a trustworthy way for fast

retrieval, authentication of humans, and protection of message
exchanges through standard protocols, e.g., TLS.

Control Locus: How to support both dedicated and hierarchical
management layouts? Multi-domain management solutions need
to get appropriate requests into and appropriate information out of
domains with restrictive data-sharing policies that are common in
complex multi-level security and coalition environments.

Scalability: How to minimize the proliferation of point-to-point
CDS deployments while scaling to a large number of supported
domains, so that the resulting integration remains manageable?
Furthermore, the solution must manage the state explosion typi-
cally encountered in analyzing a large number of policies of real-
world complexity.

Interoperability: How to support a diverse set of existing CDSs,
including security guards and gateways, by utilizing existing and
evolving configuration standards, e.g., DFCF?

Automating Policy Lifecycle with Reliable Accreditation Review:
How to minimize human involvement? This relates to the process
of dynamically modifying cross-domain policies to respond to
change drivers while retaining the capability of RAR at critical
workflow points such as authoring, accreditation of a policy bun-
dle prior to persistent storage, and selecting appropriate policy
bundles. Applicable authorities may require multiple signoffs for
critical operations in a policy lifecycle. Automation should assist
the operators wherever possible, including tool support for policy
analysis, automatic capture of audit trails, and automatically en-
suring the transaction semantics for configuring CDS enforcement
platforms.

Certification and Accreditation: How to avoid the need for certi-
fying and accrediting the entire policy management system? A
major issue in streamlining the change management process is to
validate that the dynamic management capability itself does not
introduce new leakage of information from high to low domains
or create new attack vectors from low against high domains.

2.2 Concepts Solving the Challenge Problems
In the Lifecycle Management, Deconfliction, and Automatic Dep-
loyment Services for Cross Domain Security Policies (LDADS for
XSP) project, we are creating an enterprise capability to dynami-
cally and securely adapt CDS policy to changing operational risks
and requirements. This paper describes the LDADS architectural
concepts and designs. Creation of a proof-of-concept prototype is
currently in progress.

To support the three functional flows, we introduce the notion of a
Local Policy Agent (LPA) for providing dynamic policy man-
agement within a domain. One can think of the LPA as a do-
main’s centralized service for managing cross domain policies and
configurations. Figure 1 displays a functional view of the LPA.
Functionality is split into the parts of 1) creation of accredited
policy bundles (top half) which can take significant time (in the
order of months) and 2) selection and deployment of those policy
bundles, which needs to be fast (in the order of minutes). As
shown in the figure, the policy creators and reviewers interact
with the LPA through a RAR service that supports the standard
lifecycle operations of create, update, and delete, as well as opera-
tions to approve or reject changes. To support these operations,
the RAR component is designed in a modular way through a
combination of new and existing services, including voting ser-
vices, RSS notification services, and provenance services. It is our
intention to utilize existing capabilities such as PMAF [4] or

Figure 1. A Functional View of the Local Policy Agent (LPA)

Persist

Local Policy Agent

RAR
Svc

Policy
DB

•Find
•Choose
•DeployAdmin

Svc

C
re

a
tio

n
of

A

cc
re

di
te

d
P

o
lic

y
B

un
d

le
s

Creator

Reviewer 1

Reviewer N

•Insert
•Update
•Delete

•Approve
•Reject

Admin 1

S
el

ec
tio

n
an

d
D

ep
lo

ym
en

t o
f

P
o

lic
y

 B
un

dl
e

s Risk/
Urgency
Mapper

Svc

Sensors

Alerts
Observations

Use

Use

CDSes

Poll
Config

Notify

…
…

Admin N

DDT/WES [5] and define additional requirements in case needed
functionality doesn’t currently exist. The RAR service needs to
allow interactions with creators and reviewers for authoring of
policies. The RAR component interacts with a Policy Database
(DB) to persist policies throughout their life cycle.

The LPA supports dynamic selection and deployment of pre-
approved policies through a sensor-actuator control loop with
human involvement. Sensor inputs, such as DoD threat levels or
significant attacks flagged by local intrusion detection systems,
enter the LPA and get dispatched to a Risk/Urgency Mapper ser-
vice which translates the specific sensor information into a norma-
lized risk urgency matrix. The Mapper then notifies administrators
through visible events in the Administration service and alert
messages sent via RSS or email. An administrator can then ma-
nually browse the database of pre-approved policies and select a
policy that satisfies the current risk/urgency status. Alternatively,
the Administration service provides functionality to automatically
assist the Administrator in finding appropriate policies and learns
to refine relevant contexts for selecting policies over time to speed
up the selection process. Once a proper policy is selected, the
administrator can assemble DFCF configuration descriptions and
start deployment.

Policy modification requires a transaction model coupling
changes to the rule base with the currently enforced version of the
policy. For example, the introduction of a new rule may generate
a conflict with existing policies, which needs to be resolved
through deconfliction (as described in the next paragraph). Paral-
lel execution or uncontrolled interruption of the update process
may leave the currently deployed policy in an inconsistent state.
We intend to address such synchronization problems by develop-
ing a transaction model for policy updates and deployments, ac-
commodating locking and rollback of updates to avoid update
inconsistencies. We further intend to allow for preemption of
service invocations during active policy updates to avoid inconsis-
tencies in policy enforcement. Support for transactions allows the
LDADS system to handle error conditions as soon as they occur
as opposed to falling back on manual debugging of inconsistent
deployments after the fact.

LDADS allows a variety of deployment scenarios to support sca-
lability with a variety of scale regimes. Figure 2 displays a small
scale deployment scenario with a few domains and CDSs. In this
case, the LPA in Domain 1 can be configured to directly control
the CDSs of its local domain without further coordination with
LPAs in other domains, such as the LPA in Domain 2. However,
to get consistent overall policies, this approach requires adminis-
trators in both domains to synchronize their actions out-of-band
by either selecting one of the LPAs as the master or manually
synchronizing respective partial updates in cases in which the
domain’s outbound policy is restricted and not-sharable across the
domain boundary. This deployment scenario becomes quickly
unmanageable with three or more domains and CDSs.

To support more scalable deployments, LDADS is built on top of
a hierarchical policy management architecture based on architec-
tural patterns developed under the XDDS effort for performing
cross-domain service discovery. In that architecture, the LPA
forms the locus of a domain’s policy management functions, as
displayed in Figure 3. Specifically, dynamic policy changes in
Domain 1 are handled by the local LPA in Domain 1, which
transparently hooks into the local domain and provides functions
to 1) analyze local cross-domain policies and make analysis re-
sults accessible to other domains but only through appropriate

CDSs, and 2) deploy
policy changes into
edge gateways and
security guards. The
LPA uses purpose-
built policy update
protocols that ac-
commodate require-
ments on message
exchanges in cross-
domain environments.

The interplay between
LPAs in multiple
domains is coordi-
nated by a Global
Policy Service (GPS),
which controls and
arbitrates communica-
tion between LPA
instances and also
provides anonymiza-
tion and 3rd-party authentication for those domains that need them.
The GPS resides in a domain of its own with a classification level
that can accommodate classification levels of participating do-
mains. Examples in this document assume a hierarchical domain
structure and the GPS domain is assumed to be the highest among
the participating domains—this has the advantage that the GPS
can store information about all other domains without violating
any access control and data-sharing policies. Both LPAs and the
GPS are implemented as services and hosted in gateway compo-
nents (GW) in respective domains. Our plan is to reuse existing
gateways, such as the ICASE [6] IPS Tomcat containers or the
Collaboration Gateway [7].

We keep the LDADS architecture guard-agnostic by encapsulat-
ing existing guard functionality into an abstract concept of the
Guard Technology Platform (GTP) with well-defined interfaces.
The function of the GTP is essentially restrictive. Like a firewall,
the objective is to block or prevent traffic that violates its policies.
There are a number of requirements on the underlying GTP layer
that are necessary for supporting LDADS. First, the domains that
participate in cross-domain collaboration need to have at least one
GTP between any pair of domains that communicate so that in-
formation flows between LDADS nodes are adequately protected.
Furthermore, the new kind of information (e.g., DFCF policies,
compositional analysis results, etc.) that flows across domains
needs to be appropriately labeled and signed.

Changes in policies will inevitably lead to policy inconsistencies
that need to be mitigated through a harmonization process. Our
approach applies research performed at Boston University on
compositional analysis [8][9][10] to the authoring of policies
through the RAR service to detect policy inconsistencies and
identify candidate rules to change. Composing individual policy
analyses rather than analyzing a large composite policy, allows us
to improve scalability both in terms of the number of policies and
the number of rules per policy. Compositional analysis also
enables local processing on sensitive policies that are not sharable
across domain boundaries. Using type checking, our system can
calculate whether a particular composition of policies violates any
constraints. Type inference allows us to develop more concise
rules for policy composition across domains and type debugging
allows us to identify required changes to conflicting rules more

Figure 2. Local Policy Agents Dynam-

ically Reconfigure CDSs

Figure 3. Hierarchical Architecture

Domain 1 Domain 2

LPA LPA

CDS

CDS

CDS

GTP

Domain 1 Domain 2

Domain 3

LDADS
Protocols

LPA

GW

LPA

GW

GPS

GW

precisely than is typically possible with conventional theorem
proving. This allows the creators to iteratively debug policies
before sending them off to reviewers, therefore minimizing cases
in which policy changes would have been rejected by reviewers.
Note that while we expect to implement a system-wide harmoni-
zation processes as part of the GPS, the same tool support is also
available through LPAs in deployment scenarios with a small
number of domains (such as shown in Figure 2).

An approach that uses raw predicate calculus based representa-
tions can easily get out of control as it scales with the number of
predicates and the complexity of the relationships between terms
in the expressions. This complexity is expected to be very large for
models of security classification guides even with only a few do-
mains and relevant policy rules. Compositional analysis addresses
this problem by introducing types and type relations as a way to
control state explosion. This approach scales with the number of
types and rules and the complexity of their interactions and this
scaling can be controlled by careful design of the type system.

This approach scales with the number of types and rules, which is
much smaller than the
number of predicates. As
displayed in Figure 4,
each LPA will host a
dedicated type checker
that analyzes policies for
local consistency and
shares cross-domain
results via a small set
of types. These results
are shared with a GPS in
a dedicated domain,
leading to a scalable
hierarchy of LDAs and a
GPS. Alternatively, results may also be shared directly between
peer LPAs in the absence of a GPS.

Machine executable policy representations need to be expressive
enough to capture the complexities of the security policies at hand
and concrete enough to enable systematic analysis. A promising
approach is to interface to policies expressed in open standards
(e.g., XACML) through a human-assisted process that ingests
policies and translates those policies into an internal representa-
tion based on type hierarchies and typing rules. The policy is di-
vided into generic and domain specific rules. Rules that govern
intra-domain interactions are separated from rules that restrict
cross domain interactions. Domain relationships can be hierar-
chical or non-hierarchical, and policies can describe restrictions
on themselves.

Addressing interoperability is key, since any solution needs to
interface with existing policy frameworks and scale as the number
of domains and policies increases. One approach we have used
successfully in the past is to encapsulate existing guards via GTP
interfaces to provide a guard-agnostic solution.

Certification and Accreditation of CDSs is expensive and time
consuming, and solutions that do not account for the specifics of
cross-domain environments will face significant barriers during
certification and accreditation. To address these issues, we are
designing LDADS in a way that decouples existing policy man-
agement technologies found locally in a domain from the messag-
es that cross the domain boundary. This keeps unnecessary com-
plexity at the edge, while allowing the LPA/GPS components to

exchange a smaller set of core messages within a narrowly de-
fined message format (e.g., it will not support full-blown XML),
derived from open standards. The resulting generalized communi-
cation models are part of the LDADS solution and, once certified,
can be extended to work with a wide variety of policy frameworks
through adapters.

3. DESIGN CONSIDERATIONS
Figure 5 displays the main core technology pieces as green boxes
and indicates their relationships to each other and to the three
critical workflows of authoring & persistence, context-based se-
lection, and deployment of policies.

3.1 Transactions
Part of ensuring the overall reliability of the operation of the vari-
ous workflows is to define a collection of transactional invariants
and implement appropriate mechanisms for enforcing those inva-
riants. For example, policy bundles will contain a variety of com-
ponents and installation of the bundle will require all of those
components be installed correctly. If a component fails, the opera-
tion must be retried or the CDS configuration must be rolled back
to a previous state. Also, the transaction definition associated with
the policy change must have access to control mechanisms in the
CDS to interrupt or disable data transmission to ensure a transfer
is not performed in an inconsistent policy state during installation
of the new configuration. We plan to design the transaction man-
agement base technology layer to identify the necessary transac-
tions in the lifecycle processes and develop appropriate enforce-
ment mechanisms.

Transaction management tools are available in a variety of envi-
ronments, J2EE containers like Tomcat and JBoss and transac-
tionally aware database engines like Oracle and PostgreSQL being
particular examples. Our goal is not to develop the transaction
processor but to exploit existing capabilities and to deploy the
relevant transactional applications for policy management within
these environments. For example, in the XDDS work, the baseline
capabilities are being developed with Tomcat and this platform
would provide suitable transaction management capabilities for
the workflows in policy lifecycle management.

 A major element for the design is identifying the transaction
boundaries for various operations in the different lifecycle
processes. Associated with each transaction are the necessary
invariants describing the integrity conditions for the transac-
tion. Some obvious transactions and their associated inva-
riants are listed below.

 Installation of a new policy bundle or modification of an
existing policy bundle is an obvious transaction. Part of the
invariant is a completeness check for the content of the bun-
dle. For example, if DFCF is used to represent a policy bun-
dle, the supplied bundle must pass a schema check for the re-
presentation of the data. Also, credentials must be provided
corresponding to the identities of the required reviewers for
the policy bundle as it passed through the review process.

 Association of an ingested policy bundle with a particular
risk or urgency profile will be performed in a transaction.
The invariant for the transaction would include a requirement
for only having a single default policy bundle and only a sin-
gle policy bundle for each distinct risk and urgency value.

 Many actions will have auditing requirements. A common
component of the invariants for the transactions surrounding

Figure 4. Compositional Analysis

Rules S1

Domain 1

Domain 3

Local check

S2

Domain 2

Local check

Type
Checker

Compose
Analyses

Type
Checker

Analysis 1

Type
Checker

Analysis 2

S3

LPA 1 LPA 2

GPS

these actions will be the generation of the audit record and its
persistent storage (show in Figure 5).

3.2 Auditing
Audit trails for various lifecycle events are an important element
for any system of this type and will play a role in certification and
accreditation processes as well as ongoing operation. Audit data
represents a particular component in the data management process
and will also have integrity requirements analogous to the policy
bundle data integrity discussed previously. Auditing activities will
also participate in the definition of transactions so audit data arti-
facts have appropriate accuracy constraints relative to actual
changes in system state. The goal of the design of the auditing
base technology layer is to identify auditable actions and store the
relevant audit entries in a verifiable and secure manner.

A necessary feature of any auditing capability deployed in this
environment is to provide integrity and continuity checks. These
must be balanced against storage costs. Integrity checks on the
logs will also help to identify tampering or errors in local
processing.

It is desirable to exploit any existing services providing audit ca-
pabilities where possible. Most database engines provide exten-
sively configurable auditing processes although log integrity is
typically only as good as that provided by the file system of the
host operating system. For LDADS, we are integrating existing
auditing services or specify requirements for construction of ap-
propriate services to use.

State changes having an impact on the policy definitions or CDS
configuration will require corresponding audit entries with refer-
ence to the altered policy bundle, some digest representing its
contents, an authorized identity making the change, and utility
information like timestamp or sequence numbers. Administrative
services need to be defined to support audit log maintenance and
retrieval as well as alert mechanisms to identify system errors or
other conditions requiring the attention of support staff.

3.3 Process and Data Integrity
The integrity of various process and data elements is required at
selected points in the workflows. For example, human review is
required during the policy ingestion phase of the authoring
workflow for the user to validate for the system the accuracy of
the supplied policy bundle relative to the user's intentions. This
validation must include some representation of the identity of one
or more reviewers of the supplied policy bundle before the bundle
can be considered accepted for use by the system. Similarly, the
process element responsible for installing the designated policy
bundle in the deployment workflow must be able to validate the
integrity of the workflow based on relevant reviewer authenticity,
integrity of the policy bundle due to damage or alteration, and
validation of the intent of the administrator requesting the change.
The goal of the design of the integrity base technology layer is to
provide an end-to-end validation chain for policy bundles from
ingestion to deployment, as shown by dotted lines in Figure 5.

At least some of the technology elements supporting process and
data integrity are expected to come from existing systems and
services. For example, the DDT/WES project provides mechan-
isms for RAR in a cross domain context. Identity management,
provenance services, and standardized encryption and digesting
technologies are all likely to play a role and these existing ele-
ments need to be identified and exploited.

A major element of the design problem for integrity is identifying
the checkpoints in the various workflows where an integrity check
is required and the necessary elements in the integrity package
used to determine the integrity of the relevant action or policy
bundle. Some obvious checkpoints are listed below.

 At policy ingestion time, the policy bundle itself must have
an identification with some appropriate set of reviewers prior
to being made available for use within the system.

 When policies are updated or modified, the existing policy
bundle, updated policy bundle, and associated reviewers
must be identified and validated.

 When risk or urgency profiles for a policy bundle are
changed, the relevant policy bundles and mappings must be
associated with a reviewer and the relevant policy bundles.

 When a policy bundle is selected for deployment, checks are
required to ensure the accuracy of the mapping and the intent
of the relevant administrator for the configuration change.

 When a policy bundle is deployed, the integrity of the pro-
vided bundle must be verified and supplied identities for as-
sociated reviewers and administrators must pass currency
checks.

3.4 Policy Analysis
Our concept for policy analysis entails encoding of relevant poli-
cies derived from security classification guides (SCGs) as a col-
lection of types and rules that are used by a proof engine for au-
tomated analysis. Types in a type system can be thought of as
representing collections of statements in a predicate calculus.
Operations on those types define compositional properties of the
associated types in a manner consistent with the underlying ex-
pressions in the predicate calculus. The goal of the design of a
type system is to be able to answer particular questions over this
predicate calculus such as, in this case, whether or not a particular
cross domain information flow is allowed. The validation of the
type system is, of necessity, mechanical and follows the rules of
the underlying predicate calculus resulting in a sound reasoning
system. The design problem is to construct a type system with
sufficient expressiveness to capture the questions of interest but
with desirable scaling properties. The art of the design of a partic-
ular type system is to minimize the number of instances where an

Figure 5. Core LDADS Technology Pieces and Their Relation-

ship

Transactions

Auditing

Process and Data Integrity

Policy Analysis

Create
Record

Authoring &
Persistence

Robust
Deployment

Persist

HumanHumanHuman
Context-based

Selection

Workflows

Validation Chain

Secure Storage

Use

Provide
Feedback

Policy
Bundles

interesting question can't be answered by the rules in the type
system.

4. CONCLUSIONS AND NEXT STEPS
Dynamically changing security policies and configurations of
guard devices in cross domain environments to adjust the allowa-
ble level of information sharing is a needed capability. Solutions
need to address a number of challenges, including scalability,
policy representation, and C&A of dynamic policies.

The flexible adaptive policy management concepts and designs
we outlined in this paper describe the core functionality by means
of three functional workflows and outlines designs for hierarchical
policy management agents that implement the functionality as a
distributed system. We show how to use policy analysis tech-
niques to increase the consistency of resulting policies and de-
scribe a transaction model for automatically distributing configu-
ration updates in a robust way.

Future work will mostly centered around creation of more detailed
use cases, involving policies of realistic complexity derived from
real security classification guides, creation of a proof-of-concept
prototype, and integration with next generation guards, such as
ISSE 4.0.

5. ACKNOWLEDGMENTS
The authors would like to acknowledge the support and collabora-
tion of the US Air Force Research Laboratory (AFRL) Informa-
tion Directorate.

6. REFERENCES
[1] David Elliott Bell, "Looking Back at the Bell-La Padula

Model," , Washington, DC, USA, 2005.

[2] (2009, Jan.) DISA NCES Website. [Online].
http://www.disa.mil/nces/

[3] Boyd Fletcher, XML Data Flow Configuration File Format

Specification, 2008.

[4] Daryl McCullough, Marisa Gioioso, Jennifer Cormier, Carla
Marceau, and Robert Joyce, "PMAF: Pedigree Managment
and Assessment in a Net-centric Environment," , Orlando,
2007.

[5] Data Dissemination Tool / Workflow Enforcement System.

[6] Adam Hovak, Cross Domain SOA Challenges Workshop
with CPSG, 2009.

[7] Sheldon Shapiro. (2006) An Introduction to Collaboration
Gateway.

[8] A. Bradley, A. Kfoury, and I. Matta A. Bestavros,
"TRAFFIC: Safe Compositional Specification of Networking
Systems," ACM SIGCOMM Computer Communication
Review (CCR), vol. 34, no. 3, July 2004.

[9] Assaf Kfoury, Andrei Lapets, and Michael Ocean Azer
Bestavros, "Safe Compositional Network Sketches: Tool and
Use Cases. ," in Proceedings of CRTS'09: The IEEE/RTSS
Workshop on Compositional Theory and Technology for
Real-Time Embedded Systems, Washington D.C., 2009.

[10] Assaf Kfoury, Andrei Lapets, and Michael Ocean Azer
Bestavros, "Safe Compositional Network Sketches: The
Formal Framework," in Proceedings of HSCC'10: The 13th
ACM International Conference on Hybrid Systems:
Computation and Control (in conjunction with CPSWEEK),
Stockholm, Sweden, 2010.

