
DEMO: Integrating MPC in Big Data Workflows

Nikolaj Volgushev
Boston University
nikolaj@bu.edu

Malte Schwarzkopf
MIT CSAIL

malte@csail.mit.edu

Andrei Lapets
Boston University
lapets@bu.edu

Mayank Varia
Boston University

varia@bu.edu

Azer Bestavros
Boston University

best@bu.edu

ABSTRACT
Secure multi-party computation (MPC) allows multiple parties to
perform a joint computation without disclosing their private in-
puts. Many real-world joint computation use cases, however, in-
volve data analyses on very large data sets, and are implemented by
software engineers who lack MPC knowledge. Moreover, the col-
laborating parties – e.g., several companies – often deploy different
data analytics stacks internally. These restrictions hamper the real-
world usability of MPC. To address these challenges, we combine
existing MPC frameworks with data-parallel analytics frameworks
by extending the Musketeer big data workflow manager [4]. Mus-
keteer automatically generates code for both the sensitive parts of a
workflow, which are executed in MPC, and the remaining portions
of the computation, which run on scalable, widely-deployed analyt-
ics systems. In a prototype use case, we compute the Herfindahl-
Hirschman Index (HHI), an index of market concentration used
in antitrust regulation, on an aggregate 156 GB of taxi trip data
over five transportation companies. Our implementation computes
the HHI in about 20 minutes using a combination of Hadoop and
VIFF [1], while even “mixed mode” MPC with VIFF alone would
have taken many hours. Finally, we discuss future research ques-
tions that we seek to address using our approach.

1. INTRODUCTION
Big data analytics are a key part of modern business processes.

Companies and regulatory agencies can draw vital insights from
running such analytics, especially when they are executed across
data sets from multiple sources. However, the justified privacy con-
cerns related to proprietary data sets are a major hurdle to running
such computations across multiple competing organizations, even
if knowing the result serves a common interest.

Secure multi-party computation (MPC) is a cryptographic tech-
nique that allows independent parties to jointly compute a shared
result without revealing their private inputs to the computation.
MPC has been an active area of cryptography research since the
1980s [15], and recent advances focus on applied aspects of MPC;
MPC frameworks such as VIFF [1], Sharemind [3], and Wyste-
ria [10] allow end-users to run arbitrary programs in MPC, as long

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CCS’16 October 24-28, 2016, Vienna, Austria
c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4139-4/16/10.

DOI: http://dx.doi.org/10.1145/2976749.2989034

as they are completely re-implemented in the chosen framework’s
front-end language.

However, many real-world use-cases only necessitate MPC for
a few crucial operations as part of a larger workflow. While some
MPC frameworks support a “mixed-mode” operation that combines
local computation with secure, distributed MPC steps [10],1 real-
world use of MPC currently still faces three key challenges:

1. MPC integrates poorly with existing analytics workflows and
widely-used data processing systems;

2. Significant expert knowledge is required to implement and
run analytics in an MPC framework; and

3. MPC frameworks scale poorly to large data sets, since they
do not support efficient data-parallel processing outside MPC.

In this work, we address these three challenges. By doing so, we
demonstrate that use of MPC can be made viable for societally im-
portant use cases that involve large data sets, such as bank stress
tests and early detection of market oligopolies (§2).

To make MPC more accessible to non-experts and industry data
analysts, we have added support for secure multi-party computa-
tion to the Musketeer big data workflow manager [4]. Muske-
teer automatically generates code for a variety of data processing
frameworks (such as Hadoop, Spark, and Naiad) from a high-level
workflow description (e.g., a SQL language). With our extensions,
Musketeer generates MPC code automatically from programs spec-
ified in a relational language inspired by LINQ [8], requiring no ex-
pert knowledge. It also automatically embeds the MPC into larger
workflows that involve private processing steps on multiple orga-
nizations’ heterogeneous data analytics clusters. Even if organiza-
tions use different data processing stacks, we automatically gener-
ate both the preprocessing code and the “glue code” for embedding
MPC in the workflow. Specifically, our contributions are:

1. Proof-of-concept integration of MPC into typical “big data”
workflows specified in a high-level relational language (§3).

2. The extension of the Musketeer workflow manager with au-
tomatic code generation for secure MPC steps (§4).

3. Implementation of an example use case that highlights the
advantages of our approach: a market share computation in
which private sales records are preprocessed to compute the
Herfindahl-Hirschman index in “mixed-mode” MPC (§5).

1 The “mixed-mode” term is overloaded: sometimes, it is used
to mean a combination of different types of MPC (e.g., arithmetic
MPC based on secret sharing [12] and boolean MPC based on gar-
bled circuits [15]). Our system can also support the latter (§7).

http://dx.doi.org/10.1145/2976749.2989034


Our evaluation compares the runtime of our market share compu-
tation to two extremes: first, not using MPC and allowing a trusted
third party (e.g., a regulator) to run the computation; and second,
running the entire computation in an MPC framework. We find
that our integrated workflow executes almost as fast as the inse-
cure baseline while requiring no trusted third party, and that it runs
substantially faster than when using an MPC framework only.

2. EXAMPLE USE CASES
Having MPC as part of a data analytics workflow enables numer-

ous use cases. Many examples involve computations across busi-
ness competitors, either because the aggregate result is of interest
to all of them, or because a regulating authority has an interest in
monitoring the market. We discuss two concrete examples below.

Bank stress tests. In the wake of the global financial crisis of
2008-09, financial regulators have devised metrics to measure sys-
temic market risk. Currently, such stress tests are laboriously exe-
cuted, with each bank manually aggregating data for submission to
the regulator and covering only a part of its assets and investments.

Instead, banks could use MPC to jointly run continuous stress
tests on their respective books in their entirety by integrating MPC
into their existing data analytics stacks. Abbe et al. [2] suggested
the use of MPC for this problem, while Narayan et al. [9] model
the computation as a graph propagation problem with added differ-
ential privacy.

Market concentration. Antitrust and competition law require
regulating agencies to monitor the concentration of revenue across
the participants in many markets. This can be notoriously diffi-
cult when private companies – who are under no obligation to pub-
lish their revenues – are involved. For example, the Herfindahl-
Hirschman index [5], a standard measure of market concentration,
requires the (private) market shares of each participant as inputs.2

MPC allows this computation to be performed without market par-
ticipants having to disclose their revenue composition.

3. USABILITY GOALS
In earlier work, we integrated MPC with a MapReduce plat-

form [13]. By building atop a workflow manager like Muske-
teer [4], this work generalizes our approach beyond a specific sys-
tem (e.g., MapReduce), and achieves several usability benefits.

1. Code generation is automated: the participating parties need
no in-house MPC implementation or deployment expertise,
since Musketeer generates all necessary code automatically.

2. Portability across data analytics stacks: different companies
can map a high-level joint computation to their individual
existing data analytics stacks (e.g., Hadoop, Spark, Naiad)
via Musketeer, and have these systems automatically feed
data into the MPC.

3. Automatic framework choice: since Musketeer’s scheduler
already supports automated choice of good backends for a
computation, we can extend its performance model to pick-
and-choose between different MPC paradigms and combine
them depending on the operators used.

The key premise of Musketeer is to decouple the specification of
data-parallel workflows in a high-level frontend language from their
execution in a parallel backend execution engine. Musketeer takes
the user’s workflow and translates it into a common intermedi-
ate representation (IR): a directed acyclic graph (DAG) of opera-
tors. From this IR, Musketeer generates code for multiple parallel
2The HHI is the sum of squared market shares.

trips

SUM

DIVIDE

JOIN

SELECT

trip_fares

hhi

market_size
revenue

market_shares

market_shares_sq

SUM

MULTIPLY

SUM

MPC

private,
per-company
analytics jobs

Figure 1: Vehicle-for-hire market concentration workflow:
gray boxes are tables, rounded nodes are operators. The red,
shaded operations happen in MPC, and arrows crossing the
MPC boundary correspond to private inputs.

backend execution engines, and executes the workflow by flexibly
choosing and combining them. To achieve the above benefits for
computations involving secure MPC, we added prototype support
for MPC to Musketeer.

4. IMPLEMENTATION
We have extended Musketeer with support for input columns to

be marked as private, and with a set of MPC operators in the IR.
With just these two extensions, Musketeer automatically generates
Python code for VIFF’s secret sharing-based MPC when given a
clique of MPC operators. In the generated code, private columns
are secret-shared between parties and computations on them use
MPC constructs. Further, we added initial code generation sup-
port for the VIFF MPC framework by integrating it as a Musketeer
backend. To ensure that secure computations run in MPC, we spec-
ified infinite costs for combining them with non-MPC operators and
for mapping them to non-MPC backends. We chose VIFF because
it is open-source and more general than other available frameworks:
it offers a choice between active and passive security as well as ad-
justable corruption thresholds. In the future, we plan to also include
recent and more efficient MPC frameworks as backends. Our Mus-
keteer extensions are open-source, and available at:

https://github.com/hicsail/Musketeer.

5. INITIAL RESULTS
We prototyped the market concentration use case discussed in

§2 using our implementation. In our example, we compute the
Herfindahl-Hirschman Index (HHI) [5] over the market shares of
several vehicle-for-hire (VFH) companies. This computation, for
example, might allow a regulator to assess the long-term impact of
a changing market environment – such as the emergence of “ride-
sharing” services such as Uber and Lyft – on market concentration.

The workflow proceeds as shown in Figure 1: each company first
computes its local aggregate fare revenue from private trip data us-
ing their big data analytics stack of choice. The per-company rev-
enues are then passed into the secure part of the workflow, which
sums them under MPC to determine the aggregate revenue, and

https://github.com/hicsail/Musketeer


Setup Runtime
Insecure, trusted Hadoop

(8 nodes) 16 min 10 s (970s)
Musketeer with MPC

(5 parties, 1+1+1+1+4 nodes) 17 min 31 s (1,051s)
Secure MPC framework only

(VIFF only, 5 parties, 5 nodes) >2 hours (7,200s)

Table 1: End-to-end runtimes for the vehicle-for-hire market
HHI computation. Our MPC-extended Musketeer workflow
is almost as fast as an insecure analysis on a trusted Hadoop
cluster, and much faster than using an MPC framework only.

subsequently computes market shares by dividing each per-company
revenue by the total revenue. Finally, the secure MPC computes the
HHI by squaring the market shares and adding the results.

We use six years of public NYC taxi trips’ fare information [11]
as our input data, dividing the data across five imaginary taxi com-
panies (50%/20%/10%/10%/10%). Each company privately com-
putes the initial revenue on between 16 and 80 GB of trip data in
their own Hadoop cluster running on Amazon EC2. The results are
automatically passed into a shared VIFF cluster with three compute
parties, also running on EC2.

Table 1 shows our preliminary results. We compare (i) the run-
time of this workflow on a single Hadoop cluster operated by a
trusted third party (e.g., the regulating authority); (ii) the runtime
of the same workflow when implemented entirely in Python and
VIFF; and (iii) the end-to-end runtime for our integrated, mixed-
mode MPC Musketeer workflow. Having a trusted third party run
this computation is both impractical (must ship hundreds of GB of
data) and contentious (the VFH companies might not wish to dis-
close their per-trip fare information). However, the trusted third
party case is a useful performance baseline, since it constitutes the
fastest possible execution of this workflow (as using MPC can only
add overhead). As our results show, the integrated Musketeer work-
flow only takes 8.3% longer than this baseline (1,051s vs. 970s),
since the data-intensive parts of the computation run in companies’
private Hadoop clusters and parallelize well. By contrast, had the
companies executed the entire computation in Python and VIFF, it
would not have finished after two hours, and required substantial
MPC expertise to implement.

6. DEMO
In our demo, we show a Musketeer-based implementation and

live execution of the market concentration use case described above.
First, we illustrate how an analyst or regulator specifies the joint
computation in a SQL-like Musketeer front-end language. Sec-
ond, we visualize the decomposition into a Musketeer IR DAG,
highlighting the parties’ input ownership, the boundaries between
their local computations, and the joint MPC. Third, we show the
generated code executing on real Hadoop and VIFF clusters, and
reproduce our evaluation results from §5.

7. FUTURE DIRECTIONS
We are currently extending Musketeer to support other MPC

frameworks such as Sharemind [3]. Moreover, Musketeer’s sched-
uler can automatically choose which system is used to execute a
particular operator (e.g., based on a simple performance model).
We plan to exploit and extend this capacity in several ways to im-
prove the out-of-box performance of MPC.

Static analysis and optimization techniques can similarly be lever-
aged to help Musketeer pick the most performant MPC implemen-

tation for a given workflow, as in work on inferring and improv-
ing the performance of MPC protocols [6]. They might also help
Musketeer to select an appropriate partitioning, similar to strategies
used in work on MPC protocol selection [7].

We will also look at how end-users specify their security and
privacy requirements. In real-world scenarios, the authors of an an-
alytics algorithm may not know the privacy requirements of input
data contributors. Analysts might require a framework that sup-
ports policy-agnostic programming [14], in which security and pri-
vacy properties are abstracted away from the programmer and spec-
ified independently. We are currently working on initial support for
this approach by extending Musketeer to automatically detect op-
erations for which data must cross trust domain boundaries, and
automatically using MPC for these operations.

Acknowledgements
Research supported by NSF awards #1414119 and #1430145.

8. REFERENCES
[1] VIFF, the Virtual Ideal Functionality Framework.

http://viff.dk/. Accessed 01/08/2016.
[2] E. A. Abbe, A. E. Khandani, and A. W. Lo.

Privacy-preserving methods for sharing financial risk
exposures. American Economic Review, 102(3):65–70, May
2012.

[3] D. Bogdanov, S. Laur, and J. Willemson. Sharemind: A
Framework for Fast Privacy-Preserving Computations. In
ESORICS, volume 5283 of LNCS, pages 192–206. Springer,
2008.

[4] I. Gog, M. Schwarzkopf, N. Crooks, M. P. Grosvenor,
A. Clement, and S. Hand. Musketeer: all for one, one for all
in data processing systems. In EuroSys, Apr. 2015.

[5] A. O. Hirschman. The paternity of an index. The American
Economic Review, 54(5):761–762, 1964.

[6] F. Kerschbaum. Automatically optimizing secure
computation. In CCS, pages 703–714. ACM, 2011.

[7] F. Kerschbaum, T. Schneider, and A. Schröpfer. Automatic
protocol selection in secure two-party computations. In
ACNS, pages 566–584. 2014.

[8] E. Meijer, B. Beckman, and G. Bierman. LINQ: Reconciling
Object, Relations and XML in the .NET Framework. In
SIGMOD, pages 706–706, 2006.

[9] A. Narayan, A. Papadimitriou, and A. Haeberlen. Compute
globally, act locally: Protecting federated systems from
systemic threats. In HotDep, Oct. 2014.

[10] A. Rastogi, M. A. Hammer, and M. Hicks. Wysteria: A
programming language for generic, mixed-mode multiparty
computations. In IEEE S&P, pages 655–670, 2014.

[11] T. W. Schneider. NYC taxi trip data. https://github.
com/toddwschneider/nyc-taxi-data. Accessed
03/08/2016.

[12] A. Shamir. How to share a secret. Communications of the
ACM, 22(11):612–613, 1979.

[13] N. Volgushev, A. Lapets, and A. Bestavros. Programming
Support for an Integrated Multi-Party Computation and
MapReduce Infrastructure. In HotWeb, Nov. 2015.

[14] J. Yang, T. Hance, T. H. Austin, A. Solar-Lezama,
C. Flanagan, and S. Chong. End-to-end policy-agnostic
security for database-backed applications. CoRR,
abs/1507.03513, 2015.

[15] A. C. Yao. Protocols for secure computations. In FOCS,
pages 160–164, 1982.

http://viff.dk/
https://github.com/toddwschneider/nyc-taxi-data
https://github.com/toddwschneider/nyc-taxi-data

	Introduction
	Example use cases
	Usability goals
	Implementation
	Initial results
	Demo
	Future directions
	References

