
Angels In the Cloud
A Peer-Assisted Bulk-Synchronous Content Distribution Service†

RAYMOND SWEHA
remos@cs.bu.edu

Computer Science Dept
Boston University, USA

VATCHE ISHAKIAN
visahak@cs.bu.edu

Computer Science Dept
Boston University, USA

AZER BESTAVROS
best@cs.bu.edu

Computer Science Dept
Boston University, USA

Abstract—Leveraging client upload capacity through peer-
assisted content distribution was shown to decrease the load
on content providers, while also improving average distribution
times. These benefits, however, are limited by the disparity be-
tween client upload and download speeds, especially in scenarios
requiring a minimum distribution time (MDT) of a fresh piece
of content to a set of clients. Achieving MDT is crucial for
bulk-synchronous applications, when every client in a set must
wait for all other clients in the set to finish their downloads
before being able to make use of the downloaded content. In
this paper, we propose the use of dedicated servers, which
we call angels to accelerate peer-assisted content distribution
in general, and to minimize MDT in particular. An angel
is not itself the content origin, nor is it interested in fully
downloading the content; its only purpose is to enable a peer-
assisted content distribution scheme to approach the theoretical
lower-bound for MDT. To overcome scalability issues inherent
in an optimal MDT construction, we propose and evaluate a
content exchange strategy involving angels, which we call Group
Tree. In addition to simulation results that demonstrate the near
optimal performance of our proposed approach, we present the
architecture and implementation of CLOUDANGELS – a service
that allows the elastic, on-the-fly deployment of angels (in the
cloud) to assist a content provider (off the cloud) in realizing its
MDT objective.

I. INTRODUCTION

Over the years, content distribution has evolved from the
traditional client-server model (in which clients are passive
recipients of content), to the end-system multicast model
(in which clients relay content they receive to other clients
in an orderly manner along a fixed, typically hierarchical
topology) [1], [2], [3], to the peer-to-peer swarming model
(in which clients self-organize in ad-hoc swarms to exchange
fixed pieces of the content) [4], [5]. This evolution can be
seen as increasingly tapping the uplink capacity of clients: in
a client-server model, a client’s uplink capacity is not used; in
an end-system multicast model, a client’s uplink capacity is
used up to a limit typically dictated by the slowest link in the
multicast topology; and in a peer-to-peer swarming model a
client’s uplink capacity could be fully utilized as long as other
clients in the swarm can benefit from it. With the meteoric rise
in demand for large volumes of media [6], content providers
as well as content storage and distribution networks have
realized the potential from leveraging client uplink capacities
to significantly reduce their operating costs. Examples of
peer-assisted content distribution systems include Akamai’s
Netsession [7], Octoshape Infinite Edge [8], Pando [9], and
BitTorrent DNA [10]. This trend towards peer-assisted content

† This research was supported in part by NSF awards #0720604, #0735974,
#0820138, and #0952145.

distribution is embraced by clients as it yields faster download
times and more resilient services, at no additional costs (at
least to customers with “flat rate” Internet subscriptions).
Motivation and Setting: Existing peer-assisted content dis-
tribution systems (including all those mentioned above) can
be seen as “ad hoc” or “best effort” in the sense that a
client upload capacity is tapped only to the extent that other
swarming clients are able to utilize it. Indeed, most mech-
anisms proposed and implemented for peer selection do not
primarily aim to maximize the utility of a swarm’s aggregate
capacity, but rather focus on other goals, including dealing
with freeloaders using rational tit-for-tat exchanges [4], or
reducing inter-ISP traffic using geographic (or topological)
locality [6]. These approaches are well justified when peer-
assisted content distribution is not under the control of a single
authority or does not cater to a common overarching “socially
optimal” (not to mention legal) objective.1 We contend that
for many emerging applications and settings, either or both
of these conditions may not hold. In particular, when content
providers employ peer-assisted delivery mechanisms, they are
in fact acting as a single authority that choreographs the
operation of all clients involved, using specially-developed
software clients. Moreover, for many emerging cooperative
applications, optimizing the performance of individual clients
may not be a rational objective as it may lead to suboptimal
group performance.

Motivated by the above observations, in this paper we
tackle the problem of peer-assisted content delivery in a setting
where it is assumed that (1) the content provider choreographs
the participation of all clients in a swarm, and/or (2) the
objective of the content delivery system is to minimize the
time it takes to distribute a common piece of content to all
clients in the swarm.
Bulk-Synchronous Content Distribution: Our focus in this
paper is on systems with a Minimum Distribution Time (MDT)
objective. An MDT objective implies that the overarching
common goal of the provider and clients is to minimize the
time by which all clients finish their download. The need
for such a bulk synchronous mode of operation (which is
not new [11]) is paramount, with applications to: enterprise-
wide system administration requiring synchronous software
patching or data replication, virtual community games and
simulated reality environments requiring common content such
as dynamic simulated terrain information to be accessible

1A file-sharing application is a canonical example where both of these
conditions hold. Indeed, early research on swarming protocols was singularly
geared to issues stemming from file-sharing applications.

2

to all players before any progress could be made, publish-
subscribe networks and distributed data stores requiring con-
sistency across multiple sites, among many others. In addition
to applications where synchronization is over content, the
MDT objective may be desirable for distributed multi-agent
applications in which the delay in one agents response may
negatively impact the overall fidelity of the system e.g.,
an advance alert system composed of a set of distributed
monitoring agents that download and process a common live
feed: independently analyzing it using a different anomaly
detection approach and reporting any security breaches to a
central authority.

To achieve an MDT objective for a group of client requires
a judicious use of client uplink and downlink capacities, which
are typically highly asymmetric as most ISPs offer their clients
download speeds that are significantly larger than upload
speeds. Using an ad-hoc, best-effort swarming mechanism, this
disparity may result in an under-utilization of the downlink
capacity to the clients, even if the uplink capacity of clients
in the swarm is fully tapped. In a video dissemination system,
this may not be a problem as long as the download rate to
individual clients is larger than the playback rate [12]. But, for
bulk content delivery that is not subject to a nominal playback
rate, under-utilizing the swarm capacity is problematic.

Kumar and Ross [13] derived a theoretical lower-bound
on MDT and proposed a fluid model that achieves this bound.
Their result suggests that MDT is limited by one of three
potential bottlenecks in any P2P overlay: (1) the seeder upload
capacity, (2) the slowest client download capacity, or (3) the
aggregate upload capacity of all clients in the swarm. We note
that the third of these bottlenecks, namely the swarm upload
capacity, is likely to be the most prevalent in many settings,
due to the aforementioned disparity between the upload and
download capacities of most clients.2

Paper Contribution and Outline: In support of the MDT
objective for bulk-synchronous content distribution, in this
paper we investigate the potential benefit from the on-demand
deployment of cloud resources to alleviate the swarm upload
capacity bottleneck. To that end, we propose the use of helper
nodes – which we call angels.3 An angel is not a client in the
sense that it is not interested in receiving the entire content
(file) to be distributed, but rather it is interested in minimizing
the MDT to all clients. As such, an angel uses its storage
and up/down-link capacity to cache and forward parts of the
file to other peers, in such a way that the swarm upload
capacity ceases to be the limiting factor for MDT. Doing so
ensures that the content provider is able to fully leverage the
uplink/downlink capacities of the clients.

In section II, we extend the analytical results in [13] to
account for the presence of angels by deriving a new lower
bound on MDT. Also, we show that this new lower bound
is tight by constructing a distribution strategy under a fluid
model assumption. Simulation results show that a direct imple-
mentation of our fluid construction is impractical. Therefore,
in section III, we present a coordinated swarming strategy –

2We also note that nothing can be done “inside the network” (e.g., by
leveraging cloud resources) to alleviate the first two potential bottlenecks.

3The idea of introducing helper nodes was also considered in [14], where
the focus was on using idle nodes to improve BitTorrent’s steady-state
performance as opposed to optimizing any specific objective.

called Group Tree (GT) – that addresses the impracticalities
of the fluid model to fully utilize angels. Simulation results
show that GT outperforms other strategies, scales well with
the increase in the number of clients, and operates near the
optimal theoretical bounds. These findings suggest that, in
contrast to focusing only on piece or peer selection strategies,
a strategy that incorporates both criteria holds the potential for
significant performance gains. Armed with the promise from
these simulation results, in section V, we present the blueprints
of CLOUDANGELS – an “angels on demand” cloud service
that complements peer-assisted content delivery to achieve an
MDT objective. In section VI, we report results from live
Emulab experiments in which our CLOUDANGELS service is
used in a real content distribution sessions.

II. OPTIMAL MDT CONSTRUCTION

A. MDT Problem Statement

We aim to minimize the distribution time of a file of size
F from a set of Content Providers (providers), p ∈ P to
a set of Clients, c ∈ C, with the help of a set of angels,
a ∈ A. Following the Uplink-Sharing fluid model presented
in [15] and adopted by [13], our goal is to minimize T , where
T = maxi∈C {Ti} and Ti is the time it takes client i to
finish the download. The fluid model must make sure that
each node’s total upload or download rate, does not exceeds
neither its upload capacity u(i) nor its download capacity
d(i), which under a fluid model can be infinitesimally divided.
Specifically:

u(p)≥
X

i∈{C,A}

xpi, Provider upload capacity (1)

where xpi is the upload rate from p to i

u(i)≥
X

j∈{C,A}

xij , Client upload capacity, ∀i ∈ C (2)

d(i)≥xpi+xai +
X

j∈{C}

xji, Client download capacity, ∀i ∈ C (3)

u(a)≥
X

i∈{C}

xai, Angel upload capacity (4)

d(a)≥xpa Angel download capacity (5)

The Uplink-Sharing model [15] does not account for net-
work cross-traffic or losses. Thus, for notational convenience,
we aggregate the set of providers and the set of angels into one
provider and one angel, with the upload/download capacity of
the provider and of the angel set to the aggregate capacities
of all the providers and of all the angels, respectively. Chiu et
al. proved the correctness of such an abstraction [16].

B. Main Results

In this section, we prove that under the aforementioned model,
we can download the file in the minimum time possible while
utilizing the full capacity of angels.

Lemma 1: In the presence of angels, under a fluid Uplink-
Sharing model, a distribution time T for a file of size F is
achievable, where:

T = F

min{u(p),dmin,
u(P)+u(C)+u(A)

|C| −u(A)
|C|2

}
(6)

where dmin = mini∈C{d(i)}

Proof: We provide a fluid construction that achieves the
bound for T . This construction follows three cases correspond-
ing to the nature of the underlying bottleneck (the denominator

3

of T). Below, is a proof sketch for the first of these three cases,
in which the provider’s upload capacity is the bottleneck. For
the complete proof, we refer the reader to [17].

When the upload capacity of the content provider P is the
bottleneck, i.e., u(P) ≤ min{dmin, u(P)+u(C)+u(A)

|C| − u(A)
|C|2 },

P sends fresh data to each client i with rate xpi, and also sends
fresh data to the angel with rate xpa. Each client forwards
data it receives from the provider to the other |C − 1| clients.
Similarly, the angel forwards data it receives from the provider
to all |C| clients. Notice that once data is sent to one client,
all other clients would successfully receive it from that client
as long as xpi = xij ∀j ∈ C. Figure 1 illustrates the idea. To

Fig. 1. Clients/angel forward content received from provider to other clients.

complete our construction, we show that there are values for
xpi and xpa that ensure that all clients will successfully down-
load the data with rates yi equal to the provider’s capacity, i.e.,
yi = u(P), ∀i ∈ C, without violating the upload/download
capacity constraints of the various nodes. To that end, consider
the following rates: xpi = (1 − δ) ui

|C|−1 , xpa = (1 − δ) ua

|C|

where δ =
u(C)
|C|−1+

u(A)
|C| −u(P)

u(C)
|C|−1+

u(A)
|C|

Those rates respect the five

aforementioned constraints and achieve the desired MDT. It is
straightforward to verify that the choice of those rates ensures
that the clients and the angel will not exceed their upload
capacities (constraints 2 and 4), and that the total data sending
rate of the provider xp (given below) satisfies the seeder’s
capacity constraint (constraint 1). xp =

∑
i∈C,A xpi = (1 −

δ)(u(C)
|C|−1 + u(A)

|C|) = u(P)
u(C)
|C|−1+

u(A)
|C|

∗ u(C)
|C|−1 + u(A)

|C| = u(P)

Lemma 2: In the presence of angels, under a fluid Uplink-
Sharing model, the minimum distribution time, Tmin, has a
lower bound given by:

Tmin ≥
F

min{u(P), dmin, u(P)+u(C)+u(A)
|C| − u(A)

|C|2 }
(7)

Proof: The bound given on MDT implies that the down-
load rate of any client, ymax is bounded as follows: ymax ≤
min{u(P), dmin, u(P)+u(C)+u(A)

|C| − u(A)
|C|2 }. This implies that

the MDT bottleneck is due to one of three possibilities. The
first is the uplink capacity of the provider: ymax ≤ u(P). In
this case the provider’s upload capacity limits the minimum
download rate of peers (e.g., when clients are powerful and
the provider is weak). The second possibility is the download
capacity of the slowest client: ymax ≤ dmin. Clearly the min-
imum download rate cannot exceed the minimum download
capacity of any client. The third possibility is the aggregate
upload capacity of the swarm: ymax ≤ u(P)+u(C)+u(A)

|C| −u(A)
|C|2 .

In this case the aggregate upload capacity of the swarm cannot
saturate the download capacity of the clients.

Only the third of these cases is not obvious. First, we
start with the case of no angels. We know that the aggregate
download rate cannot exceed the aggregate upload capacity in
the swarm:

∑
∀i∈C yi ≤ u(P)+u(C). To utilize a fraction za

of the upload capacity of the angel, the angel must download

fresh data with a rate of at least za

|C| . Thus, in case of using
angels, we get:

∑
∀i∈C yi + za

|C| ≤ u(P) + u(C) + z(A)P
∀i∈C yi

|C| ≤ u(P)+u(C)+z(A)
|C| − z(A)

|C|2

Since the minimum is always less than the mean and the
upper bound of ymax is achieved when z(A) = U(A), we
conclude that ymax ≤ u(P)+u(C)+u(A)

|C| − u(A)
|C|2 .

Theorem 1: The minimum distribution time, Tmin, given
in Lemma 2 is tight.

Proof: The proof follows directly from the fact that the
construction given in Lemma 1 achieves the lower bound
stated in Lemma 2.

C. Implications on the Role of Angels

It follows directly from the aforementioned theoretical results
that when the bottleneck lies in the aggregate upload capacity
of the swarm and not in the source (provider’s upload capacity)
or the sink (slowest client download capacity), adding upload
capacity to the swarm through the use of angels will neces-
sarily improve MDT. But, can angels achieve these gains if
they behave just like normal clients (i.e., download the entire
file)? The answer is no. If angels download more than 1

|C|
of what they upload, they will not be able to upload the
excess amount to clients. It would have been more beneficial
to upload this excess data to the clients directly from the
provider. For example, our optimal construction can speed up
download rate to (u(A)

|C| − u(A)
|C|2). If angels act like clients (and

have capacities identical to those of clients) the download rate
would be u(P)+u(C)+u(A)

|C|+|A| . This roughly equals u(P)+u(C)
|C| ,

which is identical to not having angels in the first place. Thus,
adding angels that behave just like clients (by downloading the
content in its entirety) only enlarges the swarm but does not
optimize MDT. Even if the added angels’ upload capacity is
made (say) double that of the clients’ upload capacity, the
speed up from our construction would be double the speed up
achieved by having angels act like clients.

To summarize, merely adding “participants” to a swarm
will not result in lowering MDT, unless these participants
behave in the specific manner prescribed in our construction.
This is precisely the role we propose for angels: Angels are
on-demand swarm participants that do not have and do not
seek to obtain the content (they are not replicas or caches
of the provider); they download just the right amount of the
content (as prescribed in our construction) to minimize MDT.

III. PRACTICAL MDT CONSTRUCTION

The optimal fluid construction presented in the previous sec-
tion makes two assumptions: (1) data dissemination is fluid
instead of packetized, and (2) a client is able to open and use
an arbitrary large number of concurrent connections, as large
as the number of clients in the swarm. As we experimentally
show later on (see section IV), a direct implementation of our
fluid construction results in a very degraded performance due
to the realities of OS and network stack implementations (e.g.,
given the packet-based nature of transport protocols, and given
the fact that setting up an unbounded number of connections
leads to bandwidth fragmentation and TCP timeouts).

4

That said, our optimal MDT construction gives us two
important insights that are crucial for building a near-optimal
bulk-synchronous content distribution strategy: (1) the upload
capacity of clients is the most scarce asset in the system,
thus utilizing the clients upload capacity fully and as soon
as possible is key, (2) angels can utilize their upload capacity
fully to forward data even if they download data with rates
significantly smaller than their download capacity.4

A. The Group Tree Coordinated Swarming Strategy

Taking into consideration the pros and cons of an optimal fluid
construction, we build a coordinated swarming strategy that
does not require any client to have more than k connections
at any point in time. Our Group Tree (GT) strategy works in
two phases as depicted in Figure 2. The first phase utilizes
a tree-like structure with the aim of getting all nodes (angels
and clients) to download, and hence upload, content as soon
as possible. In the second phase, nodes swarm together to
finish downloading the file. In the remainder of this section,
we provide the details of these two phases of the GT strategy.

Initially, the provider (seeder) divides the file into k
segments, where k is the upper-bound set on the out-degree
of (number of connections allowed for) clients – a parameter
of the GT strategy.

In Phase 1, the swarm is organized into k binary trees.
One of the trees is dedicated to angels, whereas the other trees
are populated by clients. Clients are matched up and assigned
to trees in such a way that all tree participants have similar
upload capacities. Each tree is assigned a segment of the file
that is proportional in its size to the nominal, individual upload
capacity of nodes (clients or angels) in the tree. The seeder
sends the segments in chunks to the root of each tree, noting
that the tree nodes operate in a pipelined fashion: Once a
client/angel receives a packet, it forwards it to its children in
the tree. For example, as depicted in Figure 2, client (b, j)
downloads the segment b of the file from client (b, b j

2c). It
only takes log(N) multiples of a packet transfer time for all
clients to begin utilizing their upload capacity.

In Phase 2, sets of k nodes (from the k different trees)
each having received one of the k different segments of the
file, form a clique for swarming purposes. By construction,
each clique would include one angel.5 Each clique uses our
optimal MDT construction to disseminate the file between its
members. For example, as depicted in Figure 2, clients (b, 1),
(r, 1), (g, 1) and (y, 1) form a clique. Notice that in this phase,
the operation of angels and clients is different. In particular,
each angel sends data to clients in its clique without receiving
any data from these clients, thus saving the precious upload
capacity of clients.

In the first phase of our GT strategy, the content provider
uses k binary subtrees (i.e., fan-out = 2) to distribute a given
segment to a particular set of nodes. Theoretically, the optimal
fan-out for distributing segments in Phase 1 is the natural
number, e. For a complete proof of the optimality of a fan-
out of e, we refer the reader to [17]. Simulation results also

4Actually, any excess download by an angel underscores an inefficiency, as
a client could have used this wasted capacity.

5For implementation purposes, if the number of servers supporting angel
functionality is small, the servers can time-multiplex their capacities between
multiple cliques, effectively allowing on angel per clique.

Fig. 2. Illustration of the GT strategy. In phase 1, k = 4 different segments
are disseminated downward through k = 4 binary distribution trees. In phase
2, segments are disseminated laterally within cliques of size k = 4.

reported in [17] show that a fan-out of 2 achieves better
performance than a fan-out of 3, justifying our choice of a
binary tree construction for our GT strategy.

B. Other Distribution Strategies

In addition to our GT strategy, which is rooted in our MDT
construction, we have considered a host of other practical
distribution heuristics that rely on peer and piece selection
strategies to assess their appropriateness for achieving the
MDT objective.

The most basic (baseline) strategy we considered is Ran-
dom, whereby the sender chooses a receiver at random, and
sends a random piece to it given that this receiver needs this
piece. This strategy does not employ any intelligence in peer or
piece selection. That said, in our implementation we ensured
that no sender remains idle as long as a receiver needs a piece
that the sender has. This strategy fully utilizes the resources
in the system but without coordination.

To evaluate the benefit from smarter piece selection
strategies, we implemented a Local Rarest First (LRF) piece
selection strategy [18], which sends the piece with the least
number of copies that the receiver’s neighbors have. LRF
tries to achieve balanced piece distribution depending on local
information. In addition to LRF, we also implemented a Global
Rarest First (GRF) piece selection strategy. While impractical
at scale, GRF allows us to evaluate the full benefit of opti-
mizing piece selection depending on full piece distribution
information. To evaluate the benefit of peer selection, we
implemented a Fair Peer Selection strategy (FPS), which tries
to get each client a fair-share of the network’s upload capacity.
A sender chooses the least fortunate recipient to send data to,
e.g., the client with the least fan-in given that all the clients
have the same upload capacity. Finally, we implemented a
strategy that combines piece and peer selection. The FPS+GRF
strategy chooses the most needy recipient, and then sends the
GRF piece to it. This strategy can be seen as independently
supporting intelligent piece and peer selection strategies.

IV. SIMULATION RESULTS

In this section we present simulation results comparing our
GT strategy to the other MDT-agnostic strategies. We built a
custom discrete-event simulator that simulates a provider, a set
of angels, and a set of clients downloading a file consisting
of a set of blocks. Each node builds a set of connections to
some (or all) of the other nodes. Each connection has a queue
of blocks to be transferred sequentially over that connection
(the delivery of one block marks the beginning of the transfer

5

of the next block). Upon receipt of a block, a node decides
whether or not it should forward that block to other peers.
A connection is terminated as a result of one of two events:
either the expiration of a randomized timeout parameter, or
when there are no more blocks to transmit over the connection.
Upon the termination of a connection, a node establishes a
new connection possibly to a new peer, if necessary. Our
simulation is done at the session layer, thus ignoring transport
layer effects, e.g., due to packet loss or cross traffic, which we
captured at the session level by introducing variability in the
connection speed over time.

In our experiments, we use the following model param-
eters: the file size F is set to 24 MB (with a block size of
128KB); the provider upload capacity up is set to 512 Kbps;
the client/angel upload capacity ui is set to 128 Kbps and the
download capacity di is set to 256 Kbps, ∀i ∈ C,A. These
parameters ensure that the aggregate upload capacity of the
swarm (without the angels) is the bottleneck, which is the
scenario of interest as explained in section II-C.

In our first set of experiments, we evaluate the per-
formance of a direct implementation of an optimal MDT
construction as the number of clients scales up, and compare
the achievable distribution time to the theoretical lower bound
(predicted by our fluid model). Figure 3(a) shows that a
direct implementation of the MDT construction does not scale.
This is because the optimal construction assumes a fluid
communication model, implying that a client can forward data
the instant it receives it. In practice, clients need to transfer
data in blocks. This means that as the number of clients in
the swarm increases, the speed of each connection decreases
correspondingly (since the client bandwidth is equally divided
across all connections), causing the time to transfer a block
to increase linearly. The figure also shows the results when
the GT strategy is used under the same settings, showing near
optimal MDT and scaling characteristics.

In our second set of experiments we fixed the number
of clients to 128 and varied the number of angels between 0
and 16, to examine the potential improvement in MDT due to
angels. Figure 3(b) shows the performance of the GT strategy
versus the theoretical lower bound, which makes it evident that
the performance of the GT strategy tracks that of the MDT
lower bound as the number of angels increases, subject to a
relatively fixed overhead for carrying out Phase 1 of the GT.

 0

 100

 200

 300

 400

 500

 600

 0 100 200 300 400 500 600

M
in

 D
is

tr
ib

u
ti
o
n
 T

im
e
 (

s
e
c
)

Number of Clients

Direct
GroupTree

Lower Bound
 0

 50

 100

 150

 200

 0 5 10 15 20

M
in

 D
is

tr
ib

u
ti
o
n
 T

im
e
 (

s
e
c
)

Number of Angels

GroupTree
Lower Bound

Fig. 3. Figure (a) Performance of a direct implementation of the MDT
construction and of the GT strategy (also showing the analytical MDT lower
bound). Figure (b) Performance of GT as a function of the number of angels.

In our third set of experiments, we compared the perfor-
mance of the GT strategy to those of the other distribution
strategies presented in section III-B, as the number of clients
varies from 4 to 512. Figure 4(a) shows the results (as
well as the theoretical MDT lower bound). These results
indicate that our GT strategy outperforms all others and that it
operates within striking distance of the optimal MDT bound.

Another observation from this set of experiments is that the
performance of the GRF+FPS strategy (utilizing both piece
and peer selection, albeit independently) is decidedly superior
to the standalone GRF and FPS strategies.

Minimizing the worst-case distribution time may result in
a degradation of the average distribution time, especially in set-
tings wherein the client download capacities are highly diverse,
e.g., a setting where a few clients have much lower (outlier)
download speeds than most others. In such settings, aiming
to reduce MDT will necessarily hurt the average distribution
time. We argue that bulk-synchronous content distribution
applications are unlikely to involve such disparate profiles for
client uplink/downlink capacities. Rather, for our purposes, the
set of clients involved in a bulk-synchronous download are
likely to have comparable capabilities (e.g., a set of broadband
residential users in a virtual-reality gaming application, or a
set of enterprise servers acting as consistent data repositories).
In such settings, our experiments confirmed that optimizing
MDT does indeed improve the average distribution time as
well. Figure 4(b) shows the average distribution time for the
swarm considered in the last experiment; it shows that our
GT strategy, which while primarily aiming to optimize MDT,
outperforms the other strategies with respect to the average
distribution time as well. This hints to the utility of coordinated
swarming beyond MDT, but is not a focus of this work.

 0

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500 600

M
in

 D
is

tr
ib

u
ti
o
n
 T

im
e
 (

s
e
c
)

Number of Clients

Random
LRF
GRF
FPS

GRF + FPS
GroupTree

Lower Bound

 0

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500 600

A
v
e
ra

g
e
 D

is
tr

ib
u
ti
o
n
 T

im
e
 (

s
e
c
)

Number of Clients

Random
LRF
GRF
FPS

GRF + FPS
GroupTree

Lower Bound

Fig. 4. Figure (a) MDT for various strategies as a function of the number
of clients. Figure (b) Average distribution time as a function of the number
of clients

To summarize, our simulation experiments show that
the GT strategy outperforms all other strategies, scales well,
and operates near the optimal, theoretical MDT bound. Our
findings also suggest that coordinated swarming strategies,
which coordinate both piece and peer selection, such as GT
result in much better performance than strategies that focus
on either piece or peer selection (e.g., the LRF, GRF, and FPS
strategies) or those that consider both but in an uncoordinated
fashion (e.g., the FPS+GRF strategy).

V. CLOUDANGELS: BLUEPRINT FOR SYSTEM DESIGN

In this section we present the design and implementation of a
cloud service that enables a content provider to utilize cloud
resources to complement a peer-assisted content distribution
system for the purpose of minimizing content distribution
time. Our service, which we call CLOUDANGELS, is based
on the GT strategy presented in section III. We believe that
a cloud offering is the most appropriate paradigm for an
implementation of CLOUDANGELS because the service needs
to be able to instantiate angels on-the-fly: As content providers
seek assistance with MDT content delivery, the system would
need to instantiate a set of Virtual Machines (VMs) to act as
angels. The aggregate capacity of the deployed angels would
depend on the content provider’s stated objectives – e.g., how
much uplink bandwidth to “add” to the swarm to achieve an

6

optimal MDT, or to ensure that MDT is below a certain preset
threshold.

Fig. 5. CLOUDANGELS: Architectural Elements.

We identify the following agents as the essential players
in our system:
Provider: (P) This is the entity in need of the CLOUDANGELS

service’s help with the distribution of content (namely, a file
within its possession) to a group of clients engaged in a bulk-
synchronous application.
Clients: (C1, C2, · · · , Ck) These are the agents constituting
the swarm interested in the bulk-synchronous delivery of
content from the provider. We assume that the provider relays
to the CLOUDANGELS service the list of clients authorized to
access the content.
Angels: (A1, A2, · · · , Aj) These are the agents (VMs) that are
created on-the-fly to help the content provider distribute the
content subject to MDT objectives.

Figure 5 illustrates the design of our CLOUDANGELS

system, which consists of two major components: (1) the
Auxiliary Services Component (ASC) which acts within the
control plane to choreograph the GT strategy, and (2) the
Content Distribution Component (CDC) which acts within the
data plane to distribute content to clients using the GT strategy.

In support of CDC, the ASC provides two sets of services
denoted in Figure 5 by the “Profiler” and the “Accountant”.
The CLOUDANGELS profiler is responsible for the collection of
information about each client’s upload and download capacity.
Clients may either self-report their capacity6 or else, the pro-
filer may use other methods to estimate their upload/download
capacities. The CLOUDANGELS accountant is responsible for
identifying the level of assistance (in terms of the number
and capacity of angels, if any) that the bulk-synchronous
content distribution group would need to meet its MDT
objectives. This objective may simply be to minimize MDT,
or alternately, it may be to ensure that MDT remains below a
preset threshold (for a minimal quality of service dictated by
the bulk-synchronous application). To do so, the accountant
estimates the distribution time achievable without the help of
angels, and based on the desired MDT objective, calculates the
characteristics (number and capacities) of the angels that need
to be deployed to meet this objective. The accountant keeps
track of these aspects for purposes of charging the provider
for the service.

6We note that for bulk-synchronous applications, the MDT objective is
both a rational/selfish objective for the individual clients, as well as a socially-
optimal objective for the swarm, and thus clients are incentivized to truthfully
report their upload/download capacities.

The CDC supports the main CLOUDANGELS content distri-
bution functionality as follows. Upon receipt of a request from
the content provider to distribute a file, the CDC deploys a
“Registrar” process to manage the request. The registrar does
not get involved in the data transfer but is responsible for
managing the bulk-synchronous swarm. According to the GT
swarming strategy, the registrar assigns identifiers to clients
to choreograph their connection to one another. The registrar
issues each client a signed token allowing it to introduce itself
as an authorized client in the swarm. This token includes
the file name and a computed unique identifier (ID) for
the client in the swarm. The client ID is in the form of a
tuple (i, j) where i is the segment that the client needs to
subscribe to in Phase 1 of the GT, and j is the location of
the node in the distribution tree. The registrar determines this
ID based on the upload bandwidth of the client (among other
possible information in support of additional objectives, e.g.,
topological location for efficient intra-ISP swarming).

To distribute a new file x, the content provider divides the
file into k segments (x1, ..., xk) and starts k server processes
to handle requests for each one of these segments – requests
from the roots of each one of the k (binary) trees constituting
the first phase of the GT strategy. When the root of tree i
sends its signed token to the content provider, the appropriate
process serves segment xi in 64KB-block increments, even-
tually resulting in the k different segments being transmitted
through the roots of the k distribution trees.

In the first phase of the GT strategy, a client with ID
(i, j) needs to download segment xi. To do so, the registrar
sends the client the IP address of its parent in the binary tree
– namely, (i, b j

2c). The client then begins its download, and
starts a server process that listens for upload requests from
the client’s children in the tree (during the first GT phase) and
from the client’s siblings in the clique (during the second GT
phase). Every time a child or a sibling contacts the server, it
forks a thread and starts uploading segment xi, giving priority
to requests for xi from its children over its siblings.

In the second phase of the GT strategy, the client with
ID (i, j) needs to download all the other segments xl l 6= i.
For segment l, the registrar sends the client the IP address of
its sibling in the l tree. Client (i, j) contacts its siblings to
download the other segments as soon as these segments are
available at the siblings.

To meet the MDT objective requested by the provider,
the registrar instantiates (on the fly) the necessary number of
appropriately provisioned angels (as prescribed by our MDT
construction). Each angel is assigned an ID (a, j), where a
corresponds to segment xa of the file that the angels are
responsible to disseminate (recall, the size of xa is a function
of the MDT construction). In the first GT phase, angels act like
clients, disseminating segment xa among themselves using
the binary tree. In the second GT phase, angels run a server
listener and serve their clique siblings segment xa, but unlike
clients they do not request or download any of the other
segments of the file.

VI. CLOUDANGELS: EXPERIMENTAL EVALUATION

In this section we present results from extensive experimental
evaluations of our CLOUDANGELS service. Our main motiva-

7

tion in performing these experiments was to (1) establish confi-
dence in the performance of our implementation by comparing
its average performance to that of widely used swarming
solutions, (2) establish the effectiveness of deploying angel
in the cloud for the purpose of meeting MDT objectives, and
(3) provide evidence of the scalability characteristics of our
system.
Experimental Setup: We used Emulab [19] to acquire virtual
nodes for our experimental needs. To marginalize hardware
and operating system interference, we requested configurations
in which all nodes were identical. Subject to this requirement,
we were able to get a total of 36 Emulab nodes (all running
on 64-bit Xeon processors with 2GB of RAM, with a 64-bit
Fedora 8 Linux Distribution operating system). This allowed
us to evaluate GT swarms organized in binary trees of depths
1, 2, 3, and 4.7 To introduce variance among nodes in terms of
their upload and download capacities, we used Linux packet
filters tc.

In our experiments, we divided the set of emulab nodes
under our control into three groups (for purposes of the
first GT phase) with the nodes in each group assigned an
upload capacity of 5mbps, 6mbps, and 7mbps, and a download
capacity of 15mbps, 18mbps, and 21mbps, respectively. This
assignment is reasonable given the typical (factor of two to
three) mismatch between broadband upload and download
speeds. In addition to these three groups of clients, a fourth
group of nodes was set aside to serve as angels, with each
angel node provisioned with a download capacity of 24mbps
and an upload capacity that we set in our experiments to one
of the following values: 0, 6, 12, 18, and 24mbps (based on
the MDT needs of the swarm).

For comparative purposes, we have also configured our
emulab nodes (subject to the same upload and download
provisions) to run an unmodified BitTorrent (BT) client to
allow us to establish a baseline model for MDT performance
(against which the advantage of CLOUDANGELS could be
evaluated). The specific client we used is the Instrumented
BitTorrent mainline client (version 4.0.2) [20].

In our experiment, the content provider is represented
using a single seeding node, whose upload capacity was set
to 27mbps, and the file size is 30MB.
Experimental Results: To establish a performance baseline,
Figure 6(a) shows the MDT achievable when content is
distributed (1) using a client-server model, (2) using the
unmodified BT client, and (3) using our CLOUDANGELS ser-
vice without deploying any angels (i.e., simply coordinating
the content distribution according to the GT strategy). As
expected, increasing the number of clients participating in
the swarm results in a linear increase of the MDT for a
client-server distribution strategy, but results in a sublinear
increase of the MDT for swarming strategies (namely our
CLOUDANGELS service and BT), underscoring the benefit from
tapping the uplink capacities of the clients.

Figure 6(a) also shows that the scaling characteristics of
CLOUDANGELS (without angels) and of BT are fairly similar

7A GT swarm with an outdegree bound of k organized in full binary trees of
depth d could be as large as k∗(2d−1). With 36 nodes, we are able to consider
full GT topologies of depth three, and only partially-full GT topologies beyond
that.

in terms of their growth pattern, with the MDTs achievable
by CLOUDANGELS consistently below those of BT. These
results give us confidence that the implementation of our
GT coordinated swarming strategy is efficient in the sense
that it is competitive with (and indeed noticeably better than)
vanilla BT swarming implementations. Needless to say, since
in these experiments no angels were deployed, the lower MDT
of CLOUDANGELS may be due to the superiority of the GT
swarming strategy or it may be simply the result of a leaner
implementation, which does not include all the bells and
whistles (and hence overheads) associated with a BT client.

An important observation from the results in Figure 6(a)
relate to the “step-wise” nature of the growth in CLOUDANGELS

MDT as the number of clients is increased. This step-wise
behavior is a direct result of the increase in the depth of the
binary tree used in the first GT phase.

 0

 50

 100

 150

 200

 250

 5 10 15 20 25

M
in

 D
is

tr
ib

u
ti
o

n
 T

im
e

 (
s
e

c
)

Number of Clients

Client Server
BitTorrent

GroupTree
 0

 50

 100

 150

 200

 250

 5 10 15 20 25

A
v
e
ra

g
e
 D

is
tr

ib
u

ti
o

n
 T

im
e
 (

s
e
c
)

Number of Clients

Client Server
BitTorrent

GroupTree

Fig. 6. Figure (a) shows the relationship between MDT and the number of
clients for swarming-based (CLOUDANGELSand BT) versus non-swarming-
based (client-server) approaches. Figure (b) shows the average distribution
time for the same approaches.

Figure 6(b) shows the average (as opposed to minimum)
distribution time for the same experimental setup. It confirms
the findings from our simulation experiments (see Figure 4(b))
– namely, that the reduction in MDT does not come at the
expense of average distribution time.

We now proceed to presenting results in which angels
were deployed by the CLOUDANGELS service. Figure 7(a)
shows that as we increase the upload capacity of angels the
MDT decreases. Figure 7(b) shows the improvement in MDT
as a result of deploying a fixed amount of angel capacity, as
the number of clients increases, which results in an increase
in the overall depth of our previously defined GT depth.
Naturally, as the number of clients increases the effectiveness
of CLOUDANGELS (with a fixed set of angels) in reducing MDT
becomes increasingly limited.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 5 10 15 20 25

M
in

 D
is

tr
ib

u
ti
o
n
 T

im
e

 (
s
e

c
)

Angels Upload Capacity (mbit)

Tree depth = 4
Tree depth = 3
Tree depth = 2

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 18 36 54 72

M
in

 D
is

tr
ib

u
ti
o
n
 T

im
e

 (
s
e

c
)

Total Angels Upload Capacity (mbit)

Tree depth = 4
Tree depth = 3
Tree depth = 2

Fig. 7. Figure (a) shows the impact of angel’s upload capacity on MDT.
Figure (b) MDT as a function of number of clients for fixed angel capacity

VII. RELATED WORK

While not studied before, the bulk-synchronous content distri-
bution problem and solutions we discuss in this paper build on
and leverage a vast body of prior work in a number of areas.
We examine the most relevant of these next,8 noting that we

8We note that we do not consider content delivery acceleration schemes
– such as caching and replication – that may indirectly improve MDT to be
relevant related work.

8

have referred to other related works throughout the paper.
MDT bounds and implications: Kumar and Ross [13] estab-
lished MDT bounds for file dissemination from a seed to a set
of clients, and identified three limiting conditions for MDT –
namely the seeder, client, and network (swarm) bottlenecks.
Based on the observation that the best operating regime for a
swarm is when the seeder is not the bottleneck, the Antfarm
system [21] directs its resources in support of swarms for
which the seeder is the bottleneck. For swarm-assisted content
distribution systems (such as those offered by major providers
[7], [8]), we argue that the seeder (provider) is likely to be
well provisioned, making the network the likely MDT limiter,
and providing the motivation for all our constructions and for
the CLOUDANGELS prototype we presented in this paper. While
our theoretical MDT bounds (in the presence of angels) are
similar to those independently derived by Kumar and Ross
[22], our fluid construction (to achieve MDT) is different. The
fluid construction in [22] separates clients into two tiers, with
the MDT bound achieved only for the top tier. In our fluid
construction, which is simpler, the MDT bound is achieved
for all clients, making our construction more appropriate for
bulk-synchronous content delivery.
Overlays for optimized bulk-synchronous delivery:
Smaragdakis et al. [23] considered an alternative bulk-
synchronous delivery framework, in which the content does
not originate from a single source (the seed) but rather from
the clients themselves. Thus, each bulk-synchronous delivery
involves an exchange of content from every client to all
other clients in the swarm. In that work, the focus is not
on a coordinated swarming construction, but rather on the
construction of an optimal topology for minimizing MDT.
Cooperative swarming: An inherent feature of bulk-
synchronous swarms is that all clients share a common ob-
jective – that of minimizing MDT. Thus, unlike the “selfish”
behaviors expected in filesharing swarms (for example), clients
participating in a bulk-synchronous content delivery swarm
must be cooperative. There has been a relatively small number
of studies that considered cooperative swarming [23], the most
prominent of which is perhaps BitTyrant [5], [24], which can
be seen as a variant of BT that abandons the more rational
tit-for-tat mechanism in favor of a mechanism that pushes the
swarm to a more “socially optimal” operation, thus indirectly
assuming that clients are cooperative.
End-system multicast: In essence, our GT strategy can be
seen as an (asynchronous) end-system multicast [1], [2], [3]
strategy. In that respect, the dHCPS system [25] resembles GT
in that it relies on a two-level hierarchical P2P dissemination
mechanism for streaming, whereby each cluster has a Head
(the source for this cluster) which is a member of a superNode
swarm fed by the source. dHCPS solves the optimization
problem for deciding how much upload bandwidth each head
should dedicate to the superNode swarm versus its own group,
whereas the main aspect of the GT strategy is the assignment
of clients to trees and cliques and the determination of the
segment sizes for each. Another end-system multicast system
that resembles GT’s distribution strategy is ChunkySpread
[26], which divides a file into appropriately-sized chunks
which are disseminated through different trees to avoid the
overhead due to routing/ordering of individual chunks.

VIII. CONCLUSION

In settings where bulk-synchronous content distribution is
necessary, minimizing the maximum time it takes any client
in a set to download content becomes the overarching goal.
In this paper, we have developed a provably optimal fluid
construction that enables a content source (provider) to lever-
age the resources of helper nodes (angels) to meet specific
minimum distribution time (MDT) objectives. Armed with
insights gained from this fluid model, we proposed the Group
Tree coordinated swarming strategy that forms the basis of a
cloud service (CLOUDANGELS), enabling content providers to
leverage elastic cloud resources, on the fly, to meet their MDT
objectives. We presented performance evaluation results that
confirm the potential of our paradigm and system.

Our current work is focused on making the GT strat-
egy more agile, by allowing dynamic adjustments to the
assignment of segments to clients as a result of changes
in network conditions, and on extending the CLOUDANGELS

service to enable pipelined bulk-synchronous distribution of
content from a single provider to a set of clients as well as
to enable concurrent bulk-synchronous distribution of content
from multiple providers.

REFERENCES

[1] Y.-H. Chu, S. G. Rao, S. Seshan, and H. Zhang, “A case for end system
multicast,” Selected Areas in Communications, IEEE Journal on, 2002.

[2] S. Banerjee, B. Bhattacharjee, and C. Kommareddy, “Scalable applica-
tion layer multicast,” in SIGCOMM 2002, Pennsylvania, USA.

[3] M. Castro, P. Druschel, A. Kermarrec, A. Nandi, A. Rowstron, and
A. Singh, “Splitstream: High-bandwidth multicast in cooperative envi-
ronments,” in SOSP, 2003.

[4] B. Cohen, “Incentives Build Robustness in BitTorrent,” 2003.
[5] M. Piatek, T. Isdal, T. Anderson, A. Krishnamurthy, and A. Venkatara-

mani, “Do incentives build robustness in BitTorrent,” in NSDI, 2007.
[6] OpenP4P, http://www.openp4p.net.
[7] Akamai Netsession, http://www.akamai.com/client/.
[8] Octoshape, https://www.octoshape.com/.
[9] Pando Networks, http://www.pandonetworks.com/cdn-peering.

[10] Bittorrent DNA, http://www.bittorrent.com/dna/technology.
[11] BSP, http://www.bsp-worldwide.org.
[12] C. Huang, J. Li, and K. W. Ross, “Can internet video-on-demand be

profitable?” in ACM SIGCOMM ’07, Kyoto, Japan.
[13] R. Kumar and K. W. Ross, “Peer-Assisted File Distribution: The

Minimum Distribution Time,” in HOTWEB 2006, Boston, USA, 2006.
[14] J. Wang, C. Yeo, V. Prabhakaran, and K. Ramchandran, “On the Role of

Helpers in Peer-to-Peer File Download Systems: Design, Analysis and
Simulation,” IPTPS 2007.

[15] J. Mundinger, R. Weber, and G. Weiss, “Optimal scheduling of peer-to-
peer file dissemination,” Journal of Scheduling, 2008.

[16] D. M. Chiu, R. W. Yeung, J. Huang, and B. Fan, “Can Network Coding
Help in P2P Networks?” in WiOpt 2006, Boston, USA.

[17] R. Sweha, A. Bestavros, and J. Byers, “Angels: In-network support for
minimum distribution time in p2p overlays,” in BUCS-TR-2009-02.

[18] A. Legout, G. Urvoy-Keller, and P. Michiardi, “Rarest First and Choke
Algorithms are Enough,” in IMC 2006.

[19] Emulab, https://www.emulab.net/.
[20] Instrumented BitTorrent, https://gforge.inria.fr/projects/bt-instru/.
[21] R. S. Peterson and E. G. Sirer, “Antfarm: efficient content distribution

with managed swarms,” in NSDI 2009, Boston, USA.
[22] R. Kumar and K. W. Ross, “Optimal peer-assisted file distribution:

Single and multi-class problems,” Tech. Rep., 2007, http://cis.poly.edu/
∼ross/papers/MinimumDistributionTime.pdf.

[23] G. Smaragdakis, A. Bestavros, N. Laoutaris, J. W. Byers, P. Michiardi,
and M. Roussopoulos, “Swarming on optimized graphs for n-way
broadcast,” in INFOCOM, 2008, pp. 141–145.

[24] D. Carra, G. Neglia, and P. Michiardi, “On the impact of greedy
strategies in bittorrent networks: The case of bittyrant,” in P2P ’08.

[25] Y. Guo, C. Liang, and Y. Liu, “dhcps: decentralized hierarchically
clustered p2p video streaming,” in CIVR ’08, NY, USA, 2008.

[26] V. Venkataraman, K. Yoshida, and P. Francis, “Chunkyspread: Hetero-
geneous unstructured tree-based peer-to-peer multicast,” in ICNP 2006.

