
Formal Verification of SLA Transformations
VATCHE ISHAKIAN ANDREI LAPETS AZER BESTAVROS ASSAF KFOURY
visahak@bu.edu lapets@bu.edu best@bu.edu kfoury@bu.edu

Computer Science Department, Boston University
Boston, MA 02215, USA

Abstract—Desirable application performance is typically guar-
anteed through the use of Service Level Agreements (SLAs)
that specify fixed fractions of resource capacities that must be
allocated for unencumbered use by the application. The mapping
between what constitutes desirable performance and SLAs is
not unique: multiple SLA expressions might be functionally
equivalent. Having the flexibility to transform SLAs from one
form to another in a manner that is provably safe would enable
hosting solutions to achieve significant efficiencies. This paper
demonstrates the promise of such an approach by proposing
a type-theoretic framework for the representation and safe
transformation of SLAs. Based on that framework, the paper
describes a methodical approach for the inference of efficient
and safe mappings of periodic, real-time tasks to the physical and
virtual hosts that constitute a hierarchical scheduler. Extensive
experimental results support the conclusion that the flexibility
afforded by safe SLA transformations has the potential to yield
significant savings.

I. INTRODUCTION

Motivation and Scope: Formal verification of the safety prop-
erties of software systems has long been the “holy grail” of a
number of research communities focusing on safety-critical
applications. While significant progress has been achieved
in highly-specialized domains (such as for automotive [1]
and avionics [2] applications), making formal verification
accessible to system builders remains elusive. In this paper,
we address two issues related to this state-of-affairs. First, we
show that the use of “lightweight” formalisms to support the
reasoning processes of system builders (programmers, inte-
grators, and operators) can be quite effective as an alternative
to approaches that require significant, deep knowledge of the
specific application domain and/or those that require fluency
in a particular formalism. Second, we show that the notion
of “safety” extends well beyond systems in which loss of
human life or expensive equipment is at stake. In particular,
we consider a cloud setting wherein it is desirable to safely, yet
efficiently aggregate (co-locate) workloads that are subject to
contractual Service Level Agreements (SLAs). In this setting,
the system/cloud operator cannot be expected to know (let
alone be an expert in) the purpose from a particular SLA
request, and thus cannot be expected to arbitrarily modify
the set of SLAs for efficient co-location purposes. Rather,
the only degree of freedom that such an operator could be
assumed to have is the ability to transform an SLA from

This research was supported in part by NSF awards #0720604, #0735974,
#0820138, #0952145, and #1012798.

one form to another, as long as the transformation can be
formally verified to be equivalent with respect to a given SLA
calculus – a calculus which is independent from and does not
require expertise in the application domains of the constituent
workloads.
Safe SLA Transformations for Efficient Co-location: The
wide proliferation and adoption of virtualization technologies
can be attributed to the various benefits they deliver, including
cost efficiency (through judicious resource consolidation), de-
ployment flexibility (through just-in-time “cloud” resource ac-
quisition), simplified management (through streamlined busi-
ness processes), among others. Virtualization delivers these
benefits thanks in large part to a key attribute: performance
isolation – the ability of a user (or a set of applications thereof)
to acquire appropriate fractions of shared fixed-capacity re-
sources for unencumbered use subject to well-defined, binding
service-level agreements (SLAs) that ensure the satisfaction
of minimal quality of service (QoS) requirements. In many
instances, however, multiple SLA forms may be “equivalent”
in terms of their ability to support a given QoS. For instance, a
QoS that spells out an upper bound on (say) data availability in
a storage solution could be expressed by any number of SLA
forms, depending on how device reliability and redundancy are
combined. Similarly, a QoS that spells out an upper bound on
(say) missed deadlines in a real-time system could be satisfied
by any number of SLA forms, depending on reservation
granularity and/or on underlying schedulers. The ability to
transform (or rewrite) SLAs from one form to another safely
(i.e., without jeopardizing the safety or QoS requirements
of an underlying workload) gives cloud operators significant
freedom in efficiently managing their resources.
A Framework for Safe SLA Transformation: We present
our ideas for formal verification of SLA transformations within
the context of the generic framework depicted in Figure 1.
Our framework enables a user (e.g., a cloud service operator)
to propose SLA transformation rules, which upon successful
verification for soundness by the AARTIFACT system [3] are
fed to an SLA transformation engine. The SLA transformation
engine utilizes a set of rewriting rules from the “Transfor-
mation Rules Repository” to explore the space of possible
safe co-location configurations (mappings). If a feasible map-
ping is found,1 then the transformation engine informs the

1Naturally, if multiple feasible mappings are found, then it is possible to
use a scoring function to select the optimal mapping to realize.

Fig. 1. SLA Transformation Framework Design

“Resource Manager” to realize the desirable configuration,
e.g., using operational services such as those presented in
previous work [4]. Otherwise, the engine informs the user,
who may opt to allocate more resources or propose additional
transformations.

While our safe SLA transformation framework depicted in
Figure 1 is quite general, ultimately, any instantiation of this
framework must be based on a specific “calculus” that enables
the manipulation of SLAs. By “calculus”, we mean a model
that enables reasoning for the purpose of establishing SLA
relationships/equivalencies. In this paper, we use a specific
calculus that is particularly suited for periodic real-time sys-
tems [5]. In particular, our calculus is defined for a setting
in which the “Task Workload” consists of a set of periodic
real-time tasks, and the set of “Available Resources” are fixed-
capacity hosts, which are individually scheduled using a Rate
Monotonic Scheduler (RMS) [6]. Here we note that Our RMS-
based calculus can be viewed as a simplified variant of the
real-time calculus [7]. In general, our framework admits the
use of other calculi (e.g., linear algebra or network calculus)
if an appropriate database of propositions is supplied to the
AARTIFACT system.
Paper Outline: The remainder of this paper is organized as
follows. In Section II, we overview the various building blocks
of our framework. In Section III, we present the particular
domain-specific language that we adopt in this paper for the
expression of SLAs for real-time workloads. In Section IV,
we present examples of SLA transformations with associated
machine-readable proofs of correctness that were mechanically
verified using the AARTIFACT system. We conclude in Sec-
tion V with a discussion of related work.

II. OVERVIEW OF FRAMEWORK BUILDING BLOCKS

In this section, we present the basic background necessary
to understand the underpinnings of the SLA transformation
engine and the resource manager elements of the framework
depicted in Figure 1. We follow that with an overview of
the salient features and capabilities of the AARTIFACT proof

assistant used in our framework.

A. Real-Time Resource Management

The problem of efficiently co-locating tasks on a set of hosts
is effectively a “packing” process – given a set of tasks (the
workload), a scheduler packs these tasks into groups, such that
the SLAs of all tasks in a given group can be satisfied by a
single host.2 For non-real-time tasks, a set of tasks can be
packed in a single group as long as the total utilization needs
of all tasks in a group is less than the capacity of the host.
For real-time tasks, whether or not a set of such tasks can be
packed in a single host depends on other details – including
the scheduler deployed in the host – and is generally more
involved.

Liu and Layland [6] provided classical results for the
schedulability condition of n periodic real-time tasks, each
requesting a resource for Ci units of time every Ti units of
time (the period). Specifically, assuming a preemptive priority
scheduler and a rate-monotic assignment of priorities to tasks,
a group of n tasks is schedulable (i.e., could be packed) on a
single host if

∑n
i=1

Ci

Ti
≤ n(n

√
2−1). Follow-up work [8], [9]

showed that if the set of n tasks can be grouped into k subsets
such that the periods of tasks in each subset are multiples
of one another (i.e., harmonic), then a tighter schedulability
condition is

∑n
i=1

Ci

Ti
≤ k(k

√
2− 1).

A schedulability condition provides us with the means to
check whether a specific set of tasks is schedulable on a single
host. In our setting, however, the problem is to partition a
large set of tasks (the workload) into smaller sets, each of
which would be schedulable on a single host. Moreover, in our
setting, safe SLA transformations imply that the specification
of the resource requirements (e.g., Ci and Ti) for each task
may not be unique. Rather, the SLA for each task could be
satisfied by multiple resource requirement specifications. An
optimal partitioning of the workload (namely, one that uses
the least number of hosts) can be shown to be NP-hard, in

2Without loss of generality, in this paper, we assume that all hosts are
identical.

general.3 This necessitates the use of searching and pruning
heuristics that explore the solution space – namely, what SLA
transform(s) to apply to each task, and how to partition the
resulting set of tasks. Details of heuristics that were shown to
be fairly effective (achieving significant packing efficiencies
when compared to random co-location) and practical (scaling
up to dozens of tasks per host) are given in [5], [11].

B. Underlying Verification System and Proposition Database

AARTIFACT is a formal reasoning assistant4 that supports
lightweight verification of formal arguments using a database
of concepts, propositions, and syntactic idioms that deal with
common mathematical concepts such as numbers, vectors, and
sets. It has a familiar concrete syntax overlapping with English,
MediaWiki markup, and LATEX, and a friendly user interface
[3]. The AARTIFACT system has been used in the past to
formally verify the consistency [12] of a formal framework
of safe transformations of constraints governing constrained-
flow networks [13].

The system’s flexible design allows domain expert managers
to quickly and easily assemble a large database for a specific
domain. They can do so by employing custom natural language
constructs5 in combination with formal syntax, such as in the
example below.

for all a, T, T ′, C,
T ′ ≥ T and
for all a′ length T subvector of a, (

∑
a′) ≥ C

implies
for all a′ length T ′ subvector of a, (

∑
a′) ≥ C.

The following example illustrates the kind of facts about
common mathematical concepts that can also be included.

for any x, y, z,
x ∈ R, y ∈ R, z ∈ R, x < y, y < z

implies that x < z.

It is also possible to encode an equivalence between two forms
of notation or syntax. They can be viewed as establishing a
normal form for representing certain concepts or properties
thereof. For example, the following proposition converts the
typical notation for a sum of a finite range of components in
a vector, “vi + . . . + vj”, into a predicate that is then used in
other propositions about the properties of this concept.

3Our problem can be easily reduced to a multiprocessor real-time schedul-
ing problem, which is known to be NP-hard [10].

4An interactive demonstration of the system is available online at
http://www.aartifact.org.

5For readability, we underline custom natural language constructs utilized
within formal expressions.

for any v, i, j,
v is a vector , v ∈ Z|v|, 0 ≤ i, i ≤ j, j < |v|,

implies that
vi + . . . + vj is the sum of components in

v in the index range i to j.

AARTIFACT’s expert-managed database of propositions and
syntactic idioms is compiled into two separate applications.

The first application is a server-side verifier that can be
executed when requests are submitted to it. It parses arguments
authored using a familiar concrete syntax that consists of
common LATEX macros and English phrases [14]. It validates
these arguments using an inference algorithm the context of
which has been augmented with a data structure that uses the
database of propositions to compute congruence closures [15]
throughout the verification process. The AARTIFACT system’s
inference algorithm relies on a collection of inference rules
corresponding to those found in a typical definition of higher-
order logic [16] (i.e. those governing conjunction, disjunction,
negation, and quantification), and variants thereof found in
common sequent calculus formulations [17]. The validation
procedure verifies arguments with respect to these inference
rules as well as the entire database of propositions. The
verification capabilities provided by the AARTIFACT system
are “lightweight” in that it is not essential that any guarantee
be provided about the logical consistency or completeness
of the validation process (allowing a user to validate that,
for example, the proper syntax is used, that all variables are
bound, or that only “intuitive” symbolic manipulations are
employed). However, the soundness of the validation process
can be guaranteed if the system can use only a subset of the
inference rules and database propositions that is consistent
with a particular logic. This capability has been demonstrated
for propositional and first-order logic, and the proofs verified
in this paper are verified using a consistent subset of the
propositions that includes many facts about the properties of
vectors and sets.

The second application is a client-side JavaScript that
automatically informs users of syntactic idioms available in
the ontology as they author formal arguments [18]. This
capability is essential as it informs users of which custom
natural language constructs have been introduced by expert
managers and are available for use in formal arguments.

III. A DOMAIN-SPECIFIC LANGUAGE FOR REAL-TIME
SLAS

As we hinted earlier, SLA transformations must be based on
a given “calculus”. Thus, for the purposes of SLAs governing
real-time workloads (and without loss of generality), in this
section we present a specific “language” for expressing SLAs
and transformations thereof. We note that it is the responsibil-
ity of the domain expert (cf. Figure 1) to define and codify the
SLA “language” as part of the AARTIFACT system’s database
of propositions. In section IV, we provide examples which

TIME-↑
a |=s (C, T) T ′ ≥ T

a |=s (C, T ′)
CAPACITY-↓

a |=s (C, T) C ′ ≤ C

a |=s (C ′, T)

CT-↓
a |=s (C, T) K > 0 T ′ = T −K C ′ ≤ C −K

a |=s (C ′, T ′)

CT-↑
a |=s (C, T) K > 0 T ′ = T ·K C ′ ≤ C ·K

a |=s (C ′, T ′)

Fig. 2. Rewriting rules for hard SLAs.

outline the process by which a system user proceeds to provide
and prove conjectures using AARTIFACT’s underlying database
of propositions.

A. Periodic Supply/Demand SLA Types

SLAs can be seen as encapsulators of the resources supplied
by hosts (producers) and demanded by tasks (consumers). We
provide a specific model for SLAs that supports periodic, real-
time resource supply and demand.6 We also provide basic
type-theory-inspired definitions that allow us to represent SLA
transformations as a collection of inference rules.
Definition. A soft SLA type τ is a tuple of natural numbers
(C, T,D,W) ∈ N4, C ≤ T , D ≤ W , and W ≥ 1, where C
denotes the resource capacity supplied or demanded in each
time interval that is T units in length, and D is the maximum
number of times such an allocation cannot be honored in a
window consisting of W allocation intervals.
Definition. A hard SLA type τ is a tuple of natural numbers
(C, T) ∈ N × N, C ≤ T , where C denotes the resource
capacity supplied or demanded in each interval of time that
is T units long; such a type requires that the allocation of
resources is honored at all times.

Note that these definitions imply that a type (C, T) is
equivalent to (C, T, 0, 1). These definitions assume that the
periodic capacity could be allocated as early as the beginning
of any interval (or period) and must be completely produced
or consumed by the end of that same interval (that is, the
allocation deadline is T units of time from the beginning of
the period).

As presented, our SLA types are general enough to express a
wide range of supply/demand elements. For example, an SLA
of type (1, 1, 0, 1) could be used to characterize a uniform,
unit-capacity supply provided by a physical host. An SLA
of type (1, n, 0, 1), n > 1 could be used to characterize the
fractional supply provided under a general processor sharing
(GPS) model to n processes. An SLA of type (1, 30) could be
used to represent a task that needs a unit capacity C = 1 over
an allocation period T = 30 and cannot tolerate any missed
allocations. An SLA of type (k, k · n, 0, 1), n > 1, k ≥ 1 can

6Our SLA model mirrors existing periodic task models in the real-time
scheduling literature [19]–[21].

characterize the fractional supply provided in a round robin
fashion to n processes using a quantum k. In all of these
examples, the SLA type does not admit missed allocations
(since D = 0). An SLA of type (1, 30, 2, 5) is an example of a
task that tolerates missed allocations (soft deadline semantics)
as long as there are no more than D = 2 such misses in any
window of W = 5 consecutive allocation periods.

B. Strong Satisfaction of Hard SLAs

We consider what it means to satisfy an SLA type. The
following definitions formalize the notion of satisfaction by
considering a schedule that governs a single task. We first do
so for SLAs of the form (C, T) (i.e., those that do not admit
missed allocations).
Definition. A schedule a is a vector a ∈ {0, 1}∞.

A schedule is an infinite sequence (or vector) of 0s and 1s
in which each entry represents whether or not a resource is
allocated to the single task in question at that discrete point
in time. We use the subscript notation ai to refer to an entry
in the sequence corresponding to a particular point in time. A
schedule a is said to strongly satisfy (denoted by |=s) a hard
SLA type (C, T) if the resource is allocated for C units of
time in all (overlapping) intervals of length T .
Definition. We say a |=s (C, T) iff for every m ≥ 0,

am + · · ·+ am+(T−1) ≥ C.

C. Weak Satisfaction of Soft SLAs

We generalize the above definition for the more general soft
SLA types of the form (C, T,D,W). To do so, we introduce
an aggregate vector A(a,C, T) that characterizes a schedule
a with respect to some C and T . We also switch over to a
notion of weak SLA satisfaction.7

Definition. A(a,C, T) ∈ {0, 1}∞ is a vector defined as:

A(a,C, T)m =
{

0 if am + · · ·+ am+(T−1) < C
1 if am + · · ·+ am+(T−1) ≥ C

A schedule a is said to weakly satisfy (denoted by |=w) an
SLA type (C, T,D,W) if the resource is allocated for C units

7It is also possible to reason about weak satisfaction of hard SLAs and
strong satisfaction of soft SLAs. Discussion of these can be found in previous
work [5] and is omitted from this report due to length constraints.

of time in at least W − D out of every W non-overlapping
(contiguous) intervals of length T .

Definition. a |=w (C, T,D,W) iff for every Q ∈ N and m =
Q · (W · T),

W −D ≤
W−1∑
j=0

A(a,C, T)m+Tj .

IV. MACHINE-ASSISTED VERIFICATION OF SLA
TRANSFORMATIONS

In this section, we present a set of SLA transformations
that exemplify (and certainly do not exhaust) the range of
conjectures that a user of our framework (cf. Figure 1) would
need to formally check for safety (before allowing the SLA
transformation engine to use these transformations). Recall
that the verification of these transformations must be based
on specific assumptions regarding the underlying scheduler.
As we mentioned before, in this paper we assume that the
underlying scheduler is a Rate Monotonic Scheduler.

By assembling these proofs, the system user can be certain
that her assertions about the safety of SLA transformations are
grounded in the semantics of integer vectors (encoded in the
AARTIFACT proposition database) that underlies the definitions
of SLAs.

A. Example: Strong Satisfaction of Hard SLAs

Each SLA transformation is a type inference rule associated
with a set of pre-conditions. Intuitively, each inference rule
implies that we can safely substitute (rewrite) some SLA
type (C, T) for some other type (C ′, T ′) as long as the
pre-conditions of the inference rule are met. We present the
inference rules for rewriting hard SLAs in Figure 2.

In order to establish the soundness of these inference rules
for a particular satisfaction relation (i.e., |=s or |=w), we must
provide a proof for each rule. In this context, a rule is sound
if it is consistent with the underlying AARTIFACT database of
propositions (governing vectors, sets, and integers) that has
been assembled for this application domain. We first present
a simple mechanically verifiable proof of the soundness of
one of the rewriting rules in Figure 2 with respect to strong
satisfiability. All mechanically verifiable (using AARTIFACT)
arguments are enclosed in boxes.

We first reproduce below the machine-readable definitions
for hard SLA types and strong satisfiability.

Assume for any C, T ∈ N,
(C, T) is a hard SLA type iff C ≤ T .

Assume for any a,C, T ,
a strongly satisfies (C, T)

iff
a ∈ {0, 1}∞,
(C, T) is hard SLA type,
and for all a′ length T subvector of a, (

∑
a′) ≥ C.

This definition associates the notion of an SLA with a propo-
sition about integer vector. The definition quantifies over the
subvectors of a vector using the custom natural language
construct “length n subvector of v” made available by the
domain expert. The prefix operator “

∑
” is used to denote

the sum of the elements of a vector of integers.
The user can now assemble a proof that the [TIME-↑]

rewriting rule is safe with respect to strong satisfaction.

Theorem 1. The [TIME-↑] rule is sound with respect to strong
satisfaction.

Proof: Given the database of propositions about vectors
assembled by expert managers, the proof is a trivial unwinding
of definitions.

Assert for any a,C, T ,
(C, T) is a hard SLA type and
a strongly satisfies (C, T)

implies
for all T ′ ∈ N, T ′ ≥ T implies

(C, T ′) is a hard SLA type,
for all a′ length T subvector of a, (

∑
a′) ≥ C,

for all a′ length T ′ subvector of a, (
∑

a′) ≥ C,
a strongly satisfies (C, T ′).

B. Example: Weak Satisfaction of Soft SLAs

The set of SLA rewrite rules in Figure Figure 2 did not
allow transformations that involve the manipulation of SLAs
with non-trivial D and W parameters. In Figure 3, we provide
another rewriting rule that is applicable to soft SLA types. 8

The new, third rule [DROPS-↑] allows for adjustment of the D
parameter. Since we are now dealing with weak satisfiability
of soft SLAs, we need the corresponding definitions for these
in terms of integers vectors.

Assume for any C, T,D,W ∈ N,
(C, T,D,W) is a soft SLA type

iff
C ≤ T , D ≤ W , and W ≥ 1.

Assume
for any C, T,D,W ∈ N, for any a,

a weakly satisfies (C, T,D,W)
iff

a ∈ {0, 1}∞,
(C, T,D,W) is a soft SLA type,
for all a′ in split a by T ·W ,
|{a′′ in split a′ by T |

∑
a′′ < C }| ≤ D.

8Note that these can be used in conjunction with the rules in Figure 3 if the
rules in Figure 3 are appropriately interpreted as having D = 0 and W = 1
and are valid for weak satisfaction.

DROPS-↑
a |=w (C, T,D,W) D′ ≥ D

a |=w (C, T,D′,W)
D-1-↓

a |=w (C, T, 1, 2) T ′ = 2 · T
a |=w (C, T ′, 0, 1)

Fig. 3. Additional rewriting rule for soft SLAs.

Notice that the system user employed a custom natural
language construct “in split v by n” made available by the
domain expert. This construct allows the system user to reason
about a common, intuitive operation on vectors: splitting a
vector v into contiguous subvectors of length n. The system
user can now argue that the [DROPS-↑] rule is safe given with
respect to weak satisfaction.

Theorem 2. The [DROPS-↑] rule is sound with respect to weak
satisfaction.

Proof: Once again, the proof is a matter of unwinding
definitions.

Assert for any a ∈ {0, 1}∗, C, T, D, D′,W ∈ N,
D′ ≥ D,
(C, T,D,W) is a soft SLA type, and
a weakly satisfies (C, T,D,W)

implies
(C, T,D′,W) is a soft SLA type, and
for all a′ in split a by T ·W ,
|{a′′ in split a′ by T |

∑
a′′ < C }| ≤ D,

|{a′′ in split a′ by T |
∑

a′′ < C }| ≤ D′,
a weakly satisfies (C, T,D′,W).

The system user can also build arguments about specific
cases. The [D-1-↓] rule deals with the specific case in which
exactly one out of every two time spans does not provide
sufficient resources. The system user constructs a proof that
in this case, it is possible to set T ′ = W to ensure that D = 0.

The argument first unwinds the definitions, as before. Next,
it is shown that the overall sum of the elements of each
subvector of size W is at least C if one out of every two
subvectors of size T has sum at least C. The verification
system is able to recognize this line of reasoning because
this fact is among those included by the domain expert in the
database of propositions. The user then indicates that splitting
a′, a vector of length T · 2, into subvectors of length T · 2
yields a set containing only a′. Since the sum of the elements
of a′ already exceeds C, all the elements of this split trivially
have sum at least C. This means no elements have sum less
than C. After a few more substitutions, the definition of weak
satisfaction is restated for the new parameters. Note that at
several steps in the formal argument, multiple substitutions
are applied simultaneously. Notice also that no explicit anno-
tations are provided to the verifier justifying each step. These
capabilities of the AARTIFACT system are designed specifically

for the convenience of the system user.

Theorem 3. The [D-1-↓] rule is sound with respect to weak
satisfaction.

Proof: This proof requires a larger number of reasoning
steps.

Assert for any a ∈ {0, 1}∗, C, T, T ′ ∈ N,
T ′ = T · 2,
(C, T, 1, 2) is a soft SLA type, and
a weakly satisfies (C, T, 1, 2)

implies
(C, T, 0, 1) is a soft SLA type, and
for all a′ in split a by T · 2,
|{a′′ in split a′ by T |

∑
a′′ < C }| ≤ 1,

|{a′′ in split a′ by T |
∑

a′′ ≥ C }| ≥ 1,
(
∑

a′) ≥ C,

|a′| = T · 2,
{a′} = {a′′ in split a′ by T · 2},
1 = |{a′}| = |{a′′ in split a′ by T · 2}|,

|{a′′ in {a′} |
∑

a′′ ≥ C }| = 1,
|{a′′ in split a′ by T · 2 |

∑
a′′ ≥ C }| ≥ 1,

T · 2 = T ′ = T ′ · 1,
|{a′′ in split a′ by T ′ · 1 |

∑
a′′ < C }| ≤ 0,

for all a′ in split a by T ′ · 1,
|{a′′ in split a′ by T ′ |

∑
a′′ < C }| ≤ 0,

a weakly satisfies (C, T ′, 0, 1).

V. RELATED WORK

The work described in this paper brings to bear the premise
of formal verification using the AARTIFACT lightweight proof
assistant on the problem of efficient co-location of real-time
workloads. We believe that the capabilities and flexibility
enabled through this framework are crucial for emerging
shared infrastructure cloud and grid environments, and as far
as we can tell there is no prior work that proposed or developed
such capabilities. That said, there are two distinct bodies
of related work to consider – namely those concerned with
applying real-time scheduling theory to real-time workload
management, and those concerned with the development of

formal verification systems and their practical application
within specific domains.
Efficient Co-location of Real-Time Workloads: In a cloud
or grid setting, the hosting environment operates at a macro-
scopic scale (e.g., enforcing specific resource utilization ratios
over relatively long time scales). While appropriate for many
applications, such coarse SLAs do not cater well to the
needs of real-time applications, whose QoS constraints require
resource allocations at a more granular scale, e.g., through the
specification of a worst-case periodic resource utilization. A
very effective mechanism for dealing with this mismatch is the
use of hierarchical scheduling, whereby the granularity of the
reservations is refined as virtualization layers are traversed.
Using hierarchical scheduling, resources are allocated by a
parent scheduler at one level of the hierarchy to a child
scheduler (or a leaf application) at the next level of the
hierarchy. Conceptually, at any given layer of this hierarchy,
the parent scheduler can be seen as allocating a virtual slice of
the host at some granularity which is further refined by lower-
layer schedulers, until eventually appropriated and consumed
by a leaf application.

Numerous previous studies dealt with hierarchical schedul-
ing frameworks [22]–[25]. Regehr and Stankovic [22] in-
troduced a hierarchical scheduling framework in support of
various types of guarantees. They use rewriting rules to convert
a guarantee provided under a specific scheduling algorithm to
a guarantee provided under another. This notion of rewriting
is different from ours as it does not accommodate workload
transformations. Shin and Lee [23] present a compositional
real-time scheduling framework based on workload bounding
functions, and resource bounding functions. They utilize a
tree data structure, where a child scheduling system is the
immediate descendant of the parent scheduling system, and
the parent scheduling system is the immediate ancestor of
the child scheduling system. Their model assumes that the
parent and children scheduling systems can utilize different
types of scheduling algorithms. Under their framework any
given system composed of a workload, resources, and a
scheduling algorithm will be schedulable if the minimum
resource curve bounds the maximum workload curve. This
model has also been extended further [24] to include context
switching overhead and incremental analysis.

A common assumption in hierarchical scheduling frame-
works is that the grouping of applications and/or schedulers
under a common ancestor in the scheduling hierarchy is known
a priori based on domain specific knowledge; for example,
all applications with the same priority are grouped into a
single cluster, or all applications requiring a particular flavor
of scheduling are grouped into a single cluster managed by
the desired scheduling scheme. Most of this prior body of
work is concerned with addressing the schedulability problem
given such a fixed hierarchical structure (i.e., deciding whether
available resources are able to support this fixed structure). As-
suming that the structure of a hierarchical scheduler is known a
priori is quite justified when all applications under that sched-
uler are part of the same system. It is also justified in small-

scale settings in which the number of such applications (and
the scale of the infrastructure supporting these applications) is
small, and in which the set of applications to be supported is
rather static. None of these conditions hold in the emerging
practices that fuel the use of virtualization technologies. In
such settings, inferring the structure of a feasible, efficient
hierarchical scheduler is the challenge addressed in [5] with
the use of SLA transformations that were proven to be safe
using domain-specific knowledge. In this paper, we showed
that domain expertise is not necessary by showing how the
use of AARTIFACT could assist the process of deriving SLA
transformations.

The idea of transforming task periods for improving schedu-
lability is not new. Related work [26], [27] introduced a
period transformation method that involves halving the C and
T elements of the periodic task specification. The purpose
of this transformation was to increase the priority of a task
under RMS. In our work, we consider much more general
transformations targeting not only hard, but also soft deadline
semantics, and which are possible to derive for overlapping as
well as traditional, non-overlapping intervals.
Machine Verification: The work presented in this paper
illustrates the usefulness of several characteristics of a formal
reasoning system that prioritizes usability in its design. The
concrete syntax of the system is familiar to the community
in question, and it is not necessary to cite explicitly within a
formal argument the definitions and propositions that are being
employed. These features are recognized as important within
several efforts and projects to design systems with similar
characteristics [28]–[30]. Furthermore, the system takes advan-
tage of an extensive database of definitions and propositions
dealing with common mathematical concepts and provides
native support for some of these concepts. This is inspired
by work in a subdiscipline of artificial intelligence that deals
with the assembly and application of ontologies, such as
the Cyc Project [31]. The augmented context integrated into
the inference algorithm and its closure operation are similar
to structures and algorithms found in work on congruence
closures [15].

There exist few examples of applications of formal reason-
ing systems within novel research. Some examples include
applications within network protocol design [32], cryptogra-
phy [33], security in computation [34], economic mechanism
design [35]. Our work is distinguished from these by our
utilization of a system that provides lightweight verification.
In this approach, the semantics of the underlying domain is
encoded separately by domain experts. The system user is only
required to use familiar notation and a supporting interface to
encode a correspondence between the application domain and
the underlying semantic domain.

VI. CONCLUSION

We have utilized a formal reasoning system to define and
reason about a novel framework for rewriting SLAs to enable
efficient co-location in a cloud setting. These proofs are acces-
sible to humans and are of a manageable size, demonstrating

the value of employing a user-friendly verification system.
Our on-going research efforts are progressing along two

dimensions. Along the first, we are employing AARTIFACT in
proving additional conjectured theorems about other models
of SLA transformations for workload colocation. We believe
additional SLA transformations will enhance the efficiency of
our colocation framework (e.g., in [11], SLA transformations
such as those seen in this paper yield a reduction of up to
60% in wasted resources). Along the second, we are interested
in using AARTIFACT to reason about other models of SLA
“calculus” (e.g., an SLA transformation for cloud storage).

REFERENCES

[1] J. Botaschanjan, L. Kof, C. Kühnel, and M. Spichkova, “Towards
verified automotive software,” in SEAS ’05: Proceedings of the second
international workshop on Software engineering for automotive systems.
New York, NY, USA: ACM, 2005, pp. 1–6.

[2] O. Laurent, “Using formal methods and testability concepts in the
avionics systems validation and verification (v&v) process,” Software
Testing, Verification, and Validation, 2008 International Conference on,
vol. 0, pp. 1–10, 2010.

[3] A. Lapets, “User-friendly Support for Common Concepts in a
Lightweight Verifier,” in Proceedings of VERIFY-2010: The 6th Inter-
national Verification Workshop, Edinburgh, UK, July 2010.

[4] V. Ishakian, R. Sweha, J. Londoo, and A. Bestavros, “Colocation as
a Service: Strategic and Operational Services for Cloud Colocation,”
in NCA ’10: The 9th IEEE International Symposium on Network
Computing and Applications. Boston, MA: IEEE Computer Society,
July 2010.

[5] V. Ishakian, A. Bestavros, and A. Kfoury, “A Type-Theoretic Framework
for Efficient and Safe Colocation of Periodic Real-time Systems,” in
RTCSA ’10: The 16th IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications. Macau, China: IEEE
Computer Society, August 2010.

[6] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” Journal of the ACM, vol. 20,
no. 1, pp. 46–61, 1973.

[7] L. Thiele, S. Chakraborty, and M. Naedele, “Real-time calculus for
scheduling hard real-time systems,” in ISCAS 2000: Proceedings of the
2000 IEEE International Symposium on Circuits and Systems, vol. 4,
2000, pp. 101–104.

[8] J. P. Lehoczky, L. Sha, and Y. Ding, “Rate-monotonic scheduling algo-
rithm: Exact characterization and average case behavior,” in Proceedings
of the 11th IEEE Real-time Systems Symposium, December 1989, pp.
166–171.

[9] T.-W. Kuo and A. Mok, “Load adjustment in adaptive real-time systems,”
Dec 1991, pp. 160–170.

[10] M. Garey and D. Johnson, Computers and intractability. A guide to
the theory of NP-completeness. A Series of Books in the Mathematical
Sciences. WH Freeman and Company, San Francisco, CA, 1979.

[11] V. Ishakian and A. Bestavros, “MORPHOSYS: Efficient Colocation of
QoS-Constrained Workloads in the Cloud,” CS Dept., Boston University,
Tech. Rep. BUCS-TR-2011-002, January 24 2011.

[12] A. Lapets and A. Kfoury, “Verification with Natural Contexts:
Soundness of Safe Compositional Network Sketches,” CS Dept.,
Boston University, Tech. Rep. BUCS-TR-2009-030, October 1 2009.
[Online]. Available: http://www.cs.bu.edu/techreports/2009-030-verified-
netsketch-soundness.ps.Z

[13] A. Bestavros, A. Kfoury, A. Lapets, and M. Ocean, “Safe Compositional
Network Sketches: The Formal Framework,” in HSCC ’10: Proceedings
of the 13th ACM International Conference on Hybrid Systems: Computa-
tion and Control (in conjunction with CPSWEEK), Stockholm, Sweden,
April 2010, pp. 231–241.

[14] A. Lapets, “Improving the accessibility of lightweight formal verification
systems,” CS Dept., Boston University, Tech. Rep. BUCS-TR-2009-015,
April 30 2009.

[15] L. Bachmair and A. Tiwari, “Abstract congruence closure and specializa-
tions,” in CADE-17: Proceedings of the 17th International Conference
on Automated Deduction. London, UK: Springer-Verlag, 2000, pp.
64–78.

[16] S. C. Kleene, Mathematical Logic. Dover Publications, 1967.
[17] G. Gentzen, The Collected Papers of Gerhard Gentzen. Amsterdam:

North-Holland Publishing Co., 1969, edited by M. E. Szabo.
[18] A. Lapets and A. Kfoury, “A User-friendly Interface for a Lightweight

Verification System,” in Proceedings of UITP’10: 9th International
Workshop On User Interfaces for Theorem Provers, Edinburgh, UK,
July 2010.

[19] M. Hamdaoui and P. Ramanathan, “A dynamic priority assignment
technique for streams with (m,k)-firm deadlines,” IEEE Transactions
on Computers, vol. 44, pp. 1443–1451, 1995.

[20] Y. Zhang, R. West, and X. Qi, “A virtual deadline scheduler for window-
constrained service guarantees,” in RTSS ’04: Proceedings of the 25th
IEEE International Real-Time Systems Symposium. Washington, DC,
USA: IEEE Computer Society, 2004, pp. 151–160.

[21] T. Chantem, X. S. Hu, and M. Lemmon, “Generalized elastic schedul-
ing,” in Real-Time Systems Symposium, 2006. RTSS ’06. 27th IEEE
International, Dec. 2006, pp. 236–245.

[22] J. Regehr and J. A. Stankovic, “Hls: A framework for composing soft
real-time schedulers,” in RTSS ’01: Proceedings of the 22nd IEEE Real-
Time Systems Symposium. Washington, DC, USA: IEEE Computer
Society, 2001, p. 3.

[23] I. Shin and I. Lee, “Periodic resource model for compositional real-time
guarantees,” in RTSS ’03: Proceedings of the 24th IEEE International
Real-Time Systems Symposium. Washington, DC, USA: IEEE Computer
Society, 2003, p. 2.

[24] A. Easwaran, I. Lee, I. Shin, and O. Sokolsky, “Compositional schedu-
lability analysis of hierarchical real-time systems,” in ISORC ’07:
Proceedings of the 10th IEEE International Symposium on Object and
Component-Oriented Real-Time Distributed Computing. Washington,
DC, USA: IEEE Computer Society, 2007, pp. 274–281.

[25] E. Wandeler and L. Thiele, “Interface-based design of real-time systems
with hierarchical scheduling,” in RTAS ’06: Proceedings of the 12th
IEEE Real-Time and Embedded Technology and Applications Sympo-
sium. Washington, DC, USA: IEEE Computer Society, 2006, pp. 243–
252.

[26] L. Sha, J. P. Lehoczky, and R. Rajkumar, “Solutions for some practical
problems in prioritized preemptive scheduling,” in IEEE Real-Time
Systems Symposium, 1986, pp. 181–191.

[27] L. Sha and J. B. Goodenough, “Real-time scheduling theory and ada,”
Computer, vol. 23, no. 4, pp. 53–62, 1990.

[28] A. Abel, B. Chang, and F. Pfenning, “Human-readable machine-
verifiable proofs for teaching constructive logic,” in PTP ’01: IJCAR
Workshop on Proof Transformations, Proof Presentations and Complex-
ity of Proofs, U. Egly, A. Fiedler, H. Horacek, and S. Schmitt, Eds.,
Siena, Italy, 2001.

[29] C. E. Brown, “Verifying and Invalidating Textbook Proofs using Scu-
nak,” in MKM ’06: Mathematical Knowledge Management, Wokingham,
England, 2006, pp. 110–123.

[30] D. McMath, M. Rozenfeld, and R. Sommer, “A Computer Environment
for Writing Ordinary Mathematical Proofs,” in LPAR ’01: Proceedings
of the Artificial Intelligence on Logic for Programming. London, UK:
Springer-Verlag, 2001, pp. 507–516.

[31] K. Panton, C. Matuszek, D. Lenat, D. Schneider, M. Witbrock, N. Siegel,
and B. Shepard, “Common Sense Reasoning – From Cyc to Intelligent
Assistant,” in Ambient Intelligence in Everyday Life, ser. LNAI, Y. Cai
and J. Abascal, Eds., vol. 3864. Springer, 2006, pp. 1–31.

[32] A. Wang, P. Basu, B. T. Loo, and O. Sokolsky, “Declarative network
verification,” in PADL, ser. Lecture Notes in Computer Science, A. Gill
and T. Swift, Eds., vol. 5418. Springer, 2009, pp. 61–75.

[33] M. Backes, C. Jacobi, and B. Pfitzmann, “Deriving cryptographically
sound implementations using composition and formally verified bisim-
ulation,” in Formal Methods Europe, ser. Lecture Notes in Computer
Science, vol. 2931. Springer-Verlag, 2002, pp. 310–329.

[34] M. Backes, C. Hritcu, and M. Maffei, “Automated verification of remote
electronic voting protocols in the applied pi-calculus,” in Proceedings
of 21st IEEE Computer Security Foundations Symposium (CSF), June
2008.

[35] E. M. Tadjouddine and F. Guerin, “Verifying dominant strategy equilib-
ria in auctions.” in CEEMAS, ser. Lecture Notes in Computer Science,
H.-D. Burkhard, G. Lindemann, R. Verbrugge, and L. Z. Varga, Eds.,
vol. 4696. Springer, 2007, pp. 288–297.

