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Abstract

Predictability � the ability to foretell that an implemen�
tation will not violate a set of speci�ed reliability and
timeliness requirements � is a crucial� highly desirable
property of responsive embedded systems� This paper
overviews a development methodology for responsive
systems� which enhances predictability by eliminat�
ing potential hazards resulting from physically�unsound
speci�cations� The backbone of our methodology is a
formalism that restricts expressiveness in a way that
allows the speci�cation of only reactive� spontaneous�
and causal computation� Unrealistic systems � pos�
sessing properties such as clairvoyance� caprice� in��
nite capacity� or perfect timing � cannot even be spec�
i�ed� We argue that this �ounce of prevention� at the
speci�cation level is likely to spare a lot of time and
energy in the development cycle of responsive systems
� not to mention the elimination of potential hazards
that would have gone� otherwise� unnoticed�

� Introduction

A computing system is embedded if it is a component of
a larger system whose primary purpose is to monitor
and control an environment� The leaping advances in
computing technologies that the last few decades have
witnessed have resulted in an explosion in the extent
and variety of such systems� This trend is expected to
continue in the future�

Usually� embedded systems are associated with
critical applications� in which human lives or expensive
machineries are at stake� Their missions are long�lived
and uninterruptible� making maintenance or recon�g�
uration di�cult� Examples include command and con�
trol systems� nuclear reactors� process�control plants�
robotics� avionics� switching circuits and telephony�
data�acquisition systems� and real�time databases� just
to name a few� The sustained demands of the environ�
ments in which such systems operate pose relatively
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rigid and urgent performance requirements� Often�
these requirements are stated as timing constraints on
their behaviors� Wirth ���� singled out this aspect
as the one aspect that di	erentiates real�time from
other sequential and parallel systems� This led to a
body of research on real�time computing� which encom�
passes issues of speci�cation techniques� validation and
prototyping� formal veri�cation� fault�tolerance� safety
analysis� programming languages� development tools�
scheduling� and operating systems��

The absence of a uni�ed suitable formal frame�
work that addresses the aforementioned issues severely
limits the usefulness of these studies� This situation
is further exacerbated considering the range of disci�
plines employed in developing the various components
of an embedded application� For example� in a sim�
ple sensori�motor robotic application �
��� algorithms
from various disciplines like low�level imaging� active
vision� tactile sensing� path planning� compliant mo�
tion control� and non�linear dynamics may be utilized
�
��� Not only are these disciplines di	erent in their ab�
stractions and programming styles� but also they di	er
in their computational requirements� which range from
single�board dedicated processors to massively parallel
general�purpose computers�

In this paper we propose CLEOPATRA�� a program�
ming environment that recognizes the unique require�
ments of responsive embedded systems� CLEOPATRA
features a C�like imperative syntax for the description
of computation� which makes it easier to incorporate
in applications already using C� It is event�driven� and
thus appropriate for embedded process control appli�
cations� In particular� rather than describing behav�
iors using control structures� it describes behaviors us�
ing time�constrained causal structures� CLEOPATRA
is object�oriented and compositional� thus advocat�
ing modularity and reusability� CLEOPATRA is se�
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mantically sound� its objects can be transformed� me�
chanically and unambiguously� into formal automata
for veri�cation purposes� Since 
�� an ancestor of
CLEOPATRA has been in use as a speci�cation and sim�
ulation language for embedded time�critical robotic
processes� Our experience con�rms CLEOPATRA�s suit�
ability as a vehicle for the speci�cation and validation
of many embedded and time�critical applications� In
particular� we used it to simulate and analyze asyn�
chronous digital circuits� sensori�motor behavior of au�
tonomous creatures� and intelligent controllers ��� �� ���
A compiler that allows the execution of CLEOPATRA
speci�cations has been developed ��� and is available
via FTP from cs�bu�edu��bestavros�cleopatra��

CLEOPATRA is based on the Time�constrained Re�
active Automata �TRA� formalism ��� ��� Using the
TRA model� an embedded system is viewed as a set
of automata �TRAs�� each representing an autonomous
system entity� TRAs are reactive in that they abide
by Lynch�s input enabling property �
��� they com�
municate by signaling events on their output chan�
nels and by reacting to events signaled on their input
channels� The behavior of a TRA is governed by time�
constrained causal relationships between computation�
triggering events� Using the TRA formalism� there is no
conceptual distinction between a system and a prop�
erty� both are speci�ed as formal objects� This re�
duces the veri�cation process to that of establishing
correspondences � preservation and implementation �
between such objects�

This paper is organized as follows� In Section
�� we overview the TRA model� We emphasize the
TRA operational semantics� which underlies the execu�
tion model of CLEOPATRA� In Section �� we describe
the CLEOPATRA speci�cation�programming language�
along with an example that illustrates our �ounce of
prevention� thesis� In Section �� we present a compiler
that allows the execution of CLEOPATRA speci�cations�
In Section �� we conclude with current and future re�
search directions�

� The TRA Model

The TRAmodel has evolved from our earlier work in ���
extending Lynch�s IOAmodel �
�� 
�� to suit embedded
and time�constrained computation�

��� Novelties

Previous studies in modeling real�time computing have
focussed on adding the notion of time without regard
to physical properties of the modeled systems� This
makes it possible to specify systems that do not abide
by principles like causality and spontaneity� Using the
TRA model� requirements that are physically impos�
sible to guarantee are not possible to express� This
preventative approach is likely to spare a lot of time
and energy in the development cycle �speci�cation� im�
plementation� and veri�cation� of responsive systems�

The TRA model deals not only with the notion
of time� but also with the notion of space� Events
occur at uniquely identi�able points in time as well
as in state space� Concurrent events are permitted
only if they a	ect disjoint state subspaces� The pay�
o	 for this dual treatment of space and time is mani�
fold� In particular� mappings between various levels of
abstractions for compilation and veri�cation purposes
become more robust as the formalism becomes more
structured�

The TRA model does not allow the speci�cation of
systems that are not reactive� A system is reactive if
it cannot block the occurrence of events not under its
control� This property is crucial for accurate and real�
istic modeling of embedded and real�time systems� A
su�cient condition for reactivity is the input enabling
property proposed in �
��� The TRA model is input en�
abled� It distinguishes clearly between environment�
controlled actions� which cannot be restricted or con�
strained� and locally�controlled actions� which can be
scheduled and disabled�

A non�deterministic system is causal if given two
inputs that are identical up to any point in time� there
exist outputs �for the respective inputs� that are also
identical up to the same point in time� The TRAmodel
enforces causality by requiring that any local action
be produced only as a result of an earlier cause� We
distinguish clearly between causality and dependency�
An event occurs as a result of exactly one earlier event
but may depend on many others as re�ected in the
state of the system� This spares our formalism from
dealing with clairvoyant and capricious behaviors �����

Spontaneity is a notion closely related to causal�
ity� A system is spontaneous if its output actions at
any given point in time t cannot depend on actions
occuring at or after time t� In particular� if an output
occurs simultaneously with �say� an input transition�
the same output could have been produced without
the simultaneous input transition ��
�� Simultaneity
is� thus� a mere coincidence� the output event could
have occurred spontaneously even if the input transi�
tion was delayed� The TRA model enforces spontaneity
by requiring that simultaneously occuring events be in�
dependent� time has to necessarily advance to observe
dependencies�

A computing system that maintains perfect tim�
ing information cannot be implemented� Nevertheless�
formal models �such as the Timed Finite Automata ���
or the Timed Input�Output Automata �
��� allow the
speci�cation of perfect clocks� The TRA model does
not provide for �or allow the speci�cation of� perfect
clocks� As a consequence� the only measure of time
available for system processes has to be relative to im�
perfect� locally�maintained clocks� This distinction be�
tween real time and perceived time is important when
dealing with embedded applications where time prop�
erties are stated with respect to real time� but have to
be preserved relying on perceived time�



��� Basic de�nitions

We adopt a continuous model of time similar to that
used in �
� 
��� We represent any point in time by a
nonnegative real t � �� Time intervals are de�ned by
specifying their end�points which are drawn from the
set of nonnegative rationals Q � �� A time interval
is viewed as a traditional set over nonnegative real
numbers� It can be an empty set� in which case it
is denoted by �� it can be a singleton set� in which
case it is denoted by the �t� t�� t � Q� or else it can be
an in�nite set� in which case it is denoted by �tl� tu��
�tl� tu�� �tl� tu�� or �tl� tu� � the right�closed� left�closed�
and open time intervals� respectively� where tl� tu � Q
and tl � tu� The set of all such in�nite time intervals
is denoted by D�

A real�time system is viewed as a set of interact�
ing mealy automata �TRAs�� which communicate with
each other through channels� A channel is an ab�
straction for an ideal unidirectional communication�
The information that a channel carries is called a sig�
nal� which consists of a sequence of events� An event
underscores the occurrence of an action at a speci�c
point in time� An action is a value associated with
a channel� For example� let North� South� East� and
West be the possible values that can be signaled on
some channel MOVE� MOVE�East� is� therefore� a possi�
ble action� The instantiation of MOVE�East� at time
t� denotes the event hMOVE�East� � t�i� The sequence
hMOVE�East� � t�ihMOVE�North� � t�ihMOVE�South� � t�i
� � �etc� constitutes a signal� A signal cannot con�
vey more than one event simultaneously� That is� for
a signal ha� � t�iha� � t�i � � � hak � tki � � � we require that
tk � tk��� k � ��

At any point in time� a TRA is in a given state�
The set of all such possible states de�nes the TRA�s
state space� The state of a TRA is visible and can only
be changed by local computations� Computations �and
thus state transitions� are triggered by actions and
might be required to meet speci�c timing constraints�

��� TRA Objects

De�nition � A Time�constrained Reactive Automa�
ton is a sextuple ��� ��������� �� where

� �� the TRA signature� is the set of all the TRA chan�
nels� It is partitioned into three disjoint sets of
input� output� and internal channels� We denote
these by �in� �out� and �int� respectively� The set
consisting of both input and output channels is the
set of external channels ��ext�� These are the only
channels visible from outside the TRA� The set con�
sisting of both output and internal channels is the
set of local channels ��loc�� These are the locally
controlled channels of the TRA�

� �� � �in is the start channel�
� �� the signaling range function� maps each channel
in � to a possibly in�nite set of values that can be

signaled as actions on that channel� Action sets
of di	erent channels are disjoint� The set of all
the actions of a TRA is given by ����� The set of
input� output� internal� external� and local actions
are similarly given by ���in�� ���out�� ���int��
���ext�� and ���loc�� respectively�

� � is a possibly in�nite set of states of the TRA�
The set � can be expressed as the cross product of
a �nite number of subspaces � ! "��"��� � ��"p�
where p � 
 denotes the dimensionality of the state
space�

� � � �������� is a set of possible computational
steps of the TRA� TRAs are input enabled which
means that for every � � ���in�� and for every
� � �� there exists at least one step ��� �� ��� � ��
for some �� � �� Thus� � de�nes a total multi�
function � � �� ���in�� ��

�  � ���loc�D��
� is a set of time�constrained

causal relationships �or simply time constraints� of
the TRA� A time constraint �i �  is a quadruple
��i� ��

i� �i��i� whose interpretation is that
 if an
action is signaled at time t � � on the channel �i�
then a corresponding action must be �red on the
channel ��

i at time t� 	 t� where t� 	 t � �i� pro�
vided that the TRA does not enter any of the states
in �i for the open interval �t� t���� The channel
�i � � is called the trigger of the time constraint�
whereas ��

i � �loc is called the constrained channel�
�i � � de�nes the set of states that disable the
time constraint� once triggered a time constraint
becomes and remains active until satis�ed or dis�
abled� A time constraint is satis�ed by the �ring of
an action on the channel �i within the time bounds
imposed by the interval �i� it is disabled if the TRA
enters in one of the disabling states in �i before it
is satis�ed�

As an example of a TRA speci�cation� consider the
the up�down counter whose state diagram is shown
in Figure 
� The counter accepts commands issued
on the input channel cmd to count up or down and
signals the value of the current count �state� on the
output channel cnt� The counter starts its operation
once an action is �red on the init channel� The value
of the init action determines the starting state of the
counter� The counter is constrained to produce a count
every at least 
� and at most ��
 units of time� once it
starts execution� Figure 
 shows the TRA�speci�cation
of such a counter�

The �rst three components of a TRA sextuple can
be viewed as de�ning an interface between the TRA and
its environment� In particular� they identify its exter�
nal signature �in ! finit� cmdg��out ! fcntg� the
identity of the start channel �� ! init� along with
the signaling range of all the channels in �ext� The
last three components of a TRA sextuple identify its

�Notice that this condition does not necessitate the existence
of a computational step ��� ��� ��� � � for each � � ���i	 where
�� � ����i� and �� � �	 since the speci�cation of the TRA might
avoid being in � when ��i is scheduled to �re�



behavior� The state space de�nes the spatial struc�
ture of the computation� For the counter of Figure 
�
this structure is unidimensionally spanned by �� The
set of computational steps de�nes the e	ect of events
on the state of the TRA� The set of time�constrained
causalities de�nes the rules governing the scheduling
of the TRA�s local events� For the counter of Figure 
�
there are two such rules�

��� Space and Time aspects of TRAs

The behavior of a TRA is generally non�deterministic�
Two sources of non�determinism can be singled out�
In a given state there may be a number of choices
concerning the channel and action to be �red� Each
one of these choices results in a di	erent computational
step� This gives rise to control non�determinism� which
presents a spacial uncertainty because di	erent com�
putational steps may a	ect di	erent parts of the TRA
state space� The TRA timing constraints specify lower
and upper bounds on the delay between causes and
e	ects� thus leaving the TRA with a potentially in�nite
number of choices concerning the exact delay to be
exhibited� This gives rise to timing nondeterminism�
Considered separately� control and timing nondeter�
minisms do not violate any physical principles� How�
ever� a combination thereof deserves a closer attention
because it is related to the notions of space and time�

Two computational steps con�ict if both of them
introduce changes to at least one of the subspaces of
the TRA�s state space� This is formally de�ned below�

De�nition � Two steps ��i� �i� ��i�� ��j� �j� �
�
j� � �

con�ict if and only if for some dimension k of ��
�i�k� 
! ��i�k� and �j �k� 
! ��j �k�� where 
 � k � n�

It is important to realize that the con�ict rela�
tionship depends not only on a TRA�s computational
behavior� but also on the structure of its state space�
In particular� two TRAs with isomorphic computational
steps could have very di	erent con�ict relationships
depending on their state space characterizations� The
notion of con�icting computational steps can be eas�
ily extended to actions and channels� This is formally
de�ned below�

De�nition � Two actions �i and �j con�ict if there
exist at least two con�icting computational steps
��i� �i� ��i�� ��j � �j� �

�
j� � �� Two channels �i and �j

con�ict if at least one action from ���i� and one ac�
tion from ���j� con�ict�

The con�ict relationship depicts computational
dependencies that emerge due to sharing information
about state� For two local actions to con�ict� their
respective channels must be under the control of a sin�
gle component of the TRA� The transitive closure of
the con�ict relationship� therefore� de�nes a partition
on the locally�controlled channels of a given TRA�

De�nition � Two local channels �i and �j belongs to
the same component �class� if they con�ict�

The partition into classes of the TRA�s locally�
controlled channels captures some of the structure
of the system the automaton is modeling or the set
of requirements it is specifying� In particular� each
class of channels represents the set of channels locally�
controlled by some system component� This partition�
ing retains the basic control structure of the system�s
primitive components and provides a concrete notion
of spatial locality�

To preserve the non�blocking �input�enabled� na�
ture of the TRA model� it is necessary to insure that
input actions on di	erent channels do not con�ict� A
TRA is improper if at least two of its input channels
con�ict� otherwise it is proper� For the remainder of
this paper� we assume that any TRA is proper�

The notion of system components we are present�
ing here is novel and entirely di	erent from that used
in untimed models to express fairness �
�� by requir�
ing that� in an in�nite execution� each of the system�s
components gets in�nitely many chances to perform
its locally�controlled actions� In timed systems� the
major concern is safe and not necessarily fair execu�
tions ����� Even if required� fairness can be enforced
by treating it as a safety property� liveness properties
can be handled in in�nite execution by requiring time
to grow unboundedly��� This led to the abandoning of
the idea of partitioning a system into components in
our earlier model proposed in ���� Lynch and Vaan�
drager �
� followed suit in their recent modi�cation of
the model proposed in ����� In the TRA model we use
system components to represent what can be termed
as spatial locality� Di	erent actions can be signaled
at the same �time� only if they are not signaled from
the same �place�� they can be produced at the same
�place� only if they do not occur at the same �time��

��� TRA Executions and Behaviors

In standard automata theory� there is no distinction
between choosing a transition and �ring it� they consti�
tute a unique� instantaneous� and atomic activity� In
the TRA model a distinction is made whereby choosing
�scheduling� a transition and executing �committing�
that transition are separate activities� They are dis�
tinct in that they are separated in time� In fact� a
scheduled transition does not have to be committed�
it can be abandoned due to unforseeable conditions�
The distinction between the two activities is also pro�
nounced in the way the TRA model di	erentiates be�
tween input and local events� Input events are not
under the TRA�s control� they cannot be blocked or de�
layed� Local events are under the TRA�s control� they
are time constrained� and could be disabled�

Consider the time constraint �i ! ��i� ��
i� �i��i� �

 � which identi�es a time�constrained causal relation�

�Such executions were called admissible in 
���



ship between the events signaled on �i and those sig�
naled on ��

i� The occurrence of a trigger on �i results
in an intention to perform an action on ��

i within the
time frame imposed by �i� The commitment �aban�
donment� of such an intention in due time is condi�
tional on the states assumed by the TRA from when the
intention is posted until it is committed �abandoned��
At any point in time� a TRA might have several out�
standing intentions� In particular� the occurrence of
a single event might generate a number of intentions�
each dictated by a di	erent time constraint� Di	erent
outstanding intentions are not necessarily imposed by
di	erent time constraints� In particular� the repeated
occurrence of a triggering event might generate a num�
ber of outstanding intentions� all of which are imposed
by the same time constraint�

The state of a TRA at an arbitrary point in time is
not su�cient to construct its future behavior� In addi�
tion to the state� the intervals of time where sched�
uled transitions might �re �due to earlier triggers�
have to be recorded� For a given TRA� we de�ne the
intention vector I ! 
# to be a vector of r sets of
intentions� where r ! j j� Each entry in I is as�
sociated with one of the TRA�s time constraints� If
�i ! ��i� ��

i� �i��i� �  is one of the TRA�s time con�
straints� then I��i� ! f�i�� �i�� � � � � �ik� � � ��img denotes
a set of m time intervals during which actions on the
channel ��

i are intended to be �red as a result of ear�
lier triggers on �i� Each one of the intervals in #i can
be thought of as an independent activation of the time
constraint �i� An empty intentions set� I��i� ! �� indi�
cates the absence of any activations of �i� The empty
intention vector� I�� consists of r such empty sets�

De�nition � We de�ne the status of a TRA at any
point in time t � � to be the tuple ��� I�� where � and
I are the TRAs state and intention vector at time t�
respectively�

A TRA changes its status only as a response to the
occurrence of an event �input or local�� In other words�
the change in a TRA�s status is necessarily a causal reac�
tion to an input event or to an earlier triggering event�
Five conditions � namely� legality� spontaneity� safety�
causality� and consistency � have to be met for a sta�
tus succession to occur� These are formally speci�ed
below�

De�nition � Assume that the status ��� I� of a TRA
was entered at time t� Furthermore� assume that at a
later time t� 	 t� a set of simultaneous actions �� �
������ �� � ������ � � � � �m � ���m� were �red� where
�j � �� � � j � m� As a result� the TRA will assume a
new status ���� I��� where I� ! �I � I�enabled�	 �I

�
�red �

I�disabled��

The status ���� I �� is called a valid successor of the sta�
tus ��� I� due to the occurrence of the set of simul�
taneous events h��� ��� � � � � �m � t�i� if and only if the
following conditions hold


�� Spontaneity

The channels ��� ��� � � � � �m do not con�ict� they
belong to di	erent TRA components�

�� Legality

There exists some sequence of transitions
��� ��� ���� ��� ��� ���� � � � ��� �m� �m� � �� such that
�m ! ���

� Safety

For every intention �ik � I��i�� t�� � �ik for some
t�� 	 t�� t�� � �� where �i �  �

�� Causality

For all �i � �loc� the following conditions
hold
a� If �i 
! �j for all 
 � j � m then for every

�k ! ��k� �
�
k� �k��k� �  for which ��

k ! �i�
I��red��k� ! ��

b� Otherwise� let  i �  be the set of time con�
straints with �i as the constrained channel�
then there must exist exactly one time con�
straint �r �  i such that

� I��red��r� ! f�rkg� where �rk � I��r� and
t� � �rk� and
� I��red��k� ! �� where �k �  i and �k 
! �r �

�� Consistency

For every time constraint �k ! ��k� �

�
k� �k��k� �

 � the following conditions hold
a� If �� � �k� then
� I�disabled ��k� ! I��k� and
� I�enabled��k� ! ��

b� Otherwise
� I�disabled ��k� ! �� and
� If �k ! �j for some 
 � j � m� then
I�enabled��k� ! f�t� $ �i�g� else I �enabled��k� ! ��

In the above de�nition� the spontaneity condition al�
lows the occurrence of simultaneous events only if they
do not con�ict� This guarantees that the transition
from � to �� is independent of the ordering of con�
current computational steps� The legality condition
ensures that the state change from � to �� is the result
of de�ned computational steps� The safety condition
guarantees that no active time constraint expires� In
other words� outstanding intentions are either com�
mitted or abandoned in due time� The causality con�
dition necessitates that local events be causal� they
are signaled only if intended due to an earlier trigger�
Thus� the causality condition guarantees that there is
exactly one committed intention per local event� In
other words� every local event satis�es exactly one in�
tention� The consistency condition requires that the
intentions in I continue to exist in I� unless otherwise
dictated by the occurrence of the set of simultaneous
events h�� � t

�ih�� � t�i � � � h�m � t�i�

We use the notation ��� I� h���������m �t�i
	� ���� I�� to

denote the direct status succession from ��� I� to ���� I��
due to the simultaneous �ring of h�� � t

�i� h�� � t
�i� � � ��

h�m � t�i� Also� we use ��� I� �
	� ���� I�� to denote the

status succession from ��� I� to ���� I�� due to a number
of direct status successions�



A TRA is said to have reached a stable status �%�� %I��

if all entries of the intention vector are empty �%I ! I���
A TRA remains in a stable status until excited by an
input event� This follows directly from the causality
requirement for a status succession�

To start executing� a TRA ��� ��������� � is put
in a stable initial status ���� I��� where I� ! I� and
�� � �� The execution is initiated at time t� with the
�ring of an action �� on the start channel ��� where
�� � ������ An execution e of a TRA is a possibly in�
�nite string of alternating statuses and events� which
starts with an initial status followed by an initiating
event� and which contains an in�nite number of sta�
tus successions �in�nite execution�� or terminates in a
stable status ��nite execution��

We follow an approach similar to that adopted
in �
�� by de�ning � to be a behavior of a TRA A�
if it consists of all the external events appearing in
some execution e of A� We denote the set of all the
possible behaviors of a TRA A by behs�A�� Obviously�
behs�A� describes all the possible interactions that the
TRA Amight be engaged in� and� therefore� constitutes
a complete speci�cation of the system that A models�

A TRA A is said to implement another TRA B if ev�
ery behavior of A is a behavior of B� In other words�
all of A�s behaviors �the implementation� are possible
behaviors of B �the speci�cation�� The reverse� how�
ever� is not true� There might exist behaviors of B
that cannot be generated by A� The notion of a TRA
implementing another is used mainly in veri�cation�

��� TRA Composition

A basic aspect of the TRA model is its capability to
model a complex system by operating on simpler sys�
tem components� In this section we examine such an
operation� namely composition� Other operations �for
example hiding and renaming� were presented in ����

The composition of a countable collection of com�
patible TRAs� fAi � i � Ig� is a new TRA A !
A� � A� � � � ��Ai � � � � ! �i�IAi� The execution of
A involves the execution of all its components Ai�I �
each starting from an initial status and observing every
external event signaled by either the environment �in�
put� or by any TRA in the collection fAi � i � Ig� The
compatibility condition for composition insures that�
for each channel in the composition� there is at most
one writer� a �nite number of readers� and that the sig�
naling ranges of readers and writers are compatible�

The input signature of the composed TRA consists
of those channels that are inputs to one or more of
the component TRAs� and which are not outputs of
any of the component TRAs� The output signature of
the composed TRA consists of all the outputs of all the
component TRAs� Similarily� the internal signature of
the composed TRA consists of all the internal channels
of all the component TRAs� The start channel of the
composed TRA is the start channel of one or more of

its component TRAs�	 The signaling range function
of the composed TRA is de�ned so as to preserve its
input�enabled property� In particular� the signaling
range of an input channel consists of only those actions
that can accepted by all readers of that channel� A
computational step of the composed TRA is necessarily
a step of one of its components� Similarily the time�
constrained causal relationships of the composed TRA
are exactly those of the component TRAs�

In ���� the formal construction of the sextuple rep�
resentation of a composition is given� Also� the rela�
tionships between the behaviors and spatial properties
of the composed TRA and those of its constituent TRAs
are established� In particular� we prove that the sets of
proper� spontaneous� and causal TRAs are closed under
composition�

The TRA composition operation is more general
than those reported in �
�� ��� �� in that it allows the
speci�cation of both parallel and sequential composi�
tion� In particular� the introduction of the start chan�
nel permits the execution of two TRAs to be concurrent
if they share the same start channel� or to be serialized
if the start channel of one �child� is an output of the
other �parent��

� CLEOPATRA Speci�cations

In CLEOPATRA� systems are speci�ed as interconnec�
tions of TRA objects� Each TRA object has a set of
state variables and a set of channels� Time�constrained
causal relationships between events occuring on the
di	erent channels� and the computations �state tran�
sitions� that they trigger� are speci�ed using Time�
constrained Event�driven Transactions �TETs�� The
behavior of a TRA object is described using TETs�
TRA objects can be composed to specify more complex
TRAs�

The correspondence between CLEOPATRA and the
TRA formalism is straightforward� Every object in
CLEOPATRA corresponds to a TRA sextuple� In ���� the
construction of a TRA sextuple� given a CLEOPATRA
object� is detailed�

��� Classes and Objects

A TRA object speci�cation in CLEOPATRA consists of
two components� a header and a body� An object�s
header speci�es its name� the parameters needed for
its instantiation� and its signature� An object�s body
speci�es its behavior� In its simplest form� this entails
the speci�cation of the TRA�s state space and its poten�
tially time�constrained set of reactions to the di	erent
events visible to it� More complex behaviors include
�among others� the speci�cation of� internal channels�
initialization code� and interconnection of local �com�
posed� objects� Figure � shows a BNF�like description
of a TRA object in CLEOPATRA�

�Without loss of generality	 we assume that TRA to be A��
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�init � �in is the start channel�
���init� � Z	 ��cmd� � fUp�Downg	 and ��cnt� � Z�
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Figure 
� TRA�speci�cation of up�down counter�

�tra�object� �� �tra�header� ��	 �tra�body� �
	
�tra�header� �� �TRA�class	 �tra�name� ���	 �tra�params�spec� ��	
 �signature�
�tra�params�spec� �� ��type� �param�id� ��	 �tra�params�spec�


�signature� �� ��ch�list�spec�
 ���	 ��ch�list�spec�

�ch�list�spec� �� �ch�id� � �type� � ���	 �ch�list�spec�

�type� �� �int	 � �double	 � �bool	 � ���
�tra�body� �� ��declarations�
 ��init�
 ��transactions�

�declarations� �� ��state�
 ��internal�
 ��included�

�state� �� �state�	 �state�var�def�
�state�var�def� �� �type� �var�list�def� �	 ��statevar�def�

�var�list�def� �� �var�id� ���	 �constant�exp�
 ���	 �var�list�def�

�internal� �� �internal�	 �signature�
�included� �� �included�	 �included�objects�
�included�objects� �� �tra�instantiation� �	 ��included�objects�

�tra�instantiation� �� �tra�name� ���	 �actual�param�list� ��	
 �ext�binding�
�actual�param�list� �� �constant�exp� ���	 �actual�param�list�

�ext�binding� �� ��ch�list�
 ���	 ��ch�list�

�ch�list� �� �ch�id� ���	 �ch�list�

�init� �� �code�
�transactions� �� ��xact� ��transactions�


�xact� �� �xact�header� ��	 �xact�body�
�xact�header� �� ��trigger�list�
 ���	 �out�sig�spec�
�trigger�list� �� �in�sig�spec� ���	 �trigger�list�

�in�sig�spec� �� �ch�id� ��	 ��var�id�
 ��	
�out�sig�spec� �� �ch�id� ��	 ��exp�
 ��	
�xact�body� �� �act� � ��	 �acts� �
	
�acts� �� �act� ��acts�

�act� �� �computation� � ��condframe�
 �fire�acts� � ��timeframe�
 �fire�acts�
�computation� �� �commit	 ��	 �code� �
	 � �do	 ��	 �code� �
	
�condframe� �� �unless	 ��	�cond���	 � �while	 ��	�cond���	
�timeframe� �� �closed�timeframe� � �open�timeframe�
�closed�timeframe� �� �within	 ��	�constant�exp���	�constant�exp���	
�open�timeframe� �� �before	 �constant�exp� � �after	 �constant�exp�

Figure �� Partial Syntax of a TRA speci�cation in CLEOPATRA



In CLEOPATRA� TRAs are de�ned in classes� For
example� Figure � shows the CLEOPATRA speci�cation
of the class of integrators that use trapezoidal approx�
imation�

TRA�class integrate�double TICK� TICK�ERROR�
in�double� �� out�double�

�
state�
double x� 	 �� x
 	 �� y 	 ��
act�
in�x
� �� �
�

init���out�� �� out�y��
within �TICK�TICK�ERRORTICK�TICK�ERROR�
commit � y 	 y�TICK��x��x
���� x� 	 x
� �

�

Figure �� Integration using the trapezoidal rule�

TRA classes are parametrized� For instance� the
speci�cation of integrate given in Figure � includes
the parameters TICK� and TICK ERROR� which have to
be speci�ed before instantiating an object from that
class�

The header of a TRA class determines its external
signature and signaling range function� For example�
any TRA from the class integrate speci�ed in Figure �
has a signature consisting of an input channel in and
an output channel out� Both in and out carry ac�
tions whose values are drawn from the set of reals� In
CLEOPATRA� the start channel of any given TRA�class is
called init� Start channels do not have to be explicitly
included in the header of a TRA�class� For example� in
the de�nition of the integrate TRA�class given in Fig�
ure �� there is no mention of any init channels in the
external signature speci�ed in the header� yet� init is
used later in the body of integrate�

The body of a TRA class determines the behavior of
objects from that class� Such a behavior can be either
basic or composite� The description of a basic behavior
involves the speci�cation of a state space in the state�
section� the speci�cation of an initialization of that
space in the init� section� and the speci�cation of a
set of Time�constrained Event�driven Transactions in
the act� section� The behavior of an object belonging
to the TRA�class integrate shown in Figure � is an
example of a basic behavior� Composite behaviors� on
the other hand� are speci�ed by composing previously
de�ned� simpler TRA�classes together in the include�
section� For example� in Figure �� the class ramp is
de�ned by composing the integrate and constant


classes together�

�The behavior of an object from the constant class is to
signal the value VAL on its only output channel out every TICK

� TICK ERROR units of time�

TRA�class ramp�� �� y�double�
�
internal�
x�double� �� �

include�
constant �� x�� �
integrate x�� �� y�� �

�

Figure �� CLEOPATRA speci�cation of a ramp gener�
ator�

��� TET Speci�cation

In CLEOPATRA� time�constrained causal relationships
between events on di	erent channels of a TRA�class�
and the computations �state transitions� that they
trigger� are speci�ed using Time�constrained Event�
driven Transactions �TET�� A TET describes the re�
action of a TRA to a subset of events� Such a reaction
might involve responding to triggers and�or �ring ac�
tion�s�� Figure � explains the relation between the
triggering and �ring of actions using TETs�

State

Disable?

Triggering
Channels

Constrained
     Channels

unless

Trigger Fire

within[Tmin~Tmax]

Figure �� Time�constrained Event�driven Transaction�

The description of a TET consists of two parts� a
header and a body� The header of a TET speci�es a set
of triggering channels �trigger section� and a controlled
channel ��re section�� The trigger section speci�es the
e	ect of the triggering actions on the state of the TRA�
It speci�es at most one state variable �per triggering
channel� where the value of a trigger on that channel
is to be recorded� A TET with no triggering section is
triggered every time an action is signaled on any chan�
nel of the TRA� its trigger set is considered to be the
same as the TRA�s signature� The �re section speci�es
the action value to be signaled on the controlled chan�
nel as a result of �ring the TET� An absent expression
means that a random value from the signaling range of
the controlled channel is to be signaled� The body of a
TET describes possible reactions to the TET triggers�
Each reaction is associated with a disabling condition�
a time constraint� and a state transformation schema�



The �rst TET of the integrate class shown in
Figure � is an example of a transaction with only a
trigger section� Every time an action is signaled on
the input channel in� its value is stored in the state
variable x�� The second TET of the integrate class is
an example of a transaction with both a trigger section
and a �re section� Every time an action is signaled
on one of the triggering channels �init or out� an
output action is �red on out after a delay of TICK �
TICK ERROR units of time elapses�

Each reaction in the body of a TET is associated
with three pieces of information� A disabling condi�
tion� a time constraint� and a state transformation
schema� The disabling condition �unless clause� is
a boolean expression �predicate� on the state of the
TRA�� In order to be committed� a reaction�s disabling
condition has to remain false from when the reaction
is triggered until it commits� In other words� an in�
tended reaction is aborted if at any point in time after
its triggering �scheduling�� the disabling condition be�
comes true� The absence of a disabling condition in
a reaction implies that� once scheduled� it cannot be
disabled� The time constraint �within clause�� deter�
mines a lower and upper bound for the real�time de�
lay between scheduling a reaction and committing it�
Only constant expressions are allowed to be used in the
speci�cation of time bounds� Open� closed� and semi�
closed time intervals can be used provided they specify
an interval of time from the set D�� The absence of a
time constraint from a TET speci�cation implies that
the causal relationship between the trigger and its ef�
fect is unconstrained in time� A lower bound of � and
an upper bound of � is assumed in such cases� The
state transformation schema �commit clause� speci�es
a method for computing the next state of the TRA once
a reaction is committed� We adopt a C�like syntax
for the speci�cation of TET methods� Statements in
a TET method are executed sequentially� The state
transition caused by the execution of a TET method
is assumed to be atomic and instantaneous� An absent
commit clause implies that committing the reaction
does not cause any state changes�

��� An Example

Figure � shows the speci�cation of a �nite FIFO ele�
ment in CLEOPATRA� Values fed into the FIFO element
are delayed for some amount of time before being pro�
duced as outputs�

The header of the fifo TRA�class identi�es the
channel in as input� and the channels out� ack and
overflow as outputs� Although not explicitly speci�
�ed as such� the channel init �the start channel� is
assumed to be an input channel� The signaling range

�No side e�ects are permitted in the evaluation of this
condition�

	Current CLEOPATRA processors accept only dense inter�
vals of three forms� ��� Tu�	 �Tl���	 or 
Tl� Tu�	 where Tu � Tl �
�� These are introduced using the before	 after	 and within

clauses	 respectively�

TRA�class fifo�int N�
in�float� �� out�float�� overflow��� ack��

�
state�
float y�N��
int i� j�
bool f�
act�
init�� �� ack���
before DLY�MIN
commit �
i 	 �� j 	 �� f 	 FALSE�

�
in�y�i�� �� ack���
before DLY�MIN
commit �
i 	 �i�
��N � if �i		j� f 	 TRUE �

�
in�� �� out�y�j���
unless �f�
within �DLY�MINDLY�MAX�
commit �
j 	 �j�
��N �

�
in�� �� overflow���
unless ��f�
within �DLY�MINDLY�MAX�
�

�

Figure �� CLEOPATRA speci�cation of a �nite FIFO
delay element�

for channels in and out is the set of �oating point num�
bers� whereas the signaling range for channels ack and
overflow consists of only one value� The body of the
fifo TRA�class contains two sections� In the state�
section� the state space of a fifo object is described
by four state variables� a vector y�� of N �oating point
values� two integer values i and j� and a boolean value
f� In the act� section� the behavior of a fifo object
is described by four TETs� each of which underscores
a causal relationship between the events triggering its
execution and those resulting from its execution�

The �rst TET in the body of the FIFO establishes
a causal relationship between events signaled on init
and and those signaled on ack� In particular� �ring
an action on init �the trigger� causes the �ring of an
action on ack �the result� after a a delay of at most
DLY MIN� The second TET establishes a similar causal
relationship between events signaled on in and ack�
The third TET establishes a causal relationship be�
tween events signaled on in and out� In particular�
�ring an action action on in causes the �ring of an
action on out after a delay of at least DLY MIN and
at most DLY MAX elapses� provided that the FIFO did
not over�ow as of the last initialization� The causal
relationship that the fourth TET establishes can be
explained similarly�


In other words	 between input and output transitions�



Each TET in a TRA�class speci�es up to two pos�
sible state transitions� Consider� for example� the sec�
ond TET in the FIFO speci�cation given in Figure ��
In response to a trigger on in� the value of the trig�
gering signal is stored in the state variable y�i�� thus
resulting in a possible state change� Notice that this
transition cannot be blocked or delayed� it is an in�
put transition� The second state transition� an output
transition� occurs with the �ring of an action on ack�
resulting in the adjustment of the values of the state
variables i and f� Notice that the value of the ac�
tion signaled on a local �output or internal� channel
does not re�ect the state change associated with it�
For instance� in the fourth TET of Figure �� the value
signaled on the out channel� namely y�j�� does not
re�ect the changes introduced in the commit clause�
namely advancing the pointer j�

��� Case and Point�

It is important to realize that fifo objects will be�
have as expected only if inputs from the environment
meet certain conditions� In particular� the value of
the index i is not incremented as a result of an input
on the channel in until at least DLY MIN units of time
elapse following the signaling of that input� Thus� an
erroneous behavior will result if two or more events
are signaled on the channel in in a duration of time
shorter than DLY MIN� To avoid such malignant behav�
iors� the environment must wait for an acknowledg�
ment ack����� or else wait for at least DLY MIN before
issuing a new input� Such safety conditions can be
veri�ed using TRA�based veri�cation techniques ����

We argue that any �nite implementation of a
discrete�event delay element must have a �nite capac�
ity� which must not be exceeded for a correct behavior�
Using CLEOPATRA� it is impossible to specify a fifo
class that behaves correctly independent of its environ�
ment�s behavior� This is a direct result of our abidance
by the causality and spontaneity principles� which are
preserved by the TRA model� As we mentioned at the
outset of this paper� it is our thesis that preventing
the speci�cation of physically�impossible objects is de�
sired� At the least it spares system developers from
trying to implement the impossible�

An indirect result of CLEOPATRA�s limited expres�
sivity is to force system speci�cations to be spelled out
at a �lower� level� For example� in CLEOPATRA one
cannot specify a clock that does not drift� This implies
that the consequences of this drift could not be sim�
ply discounted as �implementation details�� Lowering
the level at which speci�cations are expressed advo�
cates a functional speci�cation approach� In contrast
to the black box approach� the operational approach
calls for problem speci�cation by formulating a system
to solve it� The formulated system is given in terms of
implementation�independent structures that� once im�
plemented� would generate the required behavior ����

��An ack�� event is signaled after the input is processed�

� CLEOPATRA Simulation

We have developed a compiler that transforms
CLEOPATRA speci�cations into an event�driven sim�
ulator for validation purposes� We have used the
CLEOPATRA compiler to simulate a variety of systems�
In particular� we used it extensively to specify and
analyze sensori�motor robotics applications ��� and to
simulate complex behaviors of autonomous creatures
���� Figure � shows the di	erent stages involved in the
compilation and execution of speci�cations written in
CLEOPATRA�
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Figure �� Compilation & simulation of CLEOPATRA�

At the heart of this process is a one�pass pre�
processor� written in C� which parses user�de�ned
CLEOPATRA speci�cations� augmented with system�
de�ned TRA classes��� and generates an equivalent C
simulator� This C simulator consists of three compo�
nents� The �rst is a header ��h� �le� which includes
type de�nitions for the state space of the various TRA
classes in the speci�cation� The second is a schema
��s� �le� which includes de�nitions for the state tran�
sition functions of the various TETs� The third is the
code ��c� �le� which includes the simulator initializa�
tion and control structure along with the instantia�
tion code for the various TRA classes� including main�
The �nal step of this process involves the invocation
of the C compiler to produce an executable simula�
tor� Figure 
� illustrates a typical session� in which
the CLEOPATRA compiler ccleo is invoked to process
the �le process�ctrl�cleo containing the speci�ca�
tion of the stand�alone process control system shown
in Figures � and �

��System�de�nedTRA classes are mainly for i�o and debugging
purposes�



In CLEOPATRA� any TRA�class with no input chan�
nels represents a stand�alone �closed� system whose
behavior is independent from the outside world� it is
a world of its own� One such TRA�class� namely main�
is singled out by CLEOPATRA to represent the entire
system being speci�ed� For embedded systems� a typ�
ical main TRA�class will simply be the composition of
a programmed system� representing the control sys�
tem� and an external interface� representing the envi�
ronment� For example� the main TRA�class shown in
Figure  represents the CLEOPATRA speci�cation of
the closed process control system shown in Figure ��
The execution of a CLEOPATRA stand�alone system is
started by instantiating an object from the TRA�class
main at time�� � and� thereafter� committing only the
legal transitions dictated by the system speci�cation
and the semantics of the TRA model� Figure 

 shows
the values signaled on the x and z channels over time�

A library of system�de�ned TRA�classes is avail�
able for debugging and performing I�O in CLEOPATRA�
For example� in the speci�cation of the TRA�class
main given in Figure � the TRA�class fmonitor is
used to record the action values signaled on the x
and z channels in �les x�dat and z�dat respectively�
System�de�ned TRA�classes are themselves speci�ed in
CLEOPATRA� They are di	erent from user�de�ned TRA�
classes in that they have access to global information
known only to the simulator� For instance� fmonitor
objects have access to the simulator�s perfect clock�
clk� whereas user�de�ned TRA�classes have to main�
tain their own locally perceived clocks� if needed�

C functions can be called from within a
CLEOPATRA speci�cation� To maintain the semantics
of the TRA formalism� however� only functions with no
side e	ects should be used� In other words� C function
should be restricted to act as pure operations on the
state variables of an object� It should not reach be�
yond the boundaries of the state space of that object�
Also� it should not alter the structure of the state space
of the object in any way� An example of the use of a
C�function is illustrated in the description of the user
TRA�class of Figure  where the function random�� is
called periodically to generate a random set value�

Most of the C preprocessor utilities are available
in CLEOPATRA� This includes simple and parameter�
ized macro de�nition and invocation� constant de��
nition� and nested �le inclusion��� For example� in
the CLEOPATRA speci�cation of the stand�alone pro�
cess control system shown in Figure � system�de�ned
TRA classes are included using the �include directive�
and constants are de�ned using the �define directive�

The simulator has proven to be quite e�cient�
This is due primarily to the causal and compositional
nature of the TRA model� which tends to localize the
computation triggered by the occurrence of an event

��The start time of the simulation can be explicitly speci�ed�
��Current CLEOPATRA processors do not admit conditional

compilation�

within the boundaries of few TETs� The number of
simulated events per second �seps� depends on a num�
ber of factors� the average channel fan�out� the average
number of TETs per TRA� and the complexity of the
event�driven computation� It does not depend� how�
ever� on the size of the state space or on the amount
of TRA nesting� For an application with a fan�out of

 and an average of ��� TETs per TRA� and an O�
�
event�driven computational complexity� the compiled
CLEOPATRA speci�cations executed at a rate of almost

���� seps��� The performance of a simulator for the
same application hand coded directly in C performed
only slightly better� Namely� it executed at a rate of
almost ������ seps� The performance of the simulator
degrades considerably when extensive I�O and tracing
operations are performed��	

� Conclusion

Predictability can be enhanced in a variety of ways� It
can be enhanced by restricting expressiveness as was
done in Real�Time Euclid �
��� by sacri�cing accuracy
as was done in the Flex system �

�� or by abstracting
segmented resources as was done in the Spring kernel
����� The TRA�development methodology we are ad�
vocating here introduces one more way of improving
predictability� that of allowing only physically�sound
speci�cations� Pursuing the ideas presented in this pa�
per will undoubtedly provide us with one more handle
in our persistent quest for predictable systems� An in�
teresting question to be addressed in the future would
be whether this and other handles can be combined in
any useful way to guarantee predictability�

Our experience with the TRA development
methodology in the design� simulation� and analy�
sis of asynchronous digital circuits� sensori�motor au�
tonomous systems� and intelligent controllers con�rms
its suitability for the speci�cation� veri�cation� and
validation of many embedded and time�critical appli�
cations� Its usefulness in the implementation of such
systems� although promising� is yet to be established�

A fruitful direction for future research would
be to automate the process of transforming TRA�
based physically�sound time�critical speci�cations into
provably�correct implementations given appropriate
resources� Such research will have two complementary
� experimental and theoretical � components� The
experimental component would involve the develop�
ment of a compiler to transform CLEOPATRA speci�
�cations into predictable real�time programs� given a
dedicated computing platform� The theoretical com�
ponent would aim at devising e�cient veri�cation al�
gorithms that can be automated and incorporated in
the CLEOPATRA compiler�

��All simulations were performed on a SPARCstation
SLCTMworkstation�

��This is the case in the simulation shown in Figure ��	 where
an almost ��fold decrease in e�ciency can be attributed to the
use of the fmonitor TRA�class�
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Figure �� A stand�alone process control system�

�include �sysTRA�cleo�

�define TAU �
�define DLY �

TRA�class user�double EPOCH�
�� x�double�

�
act�
init���x�� �� x�random�������
within �����EPOCH�����EPOCH�





TRA�class plant�double GAIN�
y�double� �� z�double�

�
state�
double drive � �� val � � 

act�
y�drive� �� �


init��� z�� �� z�val��
within �����DLY�����DLY�
commit �

val � val � GAIN�drive 






TRA�class world��
y�double� �� x�double�� z�double�

�
include�
user����� �� x�� 
plant����� y�� �� z�� 




TRA�class control��
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