In Proceedings of COMPASS 94: The Ninth Annual IEEE Conference on Computer Assurance, Gaithersburg, MD, June 1994.

An Ounce of Prevention is Worth a Pound of Cure

Towards Physically-Correct Specifications of
Embedded Real-Time Systems

A7ZER BESTAVROS*

Department of Computer Science
Boston University
Boston, MA 02215

Abstract

Predictability — the ability to foretell that an implemen-
tation will not violate a set of specified reliability and
timeliness requirements — is a cructal, highly desirable
property of responsive embedded systems. This paper
overviews a development methodology for responsive
systems, which enhances predictability by eliminat-
ing potential hazards resulting from physically-unsound
specifications. The backbone of our methodology is a
formalism that restricts expressiveness in a way that
allows the specification of only reactive, spontancous,
and causal computation. Unrealistic systems — pos-
sessing properties such as clairvoyance, caprice, infi-
nite capacity, or perfect timing — cannot even be spec-
ified. We argue that this “ounce of prevention” at the
specification level is likely to spare a lot of time and
energy in the development cycle of responsive systems
— not to mention the elimination of potential hazards
that would have gone, otherwise, unnoticed.

1 Introduction

A computing system is embedded if 1t is a component of
a larger system whose primary purpose is to monitor
and control an environment. The leaping advances in
computing technologies that the last few decades have
witnessed have resulted in an explosion in the extent
and variety of such systems. This trend is expected to
continue in the future.

Usually, embedded systems are associated with
critical applications, in which human lives or expensive
machineries are at stake. Their missions are long-lived
and uninterruptible, making maintenance or reconfig-
uration difficult. Examplesinclude command and con-
trol systems, nuclear reactors, process-control plants,
robotics, avionics, switching circuits and telephony,
data-acquisition systems, and real-time databases, just
to name a few. The sustained demands of the environ-
ments in which such systems operate pose relatively

*This research is supported by NSF (grant CCR-9308344).

rigid and urgent performance requirements. Often,
these requirements are stated as timing constraints on
their behaviors. Wirth [28] singled out this aspect
as the one aspect that differentiates real-time from
other sequential and parallel systems. This led to a
body of research on real-time computing, which encom-
passes issues of specification techniques, validation and
prototyping, formal verification, fault-tolerance, safety
analysis, programming languages, development tools,
scheduling, and operating systems.'

The absence of a unified suitable formal frame-
work that addresses the aforementioned issues severely
limits the usefulness of these studies. This situation
is further exacerbated considering the range of disci-
plines employed in developing the various components
of an embedded application. For example, in a sim-
ple sensori-motor robotic application [12], algorithms
from various disciplines like low-level imaging, active
vision, tactile sensing, path planning, compliant mo-
tion control, and non-linear dynamics may be utilized
[13]. Not only are these disciplines different in their ab-
stractions and programming styles, but also they differ
in their computational requirements, which range from
single-board dedicated processors to massively parallel
general-purpose computers.

In this paper we propose CLEOPATRA,? a program-
ming environment that recognizes the unique require-
ments of responsive embedded systems. CLEOPATRA
features a C-like imperative syntax for the description
of computation, which makes it easier to incorporate
in applications already using C. It is event-driven, and
thus appropriate for embedded process control appli-
cations. In particular, rather than describing behav-
1ors using control structures, it describes behaviors us-
ing time-constrained causal structures. CLEOPATRA
is object-oriented and compositional, thus advocat-
ing modularity and reusability. CLEOPATRA is se-

1For comprehensive surveys of recent research in real-time
systems, the reader is directed to [22, 10, 26, 27].

2A C-based Language for the Event-driven Object-oriented
Prototyping of Asynchronous 7ime-constrained 7Reactive
Automata.

mantically sound; its objects can be transformed, me-
chanically and unambiguously, into formal automata
for verification purposes. Since 1989, an ancestor of
CLEOPATRA has been in use as a specification and sim-
ulation language for embedded time-critical robotic
processes. OQur experience confirms CLEOPATRA’s suit-
ability as a vehicle for the specification and validation
of many embedded and time-critical applications. In
particular, we used it to simulate and analyze asyn-
chronous digital circuits, sensori-motor behavior of au-
tonomous creatures; and intelligent controllers [5, 8, 4].
A compiler that allows the execution of CLEOPATRA
specifications has been developed [9], and is available
via FTP from cs.bu.edu:/bestavros/cleopatra/.

CLEOPATRA 1s based on the Time-constrained Re-
active Automata (TRA) formalism [6, 7]. Using the
TRA model, an embedded system is viewed as a set
of automata (TRAs), each representing an autonomous
system entity. TRAs are reactive in that they abide
by Lynch’s input enabling property [18]; they com-
municate by signaling events on their output chan-
nels and by reacting to events signaled on their input
channels. The behavior of a TRA is governed by time-
constrained causal relationships between computation-
triggering events. Using the TRA formalism, there is no
conceptual distinction between a system and a prop-
erty; both are specified as formal objects. This re-
duces the verification process to that of establishing
correspondences — preservation and implementation —
between such objects.

This paper is organized as follows. In Section
2, we overview the TRA model. We emphasize the
TRA operational semantics, which underlies the execu-
tion model of CLEOPATRA. In Section 3, we describe
the CLEOPATRA specification/programming language,
along with an example that illustrates our “ounce of
prevention” thesis. In Section 4, we present a compiler
that allows the execution of CLEOPATRA specifications.
In Section 5, we conclude with current and future re-
search directions.

2 The TRA Model

The TRA model has evolved from our earlier work in [3]
extending Lynch’s IOA model [18, 17] to suit embedded
and time-constrained computation.

2.1 Novelties

Previous studies in modeling real-time computing have
focussed on adding the notion of time without regard
to physical properties of the modeled systems. This
makes it possible to specify systems that do not abide
by principles like causality and spontaneity. Using the
TRA model, requirements that are physically impos-
sible to guarantee are not possible to express. This
preventative approach is likely to spare a lot of time
and energy in the development cycle (specification, im-
plementation, and verification) of responsive systems.

The TRA model deals not only with the notion
of time, but also with the notion of space. Events
occur at uniquely identifiable points in time as well
as 1n state space. Concurrent events are permitted
only if they affect disjoint state subspaces. The pay-
off for this dual treatment of space and time is mani-
fold. In particular, mappings between various levels of
abstractions for compilation and verification purposes
become more robust as the formalism becomes more
structured.

The TRA model does not allow the specification of
systems that are not reactive. A system is reactive if
it cannot block the occurrence of events not under its
control. This property 1s crucial for accurate and real-
istic modeling of embedded and real-time systems. A
sufficient condition for reactivity is the input enabling
property proposed in [18]. The TRA model is input en-
abled. It distinguishes clearly between environment-
controlled actions, which cannot be restricted or con-
strained, and locally-controlled actions, which can be

scheduled and disabled.

A non-deterministic system is causal if given two
inputs that are identical up to any point in time, there
exist outputs (for the respective inputs) that are also
identical up to the same point in time. The TRA model
enforces causality by requiring that any local action
be produced only as a result of an earlier cause. We
distinguish clearly between causality and dependency.
An event occurs as a result of exactly one earlier event
but may depend on many others as reflected in the
state of the system. This spares our formalism from
dealing with clairvoyant and capricious behaviors [24].

Spontaneity is a notion closely related to causal-
ity. A system is spontaneous if its output actions at
any given point in time ¢ cannot depend on actions
occuring at or after time ¢. In particular, if an output
occurs simultaneously with (say) an input transition,
the same output could have been produced without
the simultaneous input transition [21]. Simultaneity
is, thus, a mere coincidence; the output event could
have occurred spontaneously even if the input transi-
tion was delayed. The TRA model enforces spontaneity
by requiring that simultaneously occuring events be in-
dependent; time has to necessarily advance to observe
dependencies.

A computing system that maintains perfect tim-
ing information cannot be implemented. Nevertheless,
formal models (such as the Timed Finite Automata [2]
or the Timed Input-Output Automata [16]) allow the
specification of perfect clocks. The TRA model does
not provide for (or allow the specification of) perfect
clocks. As a consequence, the only measure of time
available for system processes has to be relative to im-
perfect, locally-maintained clocks. This distinction be-
tween real time and perceived time is important when
dealing with embedded applications where time prop-
erties are stated with respect to real time, but have to
be preserved relying on perceived time.

2.2 Basic definitions

We adopt a continuous model of time similar to that
used in [1, 15]. We represent any point in time by a
nonnegative real ¢t € . Time intervals are defined by
specifying their end-points which are drawn from the
set of nonnegative rationals @ C R. A time interval
is viewed as a traditional set over nonnegative real
numbers. It can be an empty set, in which case it
is denoted by ¢, it can be a singleton set, in which
case it is denoted by the [t,1],t € Q, or else it can be
an infinite set, in which case it is denoted by [t;,.],
(t1,tu], [ti,tu), or (t1,ty) — the right-closed, left-closed,
and open time intervals, respectively, where #;,%, € Q
and ?; < t,,. The set of all such infinite time intervals
is denoted by D.

A real-time system is viewed as a set of interact-
ing mealy automata (TRAs), which communicate with
each other through channels. A channel is an ab-
straction for an ¢deal unidirectional communication.
The information that a channel carries is called a sig-
nal, which consists of a sequence of events. An event
underscores the occurrence of an action at a specific
point in time. An action is a value associated with
a channel. For example, let North, South, East, and
West be the possible values that can be signaled on
some channel MOVE. MOVE(East) is, therefore, a possi-
ble action. The instantiation of MOVE(East) at time
t; denotes the event (MOVE(East) : ¢;). The sequence
(MOVE(East) : t1)(MOVE(North) : ¢2)(MOVE(South) : ¢3)
...etc. constitutes a signal. A signal cannot con-
vey more than one event simultaneously. That is, for
asignal (ag : to){ay :t1)...{ap : t3) ... we require that
e < tpy1, k> 0.

At any point in time, a TRA is in a given state.
The set of all such possible states defines the TRA’s
state space. The state of a TRA is visible and can only
be changed by local computations. Computations (and
thus state transitions) are triggered by actions and
might be required to meet specific timing constraints.

2.3 TRA Objects

Definition 1 A Time-constrained Reactive Automa-
ton is a sextuple (X,00,11,0, A, Y), where

o X, the TRA signature, ts the set of all the TRA chan-
nels. It is partitioned into three disjoint sets of
wmput, output, and internal channels. We denote
these by Yin, Yout, and Xing, respectively. The set
consisting of both input and output channels is the
set of external channels (Yexi). These are the only
channels visible from outside the TRA. The set con-
sisting of both output and internal channels is the
set of local channels (Tioc). These are the locally
controlled channels of the TRA.

o 0g € Xy 15 the start channel.

o 10, the signaling range function, maps each channel
m X to a possibly infinite set of values that can be

signaled as actions on that channel. Action sets
of different channels are disjoint. The set of all
the actions of a TRA is given by TI(X). The set of
mput, output, internal, external, and local actions
are similarly given by M(Zin), M(Zous), M(Tint),
M(Zext), and M(Zioc), respectively.

© © 1s a possibly infinite set of states of the TRA.
The set © can be expressed as the cross product of
a finite number of subspaces © = @1 x Pax.. . X Py,
where p > 1 denotes the dimensionality of the state
space.

o A COXII(X)xO is a set of possible computational
steps of the TRA. TRAs are input enabled which
means that for every m# € M(Tiy), and for every
0 € O, there exists at least one step (0, 7,0") € A,
for some & € ©. Thus, A defines a total mulii-
function A : © x II(X4,) — O©.

o T CE X e xD x 29 is a set of time-constrained
causal relationships (or simply time constrainis) of
the TRA. A time constraint v; € T s a quadruple
(03,0%,6;,0;) whose interpretation is that: if an
action is signaled at time t € & on the channel o,
then a corresponding action must be fired on the
channel ¢} at time t' > 1, where t' —t € §;, pro-
vided that the TRA does not enter any of the states
in ©; for the open interval (t,¢').3 The channel
o; € X is called the trigger of the time constraint,
whereas o} € Yo 1s called the constrained channel.
O; C O defines the set of states that disable the
time constraint; once triggered a time constraint
becomes and remains active until satisfied or dis-
abled. A time constraint ts satisfied by the firing of
an action on the channel o; within the time bounds
imposed by the interval é;; it i1s disabled if the TRA
enters in one of the disabling states in ©; before it
15 satisfied.

As an example of a TRA specification, consider the
the up/down counter whose state diagram is shown
in Figure 1. The counter accepts commands issued
on the input channel c¢md to count up or down and
signals the value of the current count (state) on the
output channel cnt. The counter starts its operation
once an action is fired on the init channel. The value
of the init action determines the starting state of the
counter. The counter is constrained to produce a count
every at least 1.9 and at most 2.1 units of time, once it
starts execution. Figure 1 shows the TRA-specification
of such a counter.

The first three components of a TRA sextuple can
be viewed as defining an interface between the TRA and
its environment. In particular, they identify its exter-
nal signature Xj, = {init,cmd}, X,y = {cnt}, the
identity of the start channel oy = init, along with
the signaling range of all the channels in ¥ex;. The
last three components of a TRA sextuple identify its

3Notice that this condition does not necessitate the existence
of a computational step (8, 7',8’) € A foreach § € ©—0;, where
n' € II(o}) and §' € O, since the specification of the TRA might
avoid being in 6 when o/ is scheduled to fire.

behavior. The state space defines the spatial struc-
ture of the computation. For the counter of Figure 1,
this structure is unidimensionally spanned by #. The
set of computational steps defines the effect of events
on the state of the TRA. The set of time-constrained
causalities defines the rules governing the scheduling
of the TRA’s local events. For the counter of Figure 1,
there are two such rules.

2.4 Space and Time aspects of TRAs

The behavior of a TRA is generally non-deterministic.
Two sources of non-determinism can be singled out.
In a given state there may be a number of choices
concerning the channel and action to be fired. Each
one of these choices results in a different computational
step. This gives rise to controlnon-determinism, which
presents a spactal uncertainty because different com-
putational steps may affect different parts of the TRA
state space. The TRA timing constraints specify lower
and upper bounds on the delay between causes and
effects, thus leaving the TRA with a potentially infinite
number of choices concerning the exact delay to be
exhibited. This gives rise to {iming nondeterminism.
Considered separately, control and timing nondeter-
minisms do not violate any physical principles. How-
ever, a combination thereof deserves a closer attention
because it is related to the notions of space and time.

Two computational steps conflict if both of them
introduce changes to at least one of the subspaces of
the TRA’s state space. This is formally defined below.

conflict if and only of for some Zlimension k of O,
0:[k] # 0:k] and 0;[k] # 0;[k], where 1 <k < n.

Definition 2 Two steps (0;,7;,0;),(0;,7;,0;) € A

It 1s important to realize that the conflict rela-
tionship depends not only on a TRA’s computational
behavior, but also on the structure of its state space.
In particular, two TRAs with 1somorphic computational
steps could have very different conflict relationships
depending on their state space characterizations. The
notion of conflicting computational steps can be eas-
ily extended to actions and channels. This is formally

defined below.

Definition 3 Two actions m; and m; conflict iof there
erist at least two conflicting computational steps
(6:,7:,60),(0;,m;,0:) € A. Two channels o; and o
conflict if at least one action from I(o;) and one ac-
tion from Il(o;) conflict.

The conflict relationship depicts computational
dependencies that emerge due to sharing information
about state. For two local actions to conflict, their
respective channels must be under the control of a sin-
gle component of the TRA. The transitive closure of
the conflict relationship, therefore, defines a partition
on the locally-controlled channels of a given TRA.

Definition 4 Two local channels o; and o; belongs to
the same component (class) if they conflict.

The partition into classes of the TRA’s locally-
controlled channels captures some of the structure
of the system the automaton is modeling or the set
of requirements it is specifying. In particular, each
class of channels represents the set of channels locally-
controlled by some system component. This partition-
ing retains the basic control structure of the system’s
primitive components and provides a concrete notion
of spatial locality.

To preserve the non-blocking (input-enabled) na-
ture of the TRA model, 1t 1s necessary to insure that
input actions on different channels do not conflict. A
TRA is improper if at least two of its input channels
conflict, otherwise it is proper. For the remainder of
this paper, we assume that any TRA is proper.

The notion of system components we are present-
ing here is novel and entirely different from that used
in untimed models to express fairness [18] by requir-
ing that, in an infinite execution, each of the system’s
components gets infinitely many chances to perform
its locally-controlled actions. In timed systems, the
major concern is safe and not necessarily fair execu-
tions [20]. Even if required, fairness can be enforced
by treating it as a safety property; liveness properties
can be handled in infinite execution by requiring time
to grow unboundedly.?. This led to the abandoning of
the idea of partitioning a system into components in
our earlier model proposed in [3]. Lynch and Vaan-
drager [19] followed suit in their recent modification of
the model proposed in [25]. In the TRA model we use
system components to represent what can be termed
as spatial locality. Different actions can be signaled
at the same “time” only if they are not signaled from
the same “place”; they can be produced at the same
“place” only if they do not occur at the same “time”.

2.5 TRA Executions and Behaviors

In standard automata theory, there is no distinction
between choosing a transition and firing it; they consti-
tute a unique, instantaneous, and atomic activity. In
the TRA model a distinction is made whereby choosing
(scheduling) a transition and executing (committing)
that transition are separate activities. They are dis-
tinct in that they are separated in time. In fact, a
scheduled transition does not have to be committed;
it can be abandoned due to unforseeable conditions.
The distinction between the two activities is also pro-
nounced in the way the TRA model differentiates be-
tween input and local events. Input events are not
under the TRA’s control; they cannot be blocked or de-
layed. Local events are under the TRA’s control; they
are time constrained, and could be disabled.

Consider the time constraint v; = (o4, 0}, 6;,0;) €
T, which identifies a time-constrained causal relation-

*Such executions were called admissible in [19]

ship between the events signaled on ¢; and those sig-
naled on ¢}. The occurrence of a trigger on ¢; results
in an intention to perform an action on ¢} within the
time frame imposed by é;. The commitment (aban-
donment) of such an intention in due time is condi-
tional on the states assumed by the TRA from when the
intention is posted until it is committed (abandoned).
At any point in time, a TRA might have several out-
standing intentions. In particular, the occurrence of
a single event might generate a number of intentions,
each dictated by a different time constraint. Different
outstanding intentions are not necessarily imposed by
different time constraints. In particular, the repeated
occurrence of a triggering event might generate a num-
ber of outstanding intentions, all of which are imposed
by the same time constraint.

The state of a TRA at an arbitrary point in time is
not sufficient to construct its future behavior. In addi-
tion to the state, the intervals of time where sched-
uled transitions might fire (due to earlier triggers)
have to be recorded. For a given TRA | we define the

intention vector I = A to be a vector of r sets of
intentions, where r = |Y|. FEach entry in [is as-
sociated with one of the TRA’s time constraints. If
v; = (04,00, 6;,0;) € T is one of the TRA’s time con-
straints, then I[v;] = {61, 6i2, ..., ik, .. .0im } denotes
a set of m time intervals during which actions on the
channel ¢/ are intended to be fired as a result of ear-
lier triggers on ;. Each one of the intervals in A; can
be thought of as an independent activation of the time
constraint v;. An empty intentions set, I[v;] = ¢, indi-
cates the absence of any activations of v;. The empty
intention vector, Iy, consists of r such empty sets.

Definition 5 We define the status of a TRA at any
point in time t € N to be the tuple (6,1), where 6 and
I are the TRA’s state and wntention vector at time t,
respectively.

A TRA changes its status only as a response to the
occurrence of an event (input or local). In other words,
the change in a TRA’s status is necessarily a causal reac-
tion to an input event or to an earlier triggering event.
Five conditions — namely, legality, spontaneity, safety,
causality, and consistency — have to be met for a sta-
tus succession to occur. These are formally specified
below.

Definition 6 Assume that the status (0,1) of a TRA
was entered at time t. Furthermore, assume that at a
later time ' > t, a set of simultaneous actions w1 €
M(oy), 72 € M(03),...,Tm € U(om) were fired, where
o; €3,0< 7 <m. As a result, the TRA will assume a
new status (6',1'), where I' = (TU I 11.q) — (Th.oq U
Icliisabled)’

The status (0',1") is called a valid successor of the sta-
tus (0,1) due to the occurrence of the set of simul-
taneous events (w1, Ta, ..., Tm : '), if and only if the
following conditions hold:

1. Spontanety:
The channels o1,02,...,0, do not conflict; they
belong to different TRA components.

2. Legality:
There exists some sequence of transitions

(0,71,01),(0,72,02),...(0,7m,0m) € A, such that
O, = 0.

For every intention &;, € I[v;], t" € bip for some
t" >, ¢ e R, where v; € T.
4. Causality:
For all o;
hold
a. If o # o5 for all 1 < j < m then for every
vp = (0%, 0%,06,01) € T for which o, = oy,
If/']red[vk] = ¢

b. Otherwise, let T; C T be the set of tame con-
straints with o; as the constrained channel,
then there must exist exactly one time con-
straint v, € Y; such that:
o It qlve] = {érr}, where b, € I[v,] and
t' € 6.5, and
o Il qlvk] = ¢, where vy € T; and vy # vy

5. Consistency:

For every time constraint vy = (o, 0%, 6, 08) €
T, the following conditions hold
a. If ¢/ € Oy, then
© Icliisabled [Uk] = I[Uk] and
© Iénabled [Uk] = ¢
b. Otherwise
© Icliisabled [Uk] = ¢7 and
o If o, = o5 for some 1 < j < m, then

Iénabled [Uk] = {(t/ + 62)}7 else Iénablzd [Uk] = ¢

€ Yioe, the following conditions

In the above definition, the spontaneity condition al-
lows the occurrence of simultaneous events only if they
do not conflict. This guarantees that the transition
from 6 to 6’ is independent of the ordering of con-
current computational steps. The legality condition
ensures that the state change from @ to 6’ is the result
of defined computational steps. The safety condition
guarantees that no active time constraint expires. In
other words, outstanding intentions are either com-
mitted or abandoned in due time. The causality con-
dition necessitates that local events be causal; they
are signaled only if intended due to an earlier trigger.
Thus, the causality condition guarantees that there is
exactly one committed intention per local event. In
other words, every local event satisfies exactly one in-
tention. The consistency condition requires that the
intentions in I continue to exist in I’ unless otherwise
dictated by the occurrence of the set of simultaneous
events (my : 'Y ma 1) .. (mm).

We use the notation (¢, 1) <”1’W,ﬂ§m:tl) (0,1 to
denote the direct status succession from (6, 1) to (¢',1")
due to the simultaneous firing of (w1 : ¢'), (w2 : '), ..,
(mm 2 t'). Also, we use (6,1) 2, (6',I') to denote the
status succession from (6, 1) to (¢, I') due to a number
of direct status successions.

A TRA is said to have reached a stable status (é, f),

if all entries of the intention vector are empty (f =1y).
A TRA remains in a stable status until excited by an
input event. This follows directly from the causality
requirement for a status succession.

To start executing, a TRA (X, og, 1T, ©, A, T) is put
in a stable initial status (6o, Iy), where Iy = I and
fy € ©. The execution is initiated at time ¢y with the
firing of an action mg on the start channel oy, where
7o € M(0g). An execution e of a TRA is a possibly in-
finite string of alternating statuses and events, which
starts with an initial status followed by an initiating
event, and which contains an infinite number of sta-
tus successions (infinite execution), or terminates in a
stable status (finite execution).

We follow an approach similar to that adopted
in [18] by defining 8 to be a behavior of a TRA A,
if it consists of all the ezternal events appearing in
some execution e of A. We denote the set of all the
possible behaviors of a TRA A by behs(A). Obviously,
behs(A) describes all the possible interactions that the
TRA A might be engaged in, and, therefore, constitutes
a complete specification of the system that .4 models.

A TRA A is said to implement another TRA B if ev-
ery behavior of A is a behavior of B. In other words,
all of A’s behaviors (the implementation) are possible
behaviors of B (the specification). The reverse, how-
ever, is not true. There might exist behaviors of B
that cannot be generated by .4. The notion of a TRA
implementing another is used mainly in verification.

2.6 TRA Composition

A basic aspect of the TRA model is its capability to
model a complex system by operating on simpler sys-
tem components. In this section we examine such an
operation, namely composition. Other operations (for
example hiding and renaming) were presented in [7].

The composition of a countable collection of com-
patible TRAs, {A; : ¢ € I}, is a new TRA A =
Ao x Ar x ... x A; x ... = ;g A;. The execution of
A involves the execution of all its components A;¢7,
each starting from an initial status and observing every
external event signaled by either the environment (in-
put) or by any TRA in the collection {A; : ¢ € T}. The
compatibility condition for composition insures that,
for each channel in the composition, there is at most
one writer, a finite number of readers, and that the sig-
naling ranges of readers and writers are compatible.

The input signature of the composed TRA consists
of those channels that are inputs to one or more of
the component TRAs, and which are not outputs of
any of the component TRAs. The output signature of
the composed TRA consists of all the outputs of all the
component TRAs. Similarily, the internal signature of
the composed TRA consists of all the internal channels
of all the component TRAs. The start channel of the
composed TRA is the start channel of one or more of

its component TRAs.> The signaling range function
of the composed TRA is defined so as to preserve its
input-enabled property. In particular, the signaling
range of an input channel consists of only those actions
that can accepted by all readers of that channel. A
computational step of the composed TRA is necessarily
a step of one of its components. Similarily the time-
constrained causal relationships of the composed TRA
are exactly those of the component TRAs.

In [7], the formal construction of the sextuple rep-
resentation of a composition is given. Also, the rela-
tionships between the behaviors and spatial properties
of the composed TRA and those of its constituent TRAs
are established. In particular, we prove that the sets of
proper, spontaneous, and causal TRAs are closed under
composition.

The TRA composition operation is more general
than those reported in [18, 25, 3] in that it allows the
specification of both parallel and sequential composi-
tion. In particular, the introduction of the start chan-
nel permits the execution of two TRAs to be concurrent
if they share the same start channel, or to be serialized
if the start channel of one (child) is an output of the
other (parent).

3 CLEOPATRA Specifications

In CLeoPATRA, systems are specified as interconnec-
tions of TRA objects. Each TRA object has a set of
state variables and a set of channels. Time-constrained
causal relationships between events occuring on the
different channels, and the computations (state tran-
sitions) that they trigger, are specified using Time-
constrained Fvent-driven Transactions (TETs). The
behavior of a TRA object is described using TETs.
TRA objects can be composed to specify more complex

TRAs.

The correspondence between CLEOPATRA and the
TRA formalism is straightforward. Every object in
CLEOPATRA corresponds to a TRA sextuple. In [7], the
construction of a TRA sextuple, given a CLEOPATRA
object, 1s detailed.

3.1 Classes and Objects

A TRA object specification in CLEOPATRA consists of
two components: a header and a body. An object’s
header specifies 1ts name, the parameters needed for
its instantiation, and its signature. An object’s body
specifies its behavior. In i1ts simplest form, this entails
the specification of the TRA’s state space and its poten-
tially time-constrained set of reactions to the different
events visible to it. More complex behaviors include
(among others) the specification of: internal channels,
initialization code, and interconnection of local (com-
posed) objects. Figure 2 shows a BNF-like description
of a TRA object in CLEOPATRA.

5Without loss of generality, we assume that TRA to be Ag.

cnt(-2) cnt(-1) cnt(0) cnt() cnt@)
Cmd(U) Cmd(U) Cmd(u) cmd(u)

Cmd(D)

Init(-2) Init(1) Init(2)

A=) 6;,init(5),0 u
oY = iy UXout U Eint7 where: ¢ (U’JGZ{(v (])7 J)})

Ein = {Cl‘l‘ld.7 1n1t}, Yout = {Cn‘t}7 and Eint = (b (UzGZ{(e“ Cmd(UP),eH.l)}) U
einit € ¥;, is the start channel. (U {(91.7 cmd(Down), 91,_1)}) U
oll(init) = 2, [I(cmd) = {Up,Down}, and II(cnt) = Z. e o cnt (). 6.

00, the set of states is given by: {6; :7 € Z}. (Uzez{(i ent(i), 0:)})-

oY = {(init,cnt, [1.9,2.1], ¢), (cnt, cnt,[1.9,2.1],4)}.

Figure 1: TRA-specification of up/down counter.

<tra-object> := <tra-header> ‘{’ <tra-body> ‘}’

<tra-header> := ‘TRA-class’ <tra-name> {‘(’ <tra-params-spec> ‘)’} <signature>
<tra-params-spec> := {<type> <param-id> {‘;’ <tra-params-spec>}}

<signature> := {<ch-list-spec>} ‘->’ {<ch-list-spec>}

<ch-list-spec> := <ch-id> (<type>) {‘,’ <ch-list-spec>}

<type> := ‘int’ | ‘double’ | ‘bool’ | ...

<tra-body> := {<declarations>} {<init>} {<transactions>}

<declarations> := {<state>} {<internal>} {<included>}

<state> := ‘state:’ <state-var-def>

<state-var-def> := <type> <var-list-def> ‘;’ {<statevar-def>}

<var-list-def> := <var-id> {‘=’ <comnstant-exp>} {¢,’ <var-list-def>}
<internal> := ‘internal:’ <signature>

<included> := ‘included:’ <included-objects>

<included-objects> := <tra-instantiation> ¢;’ {<included-objects>}
<tra-instantiation> := <tra-name> {‘(’ <actual-param-list> ¢)’} <ext-binding>
<actual-param-list> := <constant-exp> {‘,’ <actual-param-list>}

<ext-binding> := {<ch-1list>} ‘->’ {<ch-list>}

<ch-list> := <ch-id> {‘,’ <ch-list>}

<init> := <code>

<transactions> := {<xact> {<transactions>}}

<xact> := <xact-header> ‘:’ <xact-body>

<xact-header> := {<trigger-list>} ‘->’ <out-sig-spec>

<trigger-list> := <in-sig-spec> {¢,’ <trigger-list>}

<in-sig-spec> := <ch-id> ‘(’ {<var-id>})’

<out-sig-spec> := <ch-id> ‘(’ {<exp>})’

<xact-body> := <act> | ‘{’ <acts> ‘}’

<acts> := <act> {<acts>}

<act> := <computation> | {<condframe>} <fire-acts> | {<timeframe>} <fire-acts>
<computation> := ‘commit’ ‘{’ <code> ‘}’ | ‘do’ ‘{’ <code> ‘}’
<condframe> := ‘unless’ ‘(’<cond>‘)’ | ‘while’ ‘(’<cond>‘)’
<timeframe> := <closed-timeframe> | <open-timeframe>
<closed-timeframe> := ‘within’ ‘[’<constant-exp>‘~’<constant-exp>‘]’
<open-timeframe> := ‘before’ <constant-exp> | ‘after’ <constant-exp>

Figure 2: Partial Syntax of a TRA specification in CLEOPATRA

In CreoPATRA, TRAs are defined in classes. For
example, Figure 3 shows the CLEOPATRA specification
of the class of integrators that use trapezoidal approx-
imation.

TRA-class integrate(double TICK, TICK_ERROR)
in(double) -> out (double)

{
state:
double x0 = 0, x1 =0, y = 0;
act:
in(x1) -> :
init () ,out) -> out(y):
within [TICK-TICK_ERROR™TICK+TICK_ERROR]
commit { y = y+TICK#(x0+x1)/2; x0 = x1; }
¥

Figure 3: Integration using the trapezoidal rule.

TRA classes are parametrized. For instance, the
specification of integrate given in Figure 4 includes
the parameters TICK, and TICK_ERROR, which have to
be specified before instantiating an object from that
class.

The header of a TRA class determines its external
signature and signaling range function. For example,
any TRA from the class integrate specified in Figure 3
has a signature consisting of an input channel in and
an output channel out. Both in and out carry ac-
tions whose values are drawn from the set of reals. In
CLEOPATRA, the start channel of any given TRA-class is
called init. Start channels do not have to be explicitly
included in the header of a TRA-class. For example, in
the definition of the integrate TRA-class given in Fig-
ure 3, there is no mention of any init channels in the
external signature specified in the header, yet, init is
used later in the body of integrate.

The body of a TRA class determines the behavior of
objects from that class. Such a behavior can be either
basic or composite. The description of a basic behavior
involves the specification of a state space in the state:
section, the specification of an initialization of that
space in the init: section, and the specification of a
set of Time-constrained Event-driven Transactions in
the act: section. The behavior of an object belonging
to the TRA-class integrate shown in Figure 3 is an
example of a basic behavior. Composite behaviors, on
the other hand, are specified by composing previously
defined, simpler TRA-classes together in the include:
section. For example, in Figure 4, the class ramp is
defined by composing the integrate and constant®
classes together.

6 The behavior of an object from the constant class is to
signal the value VAL on its only output channel out every TICK
+ TICK_ERROR units of time.

TRA-class ramp() -> y(double)
{

internal:

x(double) -> ;

include:

constant -> x() ;

integrate x() -> y() ;
¥

Figure 4: CLEOPATRA specification of a ramp gener-

ator.

3.2 TET Specification

In CLeOPATRA, time-constrained causal relationships
between events on different channels of a TRA-class,
and the computations (state transitions) that they
trigger, are specified using Time-constrained Event-
driven Transactions (TET). A TET describes the re-
action of a TRA to a subset of events. Such a reaction
might involve responding to triggers and/or firing ac-
tion(s). Figure 5 explains the relation between the
triggering and firing of actions using TETs.

within[Tmin~Tmax]

Triggering J Constrained
Channels — i Trigger *l Fire |— Channels
AN
Disable?
unless
< V4
State

Figure 5: Time-constrained Event-driven Transaction.

The description of a TET consists of two parts: a
header and a body. The header of a TET specifies a set
of triggering channels (trigger section) and a controlled
channel (fire section). The trigger section specifies the
effect of the triggering actions on the state of the TRA.
It specifies at most one state variable (per triggering
channel) where the value of a trigger on that channel
is to be recorded. A TET with no triggering section is
triggered every time an action is signaled on any chan-
nel of the TRA; its trigger set is considered to be the
same as the TRA’s signature. The fire section specifies
the action value to be signaled on the controlled chan-
nel as a result of firing the TET. An absent expression
means that a random value from the signaling range of
the controlled channel is to be signaled. The body of a
TET describes possible reactions to the TET triggers.
Each reaction is associated with a disabling condition,
a time constraint, and a state transformation schema.

The first TET of the integrate class shown in
Figure 3 is an example of a transaction with only a
trigger section. Every time an action is signaled on
the input channel in, its value is stored in the state
variable x1. The second TET of the integrate class is
an example of a transaction with both a trigger section
and a fire section. Every time an action is signaled
on one of the triggering channels (init or out) an
output action is fired on out after a delay of TICK +
TICK_ERROR units of time elapses.

Each reaction in the body of a TET is associated
with three pieces of information: A disabling condi-
tion, a time constraint, and a state transformation
schema. The disabling condition (unless clause) is
a boolean expression (predicate) on the state of the
TRA.” In order to be committed, a reaction’s disabling
condition has to remain false from when the reaction
is triggered until it commits. In other words, an in-
tended reaction is aborted if at any point in time after
its triggering (scheduling), the disabling condition be-
comes true. The absence of a disabling condition in
a reaction implies that, once scheduled, it cannot be
disabled. The time constraint (within clause), deter-
mines a lower and upper bound for the real-time de-
lay between scheduling a reaction and committing it.
Only constant expressions are allowed to be used in the
specification of time bounds. Open, closed, and semi-
closed time intervals can be used provided they specify
an interval of time from the set D.® The absence of a
time constraint from a TET specification implies that
the causal relationship between the trigger and its ef-
fect is unconstrained in time. A lower bound of 0 and
an upper bound of oo is assumed in such cases. The
state transformation schema (commit clause) specifies
a method for computing the next state of the TRA once
a reaction is committed. We adopt a C-like syntax
for the specification of TET methods. Statements in
a TET method are executed sequentially. The state
transition caused by the execution of a TET method
is assumed to be atomic and instantaneous. An absent
commit clause implies that committing the reaction
does not cause any state changes.

3.3 An Example

Figure 6 shows the specification of a finite FIFO ele-
ment in CLEOPATRA. Values fed into the FIFO element
are delayed for some amount of time before being pro-
duced as outputs.

The header of the fifo TRA-class identifies the
channel in as input, and the channels out, ack and
overflow as outputs. Although not explicitly speci-
fied as such, the channel init (the start channel) is
assumed to be an input channel. The signaling range

"No side effects are permitted in the evaluation of this
condition.

8Current CLEOPATRA processors accept only dense inter-
vals of three forms: (0,7%), (1}, o), or [T}, Tw], where Ty > T} >
0. These are introduced using the before, after, and within
clauses, respectively.

TRA-class fifo(int N)
in(float) -> out(float), overflow(), ack()

{

state:
float y[N];
int i, j;
bool £;
act:

init() -> ack():
before DLY_MIN
commit {
i=20; j=0; f=FALSE;
¥
in(y[i]) -> ack(Q):
before DLY_MIN
commit {
i = (i+1)%N ; if (i==j) f = TRUE ;
¥
in() -> out(y[j1):
unless (f)
within [DLY_MIN~DLY_MAX]
commit {
j = (G+DYN ;

in() -> overflow():
unless (!f)
within [DLY_MIN"DLY_MAX]

H

Figure 6: CLEOPATRA specification of a finite FIFO

delay element.

for channels in and out is the set of floating point num-
bers, whereas the signaling range for channels ack and
overflow consists of only one value. The body of the
fifo TRA-class contains two sections. In the state:
section, the state space of a fifo object is described
by four state variables: a vector y[] of N floating point
values, two integer values i and j, and a boolean value
f. In the act: section, the behavior of a fifo object
is described by four TETSs, each of which underscores
a causal relationship between the events triggering its
execution and those resulting from its execution.’

The first TET in the body of the FIFO establishes
a causal relationship between events signaled on init
and and those signaled on ack. In particular, firing
an action on init (the trigger) causes the firing of an
action on ack (the result) after a a delay of at most
DLY MIN. The second TET establishes a similar causal
relationship between events signaled on in and ack.
The third TET establishes a causal relationship be-
tween events signaled on in and out. In particular,
firing an action action on in causes the firing of an
action on out after a delay of at least DLYMIN and
at most DLYMAX elapses, provided that the FIFO did
not overflow as of the last initialization. The causal
relationship that the fourth TET establishes can be
explained similarly.

?In other words, between input and output transitions.

Each TET in a TRA-class specifies up to two pos-
sible state transitions. Consider, for example, the sec-
ond TET in the FIFO specification given in Figure 6.
In response to a trigger on in, the value of the trig-
gering signal is stored in the state variable y[i], thus
resulting in a possible state change. Notice that this
transition cannot be blocked or delayed; 1t 1s an in-
put transition. The second state transition, an oufput
transition, occurs with the firing of an action on ack,
resulting in the adjustment of the values of the state
variables i and £. Notice that the value of the ac-
tion signaled on a local (output or internal) channel
does not reflect the state change associated with it.
For instance, in the fourth TET of Figure 6, the value
signaled on the out channel, namely y[j], does not
reflect the changes introduced in the commit clause,
namely advancing the pointer j.

3.4 Case and Point!

It is important to realize that fifo objects will be-
have as expected only if inputs from the environment
meet certain conditions. In particular, the value of
the index i is not incremented as a result of an input
on the channel in until at least DLY MIN units of time
elapse following the signaling of that input. Thus, an
erroneous behavior will result if two or more events
are signaled on the channel in in a duration of time
shorter than DLY MIN. To avoid such malignant behav-
iors, the environment must wait for an acknowledg-
ment ack()'? or else wait for at least DLY_MIN before
issuing a new input. Such safety conditions can be
verified using TRA-based verification techniques [7].

We argue that any finite implementation of a
discrete-event delay element must have a finite capac-
ity, which must not be exceeded for a correct behavior.
Using CLEOPATRA, it is impossible to specify a fifo
class that behaves correctly independent of its environ-
ment’s behavior. This is a direct result of our abidance
by the causality and spontaneity principles, which are
preserved by the TRA model. As we mentioned at the
outset of this paper, it is our thesis that preventing
the specification of physically-impossible objects 1s de-
sired. At the least it spares system developers from
trying to implement the impossible.

An indirect result of CLEOPATRA’s limited expres-
sivity is to force system specifications to be spelled out
at a “lower” level. For example, in CLEOPATRA one
cannot specify a clock that does not drift. This implies
that the consequences of this drift could not be sim-
ply discounted as “implementation details”. Lowering
the level at which specifications are expressed advo-
cates a functional specification approach. In contrast
to the black box approach, the operational approach
calls for problem specification by formulating a system
to solve 1t. The formulated system is given in terms of
implementation-independent structures that, once im-
plemented, would generate the required behavior [29].

10 An ack() event is signaled after the input is processed.

4 CLEOPATRA Simulation

We have developed a compiler that transforms
CLEOPATRA specifications into an event-driven sim-
ulator for validation purposes. We have used the
CLEOPATRA compiler to simulate a variety of systems.
In particular, we used it extensively to specify and
analyze sensori-motor robotics applications [8] and to
simulate complex behaviors of autonomous creatures
[5]. Figure 7 shows the different stages involved in the
compilation and execution of specifications written in
CLEOPATRA.

System-defined
TRA-classes, types,
debugging 1ool S, ... €tC.

/N

C Compiler
o
=

N

Simulation

Specification

Compilation

Figure 7: Compilation & simulation of CLEOPATRA.

At the heart of this process is a one-pass pre-
processor, written in C, which parses user-defined
CLEOPATRA specifications, augmented with system-
defined TRA classes,!! and generates an equivalent C
simulator. This C simulator consists of three compo-
nents. The first is a header (.h) file, which includes
type definitions for the state space of the various TRA
classes in the specification. The second is a schema
(.s) file, which includes definitions for the state tran-
sition functions of the various TETs. The third is the
code (.c) file, which includes the simulator initializa-
tion and control structure along with the instantia-
tion code for the various TRA classes, including main.
The final step of this process involves the invocation
of the C compiler to produce an executable simula-
tor. Figure 10 illustrates a typical session, in which
the CLeOPATRA compiler ccleo is invoked to process
the file process-ctrl.cleo containing the specifica-
tion of the stand-alone process control system shown
in Figures 8 and 9.

1 8ystem-defined TRA classes are mainly for i/o and debugging
purposes.

In CceOPATRA, any TRA-class with no input chan-
nels represents a stand-alone (closed) system whose
behavior is independent from the outside world; it 1s
a world of its own. One such TRA-class, namely main,
is singled out by CLEOPATRA to represent the entire
system being specified. For embedded systems, a typ-
ical main TRA-class will simply be the composition of
a programmed system, representing the control sys-
tem, and an external interface, representing the envi-
ronment. For example, the main TRA-class shown in
Figure 9 represents the CLEOPATRA specification of
the closed process control system shown in Figure 8.
The execution of a CLEOPATRA stand-alone system is
started by instantiating an object from the TRA-class
main at time'? 0 and, thereafter, committing only the
legal transitions dictated by the system specification
and the semantics of the TRA model. Figure 11 shows
the values signaled on the x and z channels over time.

A library of system-defined TRA-classes is avail-
able for debugging and performing I/O in CLEOPATRA.
For example, in the specification of the TRA-class
main given in Figure 9, the TRA-class fmonitor is
used to record the action values signaled on the x
and z channels in files x.dat and z.dat respectively.
System-defined TRA-classes are themselves specified in
CLEOPATRA. They are different from user-defined TRA-
classes in that they have access to g¢lobal information
known only to the simulator. For instance, fmonitor
objects have access to the simulator’s perfect clock,
_clk, whereas user-defined TRA-classes have to main-
tain their own locally perceived clocks, if needed.

C functions can be called from within a
CLEOPATRA specification. To maintain the semantics
of the TRA formalism, however, only functions with no
side effects should be used. In other words, C function
should be restricted to act as pure operations on the
state variables of an object. It should not reach be-
yond the boundaries of the state space of that object.
Also, it should not alter the structure of the state space
of the object in any way. An example of the use of a
C-function is illustrated in the description of the user
TRA-class of Figure 9 where the function random() is
called periodically to generate a random set value.

Most of the C preprocessor utilities are available
in CLEOPATRA. This includes simple and parameter-
ized macro definition and invocation, constant defi-
nition, and nested file inclusion.'® For example, in
the CLEOPATRA specification of the stand-alone pro-
cess control system shown in Figure 9, system-defined
TRA classes are included using the #include directive,
and constants are defined using the #define directive.

The simulator has proven to be quite efficient.
This is due primarily to the causal and compositional
nature of the TRA model, which tends to localize the
computation triggered by the occurrence of an event

12 The start time of the simulation can be explicitly specified.
13 Current CLEOPATRA processors do not admit conditional
compilation.

within the boundaries of few TETs. The number of
simulated events per second (seps) depends on a num-
ber of factors: the average channel fan-out, the average
number of TETs per TRA, and the complexity of the
event-driven computation. It does not depend, how-
ever, on the size of the state space or on the amount
of TRA nesting. For an application with a fan-out of
1 and an average of 2.4 TETs per TRA, and an O(1)
event-driven computational complexity, the compiled
CLEOPATRA specifications executed at a rate of almost
19,500 seps.'* The performance of a simulator for the
same application hand coded directly in C performed
only slightly better. Namely, it executed at a rate of
almost 20,000 seps. The performance of the simulator
degrades considerably when extensive 1/O and tracing
operations are performed.!®

5 Conclusion

Predictability can be enhanced in a variety of ways. It
can be enhanced by restricting expressiveness as was
done in Real-Time Euclid [14], by sacrificing accuracy
as was done in the Flex system [11], or by abstracting
segmented resources as was done in the Spring kernel
[23]. The TRA-development methodology we are ad-
vocating here introduces one more way of improving
predictability, that of allowing only physically-sound
specifications. Pursuing the ideas presented in this pa-
per will undoubtedly provide us with one more handle
in our persistent quest for predictable systems. An in-
teresting question to be addressed in the future would
be whether this and other handles can be combined in
any useful way to guarantee predictability.

Our experience with the TRA development
methodology in the design, simulation, and analy-
sis of asynchronous digital circuits, sensori-motor au-
tonomous systems, and intelligent controllers confirms
its suitability for the specification, verification, and
validation of many embedded and time-critical appli-
cations. Its usefulness in the implementation of such
systems, although promising, is yet to be established.

A fruitful direction for future research would
be to automate the process of transforming TRA-
based physically-sound time-critical specifications into
provably-correct implementations given appropriate
resources. Such research will have two complementary
— experimental and theoretical — components. The
experimental component would involve the develop-
ment of a compiler to transform CLEOPATRA speci-
fications into predictable real-time programs, given a
dedicated computing platform. The theoretical com-
ponent would aim at devising efficient verification al-
gorithms that can be automated and incorporated in
the CLEOPATRA compiler.

14 A1l simulations were performed on a SPARCstation
SLCTMworkstation.

15This is the case in the simulation shown in Figure 10, where
an almost 5-fold decrease in efficiency can be attributed to the
use of the fmonitor TRA-class.

Figure 8: A stand-alone process control system.

#include "sysTRA.cleo"

#define TAU 1
#define DLY 5

TRA-class user(double EPOCH)
-> x(double)
{
act:
init(),x() -> x(random(0,1)):
within [0.8+EPOCH"1.2*EPOCH]

>

}

TRA-class plant(double GAIN)
y(double) -> z(double)

{
state:
double drive = 0, val = 0 ;
act:
y(drive) ->
init(), z() -> z(val):
within [0.9%DLY"1.1*DLY]
commit {
val = val + GAIN*drive ;
¥
¥

TRA-class world()
y(double) -> x(double), z(double)

include:

user(300) -> x() ;

plant(1.5) y() -> z() ;
¥

TRA-class control()

x(double), z(double) —> y(double)
{

state:

double s = 0, £ = 0;

act:
x(s), z(£) > y(s-1):
within [0.95*TAU"1.05+TAU]

>

}

TRA-class main() ->

{
internal:
-> x(double),y(double),z(double)
include:
world y(O -> x(), z() ;
control x(), z() -> y(O) ;
fmonitor("x.dat") x() -> ;
fmonitor("z.dat") z() -> ;

}

Figure 9: The main TRA-class.

% ccleo process-ctrl
TRA-class fmonitor(string FILENAME)
init(unit), signal(double) -> ;
TRA-class user(double EPOCH)
init(unit) -> x(double) ;
TRA-class plant(double GAIN)
init(unit), y(double) -> z(double) ;
TRA-class world()
init(unit), y(double) -> x(double), z(double) ;
TRA-class control()
init(unit), x(double), z(double) -> y(double) ;
TRA-class main()
init(unit) -> ‘z(double)’, ‘y(double)’, ‘x(double)’ ;

Cleopatra preprocessing completed.
C compilation completed.

% process-ctrl
CPU time = 1366612 usec # of events = 5486 SEPS = 4014.3069

Figure 10: A typical CLEOPATRA compilation and execution session.

Set Value (X) and System Response (Z) Signals

Value

1.20 Signal Z

1.15

1.10

1.05
1.00
0.95 i

0.90

0.85

0.80
0.75
0.70

0.65

0.60
0.55 j .
0.50 it [

0.45

0.40

0.35

0.30

0.25 Time
0.00 0.20 0.40 0.60 0.80 1.00

Figure 11: Simulated behavior of an underdamped process control system.

References

(1]

[10]

[11]

[12]

[13]

[14]

Rajeev Alur, Costas Courcoubetis, and David Dill.
Model-checking for real-time systems. In Proceedings
of the 5th annual IEEE Symposium on Logic in Com-
puter Science, Philadelphia, Pensylvania, June 1990.
IEEE Computer Society Press.

Rajeev Alur and David Dill. Automata for modeling
real-time systems. In Proceedings of TAU’90: The
1990 ACM International Workshop on Timing issues
in the Specification and Synthesis of Digital Systems,
Vancouver, Canada, August 1990.

Azer Bestavros. The IOTA: A model for real-time
parallel computation. In Proceedings of TAU’90: The
1990 ACM International Workshop on Timing issues
in the Specification and Synthesis of Digital Systems,
Vancouver, Canada, August 1990.

Azer Bestavros. TRA-based real-time executable
specification using CLEOPATRA. In Proceedings of
the 10th Annual Rochester Forth Conference on Em-
bedded Systems, Rochester, NY, June 1990. (revised
May 1991).

Azer Bestavros. Planning for embedded systems: A
real-time prospective. In Proceedings of AIRTC-91:
The 3rd IFAC Workshop on Artificial Intelligence
in Real Time Control, Napa/Sonoma Region, CA,
September 1991.

Azer Bestavros. Specification and verification or real-
time embedded systems using the Time-constrained
Reactive Automata. In Proceedings of the 12th IFEFE
Real-time Systems Symposium, pages 244-253, San
Antonio, Texas, December 1991.

Azer Bestavros. Time-constrained Reactive Automata:
A novel development methodology for embedded real-
time systems. PhD thesis, Harvard University, Di-
vision of Applied Sciences (Department of Computer
Science), Cambridge, Massachusetts, September 1991.

Azer Bestavros, James Clark, and Nicola Ferrier.
Management of sensori-motor activity in mobile
robots. In Proceedings of the 1990 IFEFE Interna-
tional Conference on Robotics & Automation, Cinci-
nati, Ohio, May 1990. IEEE Computer Society Press.

Azer Bestavros, Devora Reich, and Robert Popp.
Cleopatra compiler design and implementation. Tech-
nical Report TR-92-019, Computer Science Depart-
ment, Boston University, Boston, MA, August 1992.

Alan Burns and Andy Wellings. Real-time systems
and their programming languages. Addison Wesley Co.
(International Computer Science Series), 1990.

Jen-Yao Chung, Jane Liu, and Kwei-Jay Lin. Schedul-
ing periodic jobs that allow imprecise results. IEFE
Transaction on Computers, 19(9):1156-1173, Septem-
ber 1990.

James Clark, Nicola Ferrier, and Lei Wang. A robotics
system for manipulation using directed vision feed-
back. Internal report, Robotics laboratory, Harvard
University, Cambridge, MA, 1991.

K. S. Fu, R. C. Gonzalez, and C. S. G. Lee. Robotics:
Control, sensing, vision, and intelligence. McGraw-
Hill Book Company, 1987.

Eugene Kligerman and Alexander Stoyenko. Real-
time Fuclid: A language for reliable real-time sys-
tems. [FEE Transactions on Software Engineering,
12(9):941-949, September 1986.

[15]

[16]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

Harry Lewis. A logic of concrete time intervals. In
Proceedings of the 5th annual IEEE Symposium on
Logic in Computer Scitence, Philadelphia, PA, June
1990. IEEE Computer Society Press.

Nancy Lynch and Hagit Attiya. Using map-
pings to prove timing properties. Technical Re-
port MIT/LCS/TM-412.b, MIT, Cambridge, Mas-
sachusetts, December 1989. Also in Proceedings of the
1990 ACM Symposium on Principles of Distributed
Computing, pp. 265-280.

Nancy Lynch and Kenneth Goldman. 6.852 dis-
tributed algorithms lecture notes: The I/O Automata.
Technical report, Laboratory of Computer Science,

MIT, Cambridge, MA, Fall 1988.

Nancy Lynch and Mark Tuttle. An introduc-
tion to Input/Output Automata. Technical Report
MIT/LCS/TM-373, MIT, Cambridge, Massachusetts,
November 1988.

Nancy Lynch and Frits Vaandrager. Forward and
backward simulations for timing-based systems. Un-
published notes, Massachusetts Institute of Technol-
ogy Laboratory for Computer Science, August 1991.

Fred Schneider. Critical (of) issues in real-time sys-
tems: A position paper. Technical Report 88-914,
Department of Computer Science, Cornell University,
Ithaca, NY, May 1988.

Ramavarapu Sreenivas. Towards a system theory for
interconnected Condition/Fvent systems. PhD thesis,
Carnegie Mellon University, Pittsburgh, PA, Septem-
ber 1990.

John Stankovic and Krithi Ramamritham, editors.
Hard Real-Time Systems. IEEE Computer Society
Press, 1988.

John Stankovic and Krithi Ramamritham. The Spring
Kernel: A new paradigm for real-time operating sys-
tems. ACM Operating Systems Review, 23(3):54-71,
July 1989.

D.A. Stuart and P.C. Clements. Clairvoyance, capri-
cious timing faults, causality, and real-time specifica-
tions. In Proceedings of the 12th IEEE Real-time Sys-
tems Symposium, pages 254-263, San Antonio, Texas,
December 1991.

Mark Tuttle, Michael Meritt, and Francesmary Mod-
ugno. Time constrained automata. MIT/LCS,
November 1988.

André M. van Tilborg and Gary M. Koob, editors.
Foundations of Real-Time Computing: Formal Speci-
fications and Methods. Kluwer Academic Publishers,
1991.

André M. van Tilborg and Gary M. Koob, editors.
Foundations of Real-Time Computing: Scheduling
and resource management. Kluwer Academic Pub-
lishers, 1991.

Niklaus Wirth. Toward a discipline of real-time pro-
gramming. Communications of the ACM, 20(8), Au-
gust 1977.

Pamela Zave. An operational approach to require-
ments specification for embedded systems. [EFFE
Transactions on Software Engineering, 8(3), May
1982.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

