
In Proceedings of COMPASS’94: The Ninth Annual IEEE Conference on Computer Assurance, Gaithersburg, MD, June 1994.

An Ounce of Prevention is Worth a Pound of Cure

Towards Physically�Correct Speci�cations of

Embedded Real�Time Systems

Azer Bestavros
�

Department of Computer Science

Boston University

Boston� MA �����

Abstract

Predictability � the ability to foretell that an implemen�
tation will not violate a set of speci�ed reliability and
timeliness requirements � is a crucial� highly desirable
property of responsive embedded systems� This paper
overviews a development methodology for responsive
systems� which enhances predictability by eliminat�
ing potential hazards resulting from physically�unsound
speci�cations� The backbone of our methodology is a
formalism that restricts expressiveness in a way that
allows the speci�cation of only reactive� spontaneous�
and causal computation� Unrealistic systems � pos�
sessing properties such as clairvoyance� caprice� in��
nite capacity� or perfect timing � cannot even be spec�
i�ed� We argue that this �ounce of prevention� at the
speci�cation level is likely to spare a lot of time and
energy in the development cycle of responsive systems
� not to mention the elimination of potential hazards
that would have gone� otherwise� unnoticed�

� Introduction

A computing system is embedded if it is a component of
a larger system whose primary purpose is to monitor
and control an environment� The leaping advances in
computing technologies that the last few decades have
witnessed have resulted in an explosion in the extent
and variety of such systems� This trend is expected to
continue in the future�

Usually� embedded systems are associated with
critical applications� in which human lives or expensive
machineries are at stake� Their missions are long�lived
and uninterruptible� making maintenance or recon�g�
uration di�cult� Examples include command and con�
trol systems� nuclear reactors� process�control plants�
robotics� avionics� switching circuits and telephony�
data�acquisition systems� and real�time databases� just
to name a few� The sustained demands of the environ�
ments in which such systems operate pose relatively

�This research is supported by NSF �grant CCR����������

rigid and urgent performance requirements� Often�
these requirements are stated as timing constraints on
their behaviors� Wirth ���� singled out this aspect
as the one aspect that di	erentiates real�time from
other sequential and parallel systems� This led to a
body of research on real�time computing� which encom�
passes issues of speci�cation techniques� validation and
prototyping� formal veri�cation� fault�tolerance� safety
analysis� programming languages� development tools�
scheduling� and operating systems��

The absence of a uni�ed suitable formal frame�
work that addresses the aforementioned issues severely
limits the usefulness of these studies� This situation
is further exacerbated considering the range of disci�
plines employed in developing the various components
of an embedded application� For example� in a sim�
ple sensori�motor robotic application �
��� algorithms
from various disciplines like low�level imaging� active
vision� tactile sensing� path planning� compliant mo�
tion control� and non�linear dynamics may be utilized
�
��� Not only are these disciplines di	erent in their ab�
stractions and programming styles� but also they di	er
in their computational requirements� which range from
single�board dedicated processors to massively parallel
general�purpose computers�

In this paper we propose CLEOPATRA�� a program�
ming environment that recognizes the unique require�
ments of responsive embedded systems� CLEOPATRA
features a C�like imperative syntax for the description
of computation� which makes it easier to incorporate
in applications already using C� It is event�driven� and
thus appropriate for embedded process control appli�
cations� In particular� rather than describing behav�
iors using control structures� it describes behaviors us�
ing time�constrained causal structures� CLEOPATRA
is object�oriented and compositional� thus advocat�
ing modularity and reusability� CLEOPATRA is se�

�For comprehensive surveys of recent research in real�time
systems	 the reader is directed to
��	 ��	 �	 ����

�A C�based Language for the Event�driven Object�oriented
Prototyping of Asynchronous T ime�constrained Reactive
Automata�

mantically sound� its objects can be transformed� me�
chanically and unambiguously� into formal automata
for veri�cation purposes� Since
�� an ancestor of
CLEOPATRA has been in use as a speci�cation and sim�
ulation language for embedded time�critical robotic
processes� Our experience con�rms CLEOPATRA�s suit�
ability as a vehicle for the speci�cation and validation
of many embedded and time�critical applications� In
particular� we used it to simulate and analyze asyn�
chronous digital circuits� sensori�motor behavior of au�
tonomous creatures� and intelligent controllers ��� �� ���
A compiler that allows the execution of CLEOPATRA
speci�cations has been developed ��� and is available
via FTP from cs�bu�edu��bestavros�cleopatra��

CLEOPATRA is based on the Time�constrained Re�
active Automata �TRA� formalism ��� ��� Using the
TRA model� an embedded system is viewed as a set
of automata �TRAs�� each representing an autonomous
system entity� TRAs are reactive in that they abide
by Lynch�s input enabling property �
��� they com�
municate by signaling events on their output chan�
nels and by reacting to events signaled on their input
channels� The behavior of a TRA is governed by time�
constrained causal relationships between computation�
triggering events� Using the TRA formalism� there is no
conceptual distinction between a system and a prop�
erty� both are speci�ed as formal objects� This re�
duces the veri�cation process to that of establishing
correspondences � preservation and implementation �
between such objects�

This paper is organized as follows� In Section
�� we overview the TRA model� We emphasize the
TRA operational semantics� which underlies the execu�
tion model of CLEOPATRA� In Section �� we describe
the CLEOPATRA speci�cation�programming language�
along with an example that illustrates our �ounce of
prevention� thesis� In Section �� we present a compiler
that allows the execution of CLEOPATRA speci�cations�
In Section �� we conclude with current and future re�
search directions�

� The TRA Model

The TRAmodel has evolved from our earlier work in ���
extending Lynch�s IOAmodel �
��
�� to suit embedded
and time�constrained computation�

��� Novelties

Previous studies in modeling real�time computing have
focussed on adding the notion of time without regard
to physical properties of the modeled systems� This
makes it possible to specify systems that do not abide
by principles like causality and spontaneity� Using the
TRA model� requirements that are physically impos�
sible to guarantee are not possible to express� This
preventative approach is likely to spare a lot of time
and energy in the development cycle �speci�cation� im�
plementation� and veri�cation� of responsive systems�

The TRA model deals not only with the notion
of time� but also with the notion of space� Events
occur at uniquely identi�able points in time as well
as in state space� Concurrent events are permitted
only if they a	ect disjoint state subspaces� The pay�
o	 for this dual treatment of space and time is mani�
fold� In particular� mappings between various levels of
abstractions for compilation and veri�cation purposes
become more robust as the formalism becomes more
structured�

The TRA model does not allow the speci�cation of
systems that are not reactive� A system is reactive if
it cannot block the occurrence of events not under its
control� This property is crucial for accurate and real�
istic modeling of embedded and real�time systems� A
su�cient condition for reactivity is the input enabling
property proposed in �
��� The TRA model is input en�
abled� It distinguishes clearly between environment�
controlled actions� which cannot be restricted or con�
strained� and locally�controlled actions� which can be
scheduled and disabled�

A non�deterministic system is causal if given two
inputs that are identical up to any point in time� there
exist outputs �for the respective inputs� that are also
identical up to the same point in time� The TRAmodel
enforces causality by requiring that any local action
be produced only as a result of an earlier cause� We
distinguish clearly between causality and dependency�
An event occurs as a result of exactly one earlier event
but may depend on many others as re�ected in the
state of the system� This spares our formalism from
dealing with clairvoyant and capricious behaviors �����

Spontaneity is a notion closely related to causal�
ity� A system is spontaneous if its output actions at
any given point in time t cannot depend on actions
occuring at or after time t� In particular� if an output
occurs simultaneously with �say� an input transition�
the same output could have been produced without
the simultaneous input transition ��
�� Simultaneity
is� thus� a mere coincidence� the output event could
have occurred spontaneously even if the input transi�
tion was delayed� The TRA model enforces spontaneity
by requiring that simultaneously occuring events be in�
dependent� time has to necessarily advance to observe
dependencies�

A computing system that maintains perfect tim�
ing information cannot be implemented� Nevertheless�
formal models �such as the Timed Finite Automata ���
or the Timed Input�Output Automata �
��� allow the
speci�cation of perfect clocks� The TRA model does
not provide for �or allow the speci�cation of� perfect
clocks� As a consequence� the only measure of time
available for system processes has to be relative to im�
perfect� locally�maintained clocks� This distinction be�
tween real time and perceived time is important when
dealing with embedded applications where time prop�
erties are stated with respect to real time� but have to
be preserved relying on perceived time�

��� Basic de�nitions

We adopt a continuous model of time similar to that
used in �
�
��� We represent any point in time by a
nonnegative real t � �� Time intervals are de�ned by
specifying their end�points which are drawn from the
set of nonnegative rationals Q � �� A time interval
is viewed as a traditional set over nonnegative real
numbers� It can be an empty set� in which case it
is denoted by �� it can be a singleton set� in which
case it is denoted by the �t� t�� t � Q� or else it can be
an in�nite set� in which case it is denoted by �tl� tu��
�tl� tu�� �tl� tu�� or �tl� tu� � the right�closed� left�closed�
and open time intervals� respectively� where tl� tu � Q
and tl � tu� The set of all such in�nite time intervals
is denoted by D�

A real�time system is viewed as a set of interact�
ing mealy automata �TRAs�� which communicate with
each other through channels� A channel is an ab�
straction for an ideal unidirectional communication�
The information that a channel carries is called a sig�
nal� which consists of a sequence of events� An event
underscores the occurrence of an action at a speci�c
point in time� An action is a value associated with
a channel� For example� let North� South� East� and
West be the possible values that can be signaled on
some channel MOVE� MOVE�East� is� therefore� a possi�
ble action� The instantiation of MOVE�East� at time
t� denotes the event hMOVE�East� � t�i� The sequence
hMOVE�East� � t�ihMOVE�North� � t�ihMOVE�South� � t�i
� � �etc� constitutes a signal� A signal cannot con�
vey more than one event simultaneously� That is� for
a signal ha� � t�iha� � t�i � � � hak � tki � � � we require that
tk � tk��� k � ��

At any point in time� a TRA is in a given state�
The set of all such possible states de�nes the TRA�s
state space� The state of a TRA is visible and can only
be changed by local computations� Computations �and
thus state transitions� are triggered by actions and
might be required to meet speci�c timing constraints�

��� TRA Objects

De�nition � A Time�constrained Reactive Automa�
ton is a sextuple ��� ��������� �� where

� �� the TRA signature� is the set of all the TRA chan�
nels� It is partitioned into three disjoint sets of
input� output� and internal channels� We denote
these by �in� �out� and �int� respectively� The set
consisting of both input and output channels is the
set of external channels ��ext�� These are the only
channels visible from outside the TRA� The set con�
sisting of both output and internal channels is the
set of local channels ��loc�� These are the locally
controlled channels of the TRA�

� �� � �in is the start channel�
� �� the signaling range function� maps each channel
in � to a possibly in�nite set of values that can be

signaled as actions on that channel� Action sets
of di	erent channels are disjoint� The set of all
the actions of a TRA is given by ����� The set of
input� output� internal� external� and local actions
are similarly given by ���in�� ���out�� ���int��
���ext�� and ���loc�� respectively�

� � is a possibly in�nite set of states of the TRA�
The set � can be expressed as the cross product of
a �nite number of subspaces � ! "��"��� � ��"p�
where p �
 denotes the dimensionality of the state
space�

� � � �������� is a set of possible computational
steps of the TRA� TRAs are input enabled which
means that for every � � ���in�� and for every
� � �� there exists at least one step ��� �� ��� � ��
for some �� � �� Thus� � de�nes a total multi�
function � � �� ���in�� ��

� � ���loc�D��
� is a set of time�constrained

causal relationships �or simply time constraints� of
the TRA� A time constraint �i � is a quadruple
��i� ��

i� �i��i� whose interpretation is that
 if an
action is signaled at time t � � on the channel �i�
then a corresponding action must be �red on the
channel ��

i at time t� 	 t� where t� 	 t � �i� pro�
vided that the TRA does not enter any of the states
in �i for the open interval �t� t���� The channel
�i � � is called the trigger of the time constraint�
whereas ��

i � �loc is called the constrained channel�
�i � � de�nes the set of states that disable the
time constraint� once triggered a time constraint
becomes and remains active until satis�ed or dis�
abled� A time constraint is satis�ed by the �ring of
an action on the channel �i within the time bounds
imposed by the interval �i� it is disabled if the TRA
enters in one of the disabling states in �i before it
is satis�ed�

As an example of a TRA speci�cation� consider the
the up�down counter whose state diagram is shown
in Figure
� The counter accepts commands issued
on the input channel cmd to count up or down and
signals the value of the current count �state� on the
output channel cnt� The counter starts its operation
once an action is �red on the init channel� The value
of the init action determines the starting state of the
counter� The counter is constrained to produce a count
every at least
� and at most ��
 units of time� once it
starts execution� Figure
 shows the TRA�speci�cation
of such a counter�

The �rst three components of a TRA sextuple can
be viewed as de�ning an interface between the TRA and
its environment� In particular� they identify its exter�
nal signature �in ! finit� cmdg��out ! fcntg� the
identity of the start channel �� ! init� along with
the signaling range of all the channels in �ext� The
last three components of a TRA sextuple identify its

�Notice that this condition does not necessitate the existence
of a computational step ��� ��� ��� � � for each � � ���i	 where
�� � ����i� and �� � �	 since the speci�cation of the TRA might
avoid being in � when ��i is scheduled to �re�

behavior� The state space de�nes the spatial struc�
ture of the computation� For the counter of Figure
�
this structure is unidimensionally spanned by �� The
set of computational steps de�nes the e	ect of events
on the state of the TRA� The set of time�constrained
causalities de�nes the rules governing the scheduling
of the TRA�s local events� For the counter of Figure
�
there are two such rules�

��� Space and Time aspects of TRAs

The behavior of a TRA is generally non�deterministic�
Two sources of non�determinism can be singled out�
In a given state there may be a number of choices
concerning the channel and action to be �red� Each
one of these choices results in a di	erent computational
step� This gives rise to control non�determinism� which
presents a spacial uncertainty because di	erent com�
putational steps may a	ect di	erent parts of the TRA
state space� The TRA timing constraints specify lower
and upper bounds on the delay between causes and
e	ects� thus leaving the TRA with a potentially in�nite
number of choices concerning the exact delay to be
exhibited� This gives rise to timing nondeterminism�
Considered separately� control and timing nondeter�
minisms do not violate any physical principles� How�
ever� a combination thereof deserves a closer attention
because it is related to the notions of space and time�

Two computational steps con�ict if both of them
introduce changes to at least one of the subspaces of
the TRA�s state space� This is formally de�ned below�

De�nition � Two steps ��i� �i� ��i�� ��j� �j� �
�
j� � �

con�ict if and only if for some dimension k of ��
�i�k�
! ��i�k� and �j �k�
! ��j �k�� where
 � k � n�

It is important to realize that the con�ict rela�
tionship depends not only on a TRA�s computational
behavior� but also on the structure of its state space�
In particular� two TRAs with isomorphic computational
steps could have very di	erent con�ict relationships
depending on their state space characterizations� The
notion of con�icting computational steps can be eas�
ily extended to actions and channels� This is formally
de�ned below�

De�nition � Two actions �i and �j con�ict if there
exist at least two con�icting computational steps
��i� �i� ��i�� ��j � �j� �

�
j� � �� Two channels �i and �j

con�ict if at least one action from ���i� and one ac�
tion from ���j� con�ict�

The con�ict relationship depicts computational
dependencies that emerge due to sharing information
about state� For two local actions to con�ict� their
respective channels must be under the control of a sin�
gle component of the TRA� The transitive closure of
the con�ict relationship� therefore� de�nes a partition
on the locally�controlled channels of a given TRA�

De�nition � Two local channels �i and �j belongs to
the same component �class� if they con�ict�

The partition into classes of the TRA�s locally�
controlled channels captures some of the structure
of the system the automaton is modeling or the set
of requirements it is specifying� In particular� each
class of channels represents the set of channels locally�
controlled by some system component� This partition�
ing retains the basic control structure of the system�s
primitive components and provides a concrete notion
of spatial locality�

To preserve the non�blocking �input�enabled� na�
ture of the TRA model� it is necessary to insure that
input actions on di	erent channels do not con�ict� A
TRA is improper if at least two of its input channels
con�ict� otherwise it is proper� For the remainder of
this paper� we assume that any TRA is proper�

The notion of system components we are present�
ing here is novel and entirely di	erent from that used
in untimed models to express fairness �
�� by requir�
ing that� in an in�nite execution� each of the system�s
components gets in�nitely many chances to perform
its locally�controlled actions� In timed systems� the
major concern is safe and not necessarily fair execu�
tions ����� Even if required� fairness can be enforced
by treating it as a safety property� liveness properties
can be handled in in�nite execution by requiring time
to grow unboundedly��� This led to the abandoning of
the idea of partitioning a system into components in
our earlier model proposed in ���� Lynch and Vaan�
drager �
� followed suit in their recent modi�cation of
the model proposed in ����� In the TRA model we use
system components to represent what can be termed
as spatial locality� Di	erent actions can be signaled
at the same �time� only if they are not signaled from
the same �place�� they can be produced at the same
�place� only if they do not occur at the same �time��

��� TRA Executions and Behaviors

In standard automata theory� there is no distinction
between choosing a transition and �ring it� they consti�
tute a unique� instantaneous� and atomic activity� In
the TRA model a distinction is made whereby choosing
�scheduling� a transition and executing �committing�
that transition are separate activities� They are dis�
tinct in that they are separated in time� In fact� a
scheduled transition does not have to be committed�
it can be abandoned due to unforseeable conditions�
The distinction between the two activities is also pro�
nounced in the way the TRA model di	erentiates be�
tween input and local events� Input events are not
under the TRA�s control� they cannot be blocked or de�
layed� Local events are under the TRA�s control� they
are time constrained� and could be disabled�

Consider the time constraint �i ! ��i� ��
i� �i��i� �

 � which identi�es a time�constrained causal relation�

�Such executions were called admissible in
���

ship between the events signaled on �i and those sig�
naled on ��

i� The occurrence of a trigger on �i results
in an intention to perform an action on ��

i within the
time frame imposed by �i� The commitment �aban�
donment� of such an intention in due time is condi�
tional on the states assumed by the TRA from when the
intention is posted until it is committed �abandoned��
At any point in time� a TRA might have several out�
standing intentions� In particular� the occurrence of
a single event might generate a number of intentions�
each dictated by a di	erent time constraint� Di	erent
outstanding intentions are not necessarily imposed by
di	erent time constraints� In particular� the repeated
occurrence of a triggering event might generate a num�
ber of outstanding intentions� all of which are imposed
by the same time constraint�

The state of a TRA at an arbitrary point in time is
not su�cient to construct its future behavior� In addi�
tion to the state� the intervals of time where sched�
uled transitions might �re �due to earlier triggers�
have to be recorded� For a given TRA� we de�ne the
intention vector I !
to be a vector of r sets of
intentions� where r ! j j� Each entry in I is as�
sociated with one of the TRA�s time constraints� If
�i ! ��i� ��

i� �i��i� � is one of the TRA�s time con�
straints� then I��i� ! f�i�� �i�� � � � � �ik� � � ��img denotes
a set of m time intervals during which actions on the
channel ��

i are intended to be �red as a result of ear�
lier triggers on �i� Each one of the intervals in #i can
be thought of as an independent activation of the time
constraint �i� An empty intentions set� I��i� ! �� indi�
cates the absence of any activations of �i� The empty
intention vector� I�� consists of r such empty sets�

De�nition � We de�ne the status of a TRA at any
point in time t � � to be the tuple ��� I�� where � and
I are the TRAs state and intention vector at time t�
respectively�

A TRA changes its status only as a response to the
occurrence of an event �input or local�� In other words�
the change in a TRA�s status is necessarily a causal reac�
tion to an input event or to an earlier triggering event�
Five conditions � namely� legality� spontaneity� safety�
causality� and consistency � have to be met for a sta�
tus succession to occur� These are formally speci�ed
below�

De�nition � Assume that the status ��� I� of a TRA
was entered at time t� Furthermore� assume that at a
later time t� 	 t� a set of simultaneous actions �� �
������ �� � ������ � � � � �m � ���m� were �red� where
�j � �� � � j � m� As a result� the TRA will assume a
new status ���� I��� where I� ! �I � I�enabled�	 �I

�
�red �

I�disabled��

The status ���� I �� is called a valid successor of the sta�
tus ��� I� due to the occurrence of the set of simul�
taneous events h��� ��� � � � � �m � t�i� if and only if the
following conditions hold

�� Spontaneity

The channels ��� ��� � � � � �m do not con�ict� they
belong to di	erent TRA components�

�� Legality

There exists some sequence of transitions
��� ��� ���� ��� ��� ���� � � � ��� �m� �m� � �� such that
�m ! ���

� Safety

For every intention �ik � I��i�� t�� � �ik for some
t�� 	 t�� t�� � �� where �i � �

�� Causality

For all �i � �loc� the following conditions
hold
a� If �i
! �j for all
 � j � m then for every

�k ! ��k� �
�
k� �k��k� � for which ��

k ! �i�
I��red��k� ! ��

b� Otherwise� let i � be the set of time con�
straints with �i as the constrained channel�
then there must exist exactly one time con�
straint �r � i such that

� I��red��r� ! f�rkg� where �rk � I��r� and
t� � �rk� and
� I��red��k� ! �� where �k � i and �k
! �r �

�� Consistency

For every time constraint �k ! ��k� �

�
k� �k��k� �

 � the following conditions hold
a� If �� � �k� then
� I�disabled ��k� ! I��k� and
� I�enabled��k� ! ��

b� Otherwise
� I�disabled ��k� ! �� and
� If �k ! �j for some
 � j � m� then
I�enabled��k� ! f�t� $ �i�g� else I �enabled��k� ! ��

In the above de�nition� the spontaneity condition al�
lows the occurrence of simultaneous events only if they
do not con�ict� This guarantees that the transition
from � to �� is independent of the ordering of con�
current computational steps� The legality condition
ensures that the state change from � to �� is the result
of de�ned computational steps� The safety condition
guarantees that no active time constraint expires� In
other words� outstanding intentions are either com�
mitted or abandoned in due time� The causality con�
dition necessitates that local events be causal� they
are signaled only if intended due to an earlier trigger�
Thus� the causality condition guarantees that there is
exactly one committed intention per local event� In
other words� every local event satis�es exactly one in�
tention� The consistency condition requires that the
intentions in I continue to exist in I� unless otherwise
dictated by the occurrence of the set of simultaneous
events h�� � t

�ih�� � t�i � � � h�m � t�i�

We use the notation ��� I� h���������m �t�i
	� ���� I�� to

denote the direct status succession from ��� I� to ���� I��
due to the simultaneous �ring of h�� � t

�i� h�� � t
�i� � � ��

h�m � t�i� Also� we use ��� I� �
	� ���� I�� to denote the

status succession from ��� I� to ���� I�� due to a number
of direct status successions�

A TRA is said to have reached a stable status �%�� %I��

if all entries of the intention vector are empty �%I ! I���
A TRA remains in a stable status until excited by an
input event� This follows directly from the causality
requirement for a status succession�

To start executing� a TRA ��� ��������� � is put
in a stable initial status ���� I��� where I� ! I� and
�� � �� The execution is initiated at time t� with the
�ring of an action �� on the start channel ��� where
�� � ������ An execution e of a TRA is a possibly in�
�nite string of alternating statuses and events� which
starts with an initial status followed by an initiating
event� and which contains an in�nite number of sta�
tus successions �in�nite execution�� or terminates in a
stable status ��nite execution��

We follow an approach similar to that adopted
in �
�� by de�ning � to be a behavior of a TRA A�
if it consists of all the external events appearing in
some execution e of A� We denote the set of all the
possible behaviors of a TRA A by behs�A�� Obviously�
behs�A� describes all the possible interactions that the
TRA Amight be engaged in� and� therefore� constitutes
a complete speci�cation of the system that A models�

A TRA A is said to implement another TRA B if ev�
ery behavior of A is a behavior of B� In other words�
all of A�s behaviors �the implementation� are possible
behaviors of B �the speci�cation�� The reverse� how�
ever� is not true� There might exist behaviors of B
that cannot be generated by A� The notion of a TRA
implementing another is used mainly in veri�cation�

��� TRA Composition

A basic aspect of the TRA model is its capability to
model a complex system by operating on simpler sys�
tem components� In this section we examine such an
operation� namely composition� Other operations �for
example hiding and renaming� were presented in ����

The composition of a countable collection of com�
patible TRAs� fAi � i � Ig� is a new TRA A !
A� � A� � � � ��Ai � � � � ! �i�IAi� The execution of
A involves the execution of all its components Ai�I �
each starting from an initial status and observing every
external event signaled by either the environment �in�
put� or by any TRA in the collection fAi � i � Ig� The
compatibility condition for composition insures that�
for each channel in the composition� there is at most
one writer� a �nite number of readers� and that the sig�
naling ranges of readers and writers are compatible�

The input signature of the composed TRA consists
of those channels that are inputs to one or more of
the component TRAs� and which are not outputs of
any of the component TRAs� The output signature of
the composed TRA consists of all the outputs of all the
component TRAs� Similarily� the internal signature of
the composed TRA consists of all the internal channels
of all the component TRAs� The start channel of the
composed TRA is the start channel of one or more of

its component TRAs�	 The signaling range function
of the composed TRA is de�ned so as to preserve its
input�enabled property� In particular� the signaling
range of an input channel consists of only those actions
that can accepted by all readers of that channel� A
computational step of the composed TRA is necessarily
a step of one of its components� Similarily the time�
constrained causal relationships of the composed TRA
are exactly those of the component TRAs�

In ���� the formal construction of the sextuple rep�
resentation of a composition is given� Also� the rela�
tionships between the behaviors and spatial properties
of the composed TRA and those of its constituent TRAs
are established� In particular� we prove that the sets of
proper� spontaneous� and causal TRAs are closed under
composition�

The TRA composition operation is more general
than those reported in �
�� ��� �� in that it allows the
speci�cation of both parallel and sequential composi�
tion� In particular� the introduction of the start chan�
nel permits the execution of two TRAs to be concurrent
if they share the same start channel� or to be serialized
if the start channel of one �child� is an output of the
other �parent��

� CLEOPATRA Speci�cations

In CLEOPATRA� systems are speci�ed as interconnec�
tions of TRA objects� Each TRA object has a set of
state variables and a set of channels� Time�constrained
causal relationships between events occuring on the
di	erent channels� and the computations �state tran�
sitions� that they trigger� are speci�ed using Time�
constrained Event�driven Transactions �TETs�� The
behavior of a TRA object is described using TETs�
TRA objects can be composed to specify more complex
TRAs�

The correspondence between CLEOPATRA and the
TRA formalism is straightforward� Every object in
CLEOPATRA corresponds to a TRA sextuple� In ���� the
construction of a TRA sextuple� given a CLEOPATRA
object� is detailed�

��� Classes and Objects

A TRA object speci�cation in CLEOPATRA consists of
two components� a header and a body� An object�s
header speci�es its name� the parameters needed for
its instantiation� and its signature� An object�s body
speci�es its behavior� In its simplest form� this entails
the speci�cation of the TRA�s state space and its poten�
tially time�constrained set of reactions to the di	erent
events visible to it� More complex behaviors include
�among others� the speci�cation of� internal channels�
initialization code� and interconnection of local �com�
posed� objects� Figure � shows a BNF�like description
of a TRA object in CLEOPATRA�

�Without loss of generality	 we assume that TRA to be A��

SS S S0 1-1-2 S2

Cnt(0) Cnt(1) Cnt(2)Cnt(-1)Cnt(-2)

Cmd(D)

Cmd(U) Cmd(U)Cmd(U)

Cmd(D)Cmd(D) Cmd(D)

Cmd(U)

Init(0)Init(-1)Init(-2) Init(1) Init(2)

�� � �in ��out ��int 	 where�
�in � fcmd�initg	 �out � fcntg	 and �int � ��
�init � �in is the start channel�
���init� � Z	 ��cmd� � fUp�Downg	 and ��cnt� � Z�
��	 the set of states is given by� f�i � i � Zg�

�� � �
S

i�j�Z
f��i�init�j�� �j�g��

�
S

i�Z
f��i�cmd�UP�� �i���g��

�
S

i�Z
f��i�cmd�Down�� �i���g��

�
S

i�Z
f��i�cnt�i�� �i�g��

�� � f�init�cnt�
��������� ��� �cnt�cnt�
�����������g�

Figure
� TRA�speci�cation of up�down counter�

�tra�object� �� �tra�header� ��	 �tra�body� �
	
�tra�header� �� �TRA�class	 �tra�name� ���	 �tra�params�spec� ��	
 �signature�
�tra�params�spec� �� ��type� �param�id� ��	 �tra�params�spec�

�signature� �� ��ch�list�spec�
 ���	 ��ch�list�spec�

�ch�list�spec� �� �ch�id� � �type� � ���	 �ch�list�spec�

�type� �� �int	 � �double	 � �bool	 � ���
�tra�body� �� ��declarations�
 ��init�
 ��transactions�

�declarations� �� ��state�
 ��internal�
 ��included�

�state� �� �state�	 �state�var�def�
�state�var�def� �� �type� �var�list�def� �	 ��statevar�def�

�var�list�def� �� �var�id� ���	 �constant�exp�
 ���	 �var�list�def�

�internal� �� �internal�	 �signature�
�included� �� �included�	 �included�objects�
�included�objects� �� �tra�instantiation� �	 ��included�objects�

�tra�instantiation� �� �tra�name� ���	 �actual�param�list� ��	
 �ext�binding�
�actual�param�list� �� �constant�exp� ���	 �actual�param�list�

�ext�binding� �� ��ch�list�
 ���	 ��ch�list�

�ch�list� �� �ch�id� ���	 �ch�list�

�init� �� �code�
�transactions� �� ��xact� ��transactions�

�xact� �� �xact�header� ��	 �xact�body�
�xact�header� �� ��trigger�list�
 ���	 �out�sig�spec�
�trigger�list� �� �in�sig�spec� ���	 �trigger�list�

�in�sig�spec� �� �ch�id� ��	 ��var�id�
 ��	
�out�sig�spec� �� �ch�id� ��	 ��exp�
 ��	
�xact�body� �� �act� � ��	 �acts� �
	
�acts� �� �act� ��acts�

�act� �� �computation� � ��condframe�
 �fire�acts� � ��timeframe�
 �fire�acts�
�computation� �� �commit	 ��	 �code� �
	 � �do	 ��	 �code� �
	
�condframe� �� �unless	 ��	�cond���	 � �while	 ��	�cond���	
�timeframe� �� �closed�timeframe� � �open�timeframe�
�closed�timeframe� �� �within	 ��	�constant�exp���	�constant�exp���	
�open�timeframe� �� �before	 �constant�exp� � �after	 �constant�exp�

Figure �� Partial Syntax of a TRA speci�cation in CLEOPATRA

In CLEOPATRA� TRAs are de�ned in classes� For
example� Figure � shows the CLEOPATRA speci�cation
of the class of integrators that use trapezoidal approx�
imation�

TRA�class integrate�double TICK� TICK�ERROR�
in�double� �� out�double�

�
state�
double x� 	 �� x
 	 �� y 	 ��
act�
in�x
� �� �
�

init���out�� �� out�y��
within �TICK�TICK�ERRORTICK�TICK�ERROR�
commit � y 	 y�TICK��x��x
���� x� 	 x
� �

�

Figure �� Integration using the trapezoidal rule�

TRA classes are parametrized� For instance� the
speci�cation of integrate given in Figure � includes
the parameters TICK� and TICK ERROR� which have to
be speci�ed before instantiating an object from that
class�

The header of a TRA class determines its external
signature and signaling range function� For example�
any TRA from the class integrate speci�ed in Figure �
has a signature consisting of an input channel in and
an output channel out� Both in and out carry ac�
tions whose values are drawn from the set of reals� In
CLEOPATRA� the start channel of any given TRA�class is
called init� Start channels do not have to be explicitly
included in the header of a TRA�class� For example� in
the de�nition of the integrate TRA�class given in Fig�
ure �� there is no mention of any init channels in the
external signature speci�ed in the header� yet� init is
used later in the body of integrate�

The body of a TRA class determines the behavior of
objects from that class� Such a behavior can be either
basic or composite� The description of a basic behavior
involves the speci�cation of a state space in the state�
section� the speci�cation of an initialization of that
space in the init� section� and the speci�cation of a
set of Time�constrained Event�driven Transactions in
the act� section� The behavior of an object belonging
to the TRA�class integrate shown in Figure � is an
example of a basic behavior� Composite behaviors� on
the other hand� are speci�ed by composing previously
de�ned� simpler TRA�classes together in the include�
section� For example� in Figure �� the class ramp is
de�ned by composing the integrate and constant

classes together�

�The behavior of an object from the constant class is to
signal the value VAL on its only output channel out every TICK

� TICK ERROR units of time�

TRA�class ramp�� �� y�double�
�
internal�
x�double� �� �

include�
constant �� x�� �
integrate x�� �� y�� �

�

Figure �� CLEOPATRA speci�cation of a ramp gener�
ator�

��� TET Speci�cation

In CLEOPATRA� time�constrained causal relationships
between events on di	erent channels of a TRA�class�
and the computations �state transitions� that they
trigger� are speci�ed using Time�constrained Event�
driven Transactions �TET�� A TET describes the re�
action of a TRA to a subset of events� Such a reaction
might involve responding to triggers and�or �ring ac�
tion�s�� Figure � explains the relation between the
triggering and �ring of actions using TETs�

State

Disable?

Triggering
Channels

Constrained
 Channels

unless

Trigger Fire

within[Tmin~Tmax]

Figure �� Time�constrained Event�driven Transaction�

The description of a TET consists of two parts� a
header and a body� The header of a TET speci�es a set
of triggering channels �trigger section� and a controlled
channel ��re section�� The trigger section speci�es the
e	ect of the triggering actions on the state of the TRA�
It speci�es at most one state variable �per triggering
channel� where the value of a trigger on that channel
is to be recorded� A TET with no triggering section is
triggered every time an action is signaled on any chan�
nel of the TRA� its trigger set is considered to be the
same as the TRA�s signature� The �re section speci�es
the action value to be signaled on the controlled chan�
nel as a result of �ring the TET� An absent expression
means that a random value from the signaling range of
the controlled channel is to be signaled� The body of a
TET describes possible reactions to the TET triggers�
Each reaction is associated with a disabling condition�
a time constraint� and a state transformation schema�

The �rst TET of the integrate class shown in
Figure � is an example of a transaction with only a
trigger section� Every time an action is signaled on
the input channel in� its value is stored in the state
variable x�� The second TET of the integrate class is
an example of a transaction with both a trigger section
and a �re section� Every time an action is signaled
on one of the triggering channels �init or out� an
output action is �red on out after a delay of TICK �
TICK ERROR units of time elapses�

Each reaction in the body of a TET is associated
with three pieces of information� A disabling condi�
tion� a time constraint� and a state transformation
schema� The disabling condition �unless clause� is
a boolean expression �predicate� on the state of the
TRA�� In order to be committed� a reaction�s disabling
condition has to remain false from when the reaction
is triggered until it commits� In other words� an in�
tended reaction is aborted if at any point in time after
its triggering �scheduling�� the disabling condition be�
comes true� The absence of a disabling condition in
a reaction implies that� once scheduled� it cannot be
disabled� The time constraint �within clause�� deter�
mines a lower and upper bound for the real�time de�
lay between scheduling a reaction and committing it�
Only constant expressions are allowed to be used in the
speci�cation of time bounds� Open� closed� and semi�
closed time intervals can be used provided they specify
an interval of time from the set D�� The absence of a
time constraint from a TET speci�cation implies that
the causal relationship between the trigger and its ef�
fect is unconstrained in time� A lower bound of � and
an upper bound of � is assumed in such cases� The
state transformation schema �commit clause� speci�es
a method for computing the next state of the TRA once
a reaction is committed� We adopt a C�like syntax
for the speci�cation of TET methods� Statements in
a TET method are executed sequentially� The state
transition caused by the execution of a TET method
is assumed to be atomic and instantaneous� An absent
commit clause implies that committing the reaction
does not cause any state changes�

��� An Example

Figure � shows the speci�cation of a �nite FIFO ele�
ment in CLEOPATRA� Values fed into the FIFO element
are delayed for some amount of time before being pro�
duced as outputs�

The header of the fifo TRA�class identi�es the
channel in as input� and the channels out� ack and
overflow as outputs� Although not explicitly speci�
�ed as such� the channel init �the start channel� is
assumed to be an input channel� The signaling range

�No side e�ects are permitted in the evaluation of this
condition�

	Current CLEOPATRA processors accept only dense inter�
vals of three forms� ��� Tu�	 �Tl���	 or
Tl� Tu�	 where Tu � Tl �
�� These are introduced using the before	 after	 and within

clauses	 respectively�

TRA�class fifo�int N�
in�float� �� out�float�� overflow��� ack��

�
state�
float y�N��
int i� j�
bool f�
act�
init�� �� ack���
before DLY�MIN
commit �
i 	 �� j 	 �� f 	 FALSE�

�
in�y�i�� �� ack���
before DLY�MIN
commit �
i 	 �i�
��N � if �i		j� f 	 TRUE �

�
in�� �� out�y�j���
unless �f�
within �DLY�MINDLY�MAX�
commit �
j 	 �j�
��N �

�
in�� �� overflow���
unless ��f�
within �DLY�MINDLY�MAX�
�

�

Figure �� CLEOPATRA speci�cation of a �nite FIFO
delay element�

for channels in and out is the set of �oating point num�
bers� whereas the signaling range for channels ack and
overflow consists of only one value� The body of the
fifo TRA�class contains two sections� In the state�
section� the state space of a fifo object is described
by four state variables� a vector y�� of N �oating point
values� two integer values i and j� and a boolean value
f� In the act� section� the behavior of a fifo object
is described by four TETs� each of which underscores
a causal relationship between the events triggering its
execution and those resulting from its execution�

The �rst TET in the body of the FIFO establishes
a causal relationship between events signaled on init
and and those signaled on ack� In particular� �ring
an action on init �the trigger� causes the �ring of an
action on ack �the result� after a a delay of at most
DLY MIN� The second TET establishes a similar causal
relationship between events signaled on in and ack�
The third TET establishes a causal relationship be�
tween events signaled on in and out� In particular�
�ring an action action on in causes the �ring of an
action on out after a delay of at least DLY MIN and
at most DLY MAX elapses� provided that the FIFO did
not over�ow as of the last initialization� The causal
relationship that the fourth TET establishes can be
explained similarly�

In other words	 between input and output transitions�

Each TET in a TRA�class speci�es up to two pos�
sible state transitions� Consider� for example� the sec�
ond TET in the FIFO speci�cation given in Figure ��
In response to a trigger on in� the value of the trig�
gering signal is stored in the state variable y�i�� thus
resulting in a possible state change� Notice that this
transition cannot be blocked or delayed� it is an in�
put transition� The second state transition� an output
transition� occurs with the �ring of an action on ack�
resulting in the adjustment of the values of the state
variables i and f� Notice that the value of the ac�
tion signaled on a local �output or internal� channel
does not re�ect the state change associated with it�
For instance� in the fourth TET of Figure �� the value
signaled on the out channel� namely y�j�� does not
re�ect the changes introduced in the commit clause�
namely advancing the pointer j�

��� Case and Point�

It is important to realize that fifo objects will be�
have as expected only if inputs from the environment
meet certain conditions� In particular� the value of
the index i is not incremented as a result of an input
on the channel in until at least DLY MIN units of time
elapse following the signaling of that input� Thus� an
erroneous behavior will result if two or more events
are signaled on the channel in in a duration of time
shorter than DLY MIN� To avoid such malignant behav�
iors� the environment must wait for an acknowledg�
ment ack����� or else wait for at least DLY MIN before
issuing a new input� Such safety conditions can be
veri�ed using TRA�based veri�cation techniques ����

We argue that any �nite implementation of a
discrete�event delay element must have a �nite capac�
ity� which must not be exceeded for a correct behavior�
Using CLEOPATRA� it is impossible to specify a fifo
class that behaves correctly independent of its environ�
ment�s behavior� This is a direct result of our abidance
by the causality and spontaneity principles� which are
preserved by the TRA model� As we mentioned at the
outset of this paper� it is our thesis that preventing
the speci�cation of physically�impossible objects is de�
sired� At the least it spares system developers from
trying to implement the impossible�

An indirect result of CLEOPATRA�s limited expres�
sivity is to force system speci�cations to be spelled out
at a �lower� level� For example� in CLEOPATRA one
cannot specify a clock that does not drift� This implies
that the consequences of this drift could not be sim�
ply discounted as �implementation details�� Lowering
the level at which speci�cations are expressed advo�
cates a functional speci�cation approach� In contrast
to the black box approach� the operational approach
calls for problem speci�cation by formulating a system
to solve it� The formulated system is given in terms of
implementation�independent structures that� once im�
plemented� would generate the required behavior ����

��An ack�� event is signaled after the input is processed�

� CLEOPATRA Simulation

We have developed a compiler that transforms
CLEOPATRA speci�cations into an event�driven sim�
ulator for validation purposes� We have used the
CLEOPATRA compiler to simulate a variety of systems�
In particular� we used it extensively to specify and
analyze sensori�motor robotics applications ��� and to
simulate complex behaviors of autonomous creatures
���� Figure � shows the di	erent stages involved in the
compilation and execution of speci�cations written in
CLEOPATRA�

.cleo

.cleo

.cleo

C
le

op
at

ra
 P

re
pr

oc
es

so
r

.cleo

.c

.h

.s

C
 C

om
pi

le
r

.h

.out

Specification Compilation Simulation

 System-defined
 TRA-classes, types,
debugging tools, ... etc.

Figure �� Compilation & simulation of CLEOPATRA�

At the heart of this process is a one�pass pre�
processor� written in C� which parses user�de�ned
CLEOPATRA speci�cations� augmented with system�
de�ned TRA classes��� and generates an equivalent C
simulator� This C simulator consists of three compo�
nents� The �rst is a header ��h� �le� which includes
type de�nitions for the state space of the various TRA
classes in the speci�cation� The second is a schema
��s� �le� which includes de�nitions for the state tran�
sition functions of the various TETs� The third is the
code ��c� �le� which includes the simulator initializa�
tion and control structure along with the instantia�
tion code for the various TRA classes� including main�
The �nal step of this process involves the invocation
of the C compiler to produce an executable simula�
tor� Figure
� illustrates a typical session� in which
the CLEOPATRA compiler ccleo is invoked to process
the �le process�ctrl�cleo containing the speci�ca�
tion of the stand�alone process control system shown
in Figures � and �

��System�de�nedTRA classes are mainly for i�o and debugging
purposes�

In CLEOPATRA� any TRA�class with no input chan�
nels represents a stand�alone �closed� system whose
behavior is independent from the outside world� it is
a world of its own� One such TRA�class� namely main�
is singled out by CLEOPATRA to represent the entire
system being speci�ed� For embedded systems� a typ�
ical main TRA�class will simply be the composition of
a programmed system� representing the control sys�
tem� and an external interface� representing the envi�
ronment� For example� the main TRA�class shown in
Figure represents the CLEOPATRA speci�cation of
the closed process control system shown in Figure ��
The execution of a CLEOPATRA stand�alone system is
started by instantiating an object from the TRA�class
main at time�� � and� thereafter� committing only the
legal transitions dictated by the system speci�cation
and the semantics of the TRA model� Figure

 shows
the values signaled on the x and z channels over time�

A library of system�de�ned TRA�classes is avail�
able for debugging and performing I�O in CLEOPATRA�
For example� in the speci�cation of the TRA�class
main given in Figure � the TRA�class fmonitor is
used to record the action values signaled on the x
and z channels in �les x�dat and z�dat respectively�
System�de�ned TRA�classes are themselves speci�ed in
CLEOPATRA� They are di	erent from user�de�ned TRA�
classes in that they have access to global information
known only to the simulator� For instance� fmonitor
objects have access to the simulator�s perfect clock�
clk� whereas user�de�ned TRA�classes have to main�
tain their own locally perceived clocks� if needed�

C functions can be called from within a
CLEOPATRA speci�cation� To maintain the semantics
of the TRA formalism� however� only functions with no
side e	ects should be used� In other words� C function
should be restricted to act as pure operations on the
state variables of an object� It should not reach be�
yond the boundaries of the state space of that object�
Also� it should not alter the structure of the state space
of the object in any way� An example of the use of a
C�function is illustrated in the description of the user
TRA�class of Figure where the function random�� is
called periodically to generate a random set value�

Most of the C preprocessor utilities are available
in CLEOPATRA� This includes simple and parameter�
ized macro de�nition and invocation� constant de��
nition� and nested �le inclusion��� For example� in
the CLEOPATRA speci�cation of the stand�alone pro�
cess control system shown in Figure � system�de�ned
TRA classes are included using the �include directive�
and constants are de�ned using the �define directive�

The simulator has proven to be quite e�cient�
This is due primarily to the causal and compositional
nature of the TRA model� which tends to localize the
computation triggered by the occurrence of an event

��The start time of the simulation can be explicitly speci�ed�
��Current CLEOPATRA processors do not admit conditional

compilation�

within the boundaries of few TETs� The number of
simulated events per second �seps� depends on a num�
ber of factors� the average channel fan�out� the average
number of TETs per TRA� and the complexity of the
event�driven computation� It does not depend� how�
ever� on the size of the state space or on the amount
of TRA nesting� For an application with a fan�out of

 and an average of ��� TETs per TRA� and an O�
�
event�driven computational complexity� the compiled
CLEOPATRA speci�cations executed at a rate of almost

���� seps��� The performance of a simulator for the
same application hand coded directly in C performed
only slightly better� Namely� it executed at a rate of
almost ������ seps� The performance of the simulator
degrades considerably when extensive I�O and tracing
operations are performed��	

� Conclusion

Predictability can be enhanced in a variety of ways� It
can be enhanced by restricting expressiveness as was
done in Real�Time Euclid �
��� by sacri�cing accuracy
as was done in the Flex system �

�� or by abstracting
segmented resources as was done in the Spring kernel
����� The TRA�development methodology we are ad�
vocating here introduces one more way of improving
predictability� that of allowing only physically�sound
speci�cations� Pursuing the ideas presented in this pa�
per will undoubtedly provide us with one more handle
in our persistent quest for predictable systems� An in�
teresting question to be addressed in the future would
be whether this and other handles can be combined in
any useful way to guarantee predictability�

Our experience with the TRA development
methodology in the design� simulation� and analy�
sis of asynchronous digital circuits� sensori�motor au�
tonomous systems� and intelligent controllers con�rms
its suitability for the speci�cation� veri�cation� and
validation of many embedded and time�critical appli�
cations� Its usefulness in the implementation of such
systems� although promising� is yet to be established�

A fruitful direction for future research would
be to automate the process of transforming TRA�
based physically�sound time�critical speci�cations into
provably�correct implementations given appropriate
resources� Such research will have two complementary
� experimental and theoretical � components� The
experimental component would involve the develop�
ment of a compiler to transform CLEOPATRA speci�
�cations into predictable real�time programs� given a
dedicated computing platform� The theoretical com�
ponent would aim at devising e�cient veri�cation al�
gorithms that can be automated and incorporated in
the CLEOPATRA compiler�

��All simulations were performed on a SPARCstation
SLCTMworkstation�

��This is the case in the simulation shown in Figure ��	 where
an almost ��fold decrease in e�ciency can be attributed to the
use of the fmonitor TRA�class�

+
-

World

User Control Plant

Monitor Monitor

Main

x y z

Figure �� A stand�alone process control system�

�include �sysTRA�cleo�

�define TAU �
�define DLY �

TRA�class user�double EPOCH�
�� x�double�

�
act�
init���x�� �� x�random�������
within �����EPOCH�����EPOCH�

TRA�class plant�double GAIN�
y�double� �� z�double�

�
state�
double drive � �� val � �

act�
y�drive� �� �

init��� z�� �� z�val��
within �����DLY�����DLY�
commit �

val � val � GAIN�drive

TRA�class world��
y�double� �� x�double�� z�double�

�
include�
user����� �� x��
plant����� y�� �� z��

TRA�class control��
x�double�� z�double� �� y�double�

�
state�
double s � �� f � �

act�
x�s�� z�f� �� y�s�f��
within ������TAU������TAU�

TRA�class main�� ��
�
internal�
�� x�double��y�double��z�double�

include�
world y�� �� x��� z��
control x��� z�� �� y��
fmonitor��x�dat�� x�� ��
fmonitor��z�dat�� z�� ��

Figure � The main TRA�class�

� ccleo process�ctrl
TRA�class fmonitor�string FILENAME�
init�unit�� signal�double� ��

TRA�class user�double EPOCH�
init�unit� �� x�double�

TRA�class plant�double GAIN�
init�unit�� y�double� �� z�double�

TRA�class world��
init�unit�� y�double� �� x�double�� z�double�

TRA�class control��
init�unit�� x�double�� z�double� �� y�double�

TRA�class main��
init�unit� �� �z�double�	� �y�double�	� �x�double�	

Cleopatra preprocessing completed�
C compilation completed�

� process�ctrl
CPU time � ������� usec � of events � � �� SEPS � �� �����

Figure
�� A typical CLEOPATRA compilation and execution session�

Set Value (X) and System Response (Z) Signals

 Signal X

 Signal Z

Value

Time0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

0.00 0.20 0.40 0.60 0.80 1.00

Figure

� Simulated behavior of an underdamped process control system�

References

��� Rajeev Alur� Costas Courcoubetis� and David Dill�
Model�checking for real�time systems� In Proceedings
of the �th annual IEEE Symposium on Logic in Com�
puter Science� Philadelphia� Pensylvania� June �����
IEEE Computer Society Press�

��� Rajeev Alur and David Dill� Automata for modeling
real�time systems� In Proceedings of TAU���� The
���� ACM International Workshop on Timing issues
in the Speci�cation and Synthesis of Digital Systems�
Vancouver� Canada� August �����

�	� Azer Bestavros� The IOTA
 A model for real�time
parallel computation� In Proceedings of TAU���� The
���� ACM International Workshop on Timing issues
in the Speci�cation and Synthesis of Digital Systems�
Vancouver� Canada� August �����

��� Azer Bestavros� TRA�based real�time executable
speci�cation using CLEOPATRA� In Proceedings of
the ��th Annual Rochester Forth Conference on Em�
bedded Systems� Rochester� NY� June ����� revised
May ������

��� Azer Bestavros� Planning for embedded systems
 A
real�time prospective� In Proceedings of AIRTC����
The �rd IFAC Workshop on Arti�cial Intelligence
in Real Time Control� Napa�Sonoma Region� CA�
September �����

��� Azer Bestavros� Speci�cation and veri�cation or real�
time embedded systems using the Time�constrained
Reactive Automata� In Proceedings of the �	th IEEE
Real�time Systems Symposium� pages ������	� San
Antonio� Texas� December �����

��� Azer Bestavros� Time�constrainedReactive Automata�
A novel development methodology for embedded real�
time systems� PhD thesis� Harvard University� Di�
vision of Applied Sciences Department of Computer
Science�� Cambridge� Massachusetts� September �����

��� Azer Bestavros� James Clark� and Nicola Ferrier�
Management of sensori�motor activity in mobile
robots� In Proceedings of the ���� IEEE Interna�
tional Conference on Robotics
 Automation� Cinci�
nati� Ohio� May ����� IEEE Computer Society Press�

��� Azer Bestavros� Devora Reich� and Robert Popp�
Cleopatra compiler design and implementation� Tech�
nical Report TR�������� Computer Science Depart�
ment� Boston University� Boston� MA� August �����

���� Alan Burns and Andy Wellings� Real�time systems
and their programming languages� Addison Wesley Co�
International Computer Science Series�� �����

���� Jen�Yao Chung� Jane Liu� and Kwei�Jay Lin� Schedul�
ing periodic jobs that allow imprecise results� IEEE
Transaction on Computers� ����
��������	� Septem�
ber �����

���� James Clark� Nicola Ferrier� and Lei Wang� A robotics
system for manipulation using directed vision feed�
back� Internal report� Robotics laboratory� Harvard
University� Cambridge� MA� �����

��	� K� S� Fu� R� C� Gonzalez� and C� S� G� Lee� Robotics�
Control� sensing� vision� and intelligence� McGraw�
Hill Book Company� �����

���� Eugene Kligerman and Alexander Stoyenko� Real�
time Euclid
 A language for reliable real�time sys�
tems� IEEE Transactions on Software Engineering�
����
�������� September �����

���� Harry Lewis� A logic of concrete time intervals� In
Proceedings of the �th annual IEEE Symposium on
Logic in Computer Science� Philadelphia� PA� June
����� IEEE Computer Society Press�

���� Nancy Lynch and Hagit Attiya� Using map�
pings to prove timing properties� Technical Re�
port MIT�LCS�TM�����b� MIT� Cambridge� Mas�
sachusetts� December ����� Also in Proceedings of the
���� ACM Symposium on Principles of Distributed
Computing� pp� ��������

���� Nancy Lynch and Kenneth Goldman� ����� dis�
tributed algorithms lecture notes
 The I�O Automata�
Technical report� Laboratory of Computer Science�
MIT� Cambridge� MA� Fall �����

���� Nancy Lynch and Mark Tuttle� An introduc�
tion to Input�Output Automata� Technical Report
MIT�LCS�TM�	�	� MIT� Cambridge� Massachusetts�
November �����

���� Nancy Lynch and Frits Vaandrager� Forward and
backward simulations for timing�based systems� Un�
published notes� Massachusetts Institute of Technol�
ogy Laboratory for Computer Science� August �����

���� Fred Schneider� Critical of� issues in real�time sys�
tems
 A position paper� Technical Report �������
Department of Computer Science� Cornell University�
Ithaca� NY� May �����

���� Ramavarapu Sreenivas� Towards a system theory for
interconnected Condition�Event systems� PhD thesis�
Carnegie Mellon University� Pittsburgh� PA� Septem�
ber �����

���� John Stankovic and Krithi Ramamritham� editors�
Hard Real�Time Systems� IEEE Computer Society
Press� �����

��	� John Stankovic and Krithi Ramamritham� The Spring
Kernel
 A new paradigm for real�time operating sys�
tems� ACM Operating Systems Review� �		�
������
July �����

���� D�A� Stuart and P�C� Clements� Clairvoyance� capri�
cious timing faults� causality� and real�time speci�ca�
tions� In Proceedings of the �	th IEEE Real�time Sys�
tems Symposium� pages ������	� San Antonio� Texas�
December �����

���� Mark Tuttle� Michael Meritt� and Francesmary Mod�
ugno� Time constrained automata� MIT�LCS�
November �����

���� Andr�e M� van Tilborg and Gary M� Koob� editors�
Foundations of Real�Time Computing� Formal Speci�
�cations and Methods� Kluwer Academic Publishers�
�����

���� Andr�e M� van Tilborg and Gary M� Koob� editors�
Foundations of Real�Time Computing� Scheduling
and resource management� Kluwer Academic Pub�
lishers� �����

���� Niklaus Wirth� Toward a discipline of real�time pro�
gramming� Communications of the ACM� ����� Au�
gust �����

���� Pamela Zave� An operational approach to require�
ments speci�cation for embedded systems� IEEE
Transactions on Software Engineering� �	�� May
�����

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

