
WWW Traffic
Reduction and Load
Balancing through
Server-Based Caching
Azer Bestavros
Boston University

Arecent solicitation from the National Science Foundation
deemed two research topics critical for projected applica-
tions of the National Information Infrastructure:1

• New techniques for organizing cache memories and other buffering
schemes to alleviate memory and network latency and to increase
bandwidth.

• Partitioning and distribution of system resources throughout a dis-
tributed system to reduce the amount of data that must be moved.

Most caching studies for large distributed information systems con-
centrate on client-based caching, which caches recently and frequently
accessed information at the client (or at a proxy thereof) in anticipation
of future accesses to that information (see the “Client-based caching
research” sidebar). However, these techniques are myopic: they focus
exclusively on caching at a particular client or set of clients, and hence
are likely to have limited impact.

The Object Caching Environments for Applications and Network Ser-
vices (Oceans) group, part of Boston University’s Computer Science
Department, has developed a more global solution that allows the repli-
cation of information on a supply-and-demand basis. This process is con-
trolled by servers, which unquestionably have a better view of data-access
patterns than clients have.

56 1063-6552/97/$10.00 © 1997 IEEE IEEE Concurrency

This caching
protocol exploits the
geographic and
temporal locality of
reference exhibited in
client-access patterns.
It automatically and
dynamically
disseminates popular
data toward
consumers.

Client-Server Computing

.

January–March 1997 57

Usually, client-based caching research
has dealt with distributed file systems1

such as the Sun NFS,2 the Andrew
File System,3 and the Coda system.4
Recently, some researchers have tried
to extend these techniques to distrib-
uted information systems such as FTP
and HTTP.

Peter Danzig, Richard Hall, and
Michael Schwartz have studied caching
to reduce the bandwidth requirements
for the FTP protocol on the NSFnet.5
Their study shows that a hierarchical
caching system that caches files at core
nodal switching subsystems reduces the
NSFnet backbone traffic by 21%.
Swarup Acharya and Stanley Zdonik
have studied how data placement and
replication affect network traffic, using
file access patterns to suggest a distrib-
uted dynamic replication scheme.6
Christos Papadimitrou, Srinivas Rama-
nathan, and P. Venkat Rangan have
suggested a more static solution based
on fixed network and storage costs for
the delivery of multimedia home enter-
tainment.7 Susan Eggers and Randy
Katz have simulated a two-level caching
system that reduces network and server
loads.8 Matthew Blaze has proposed a
dynamic hierarchical file system that
supports demand-driven replication,
whereby clients can service requests
issued by other clients from the local
disk cache.9 Michael Dahlin and his
colleagues have suggested a similar
cooperative caching idea.10

Steven Glassman presented one of
the earliest attempts at caching on the
Web. His method organized satellite
relays (proxy caches) into a tree-
structured hierarchy, with cache
misses in lower relays percolating up
through higher relays until the
requested object is found.11 The per-
formance of this caching system for a
single relay with a rather small cache
indicated that maintaining a fairly sta-
ble 33% hit rate is possible. Using a
Zipf-based model, Glassman extrap-
olated the performance of such a sys-
tem for large caches. (A Zipf-based
model is a simulation model that uses
a Zipf distribution, whose parameters
are estimated empirically from traces,
to synthetically model the popularity
of documents.) In particular, he esti-
mated that with an infinite-size cache,

the maximum achievable hit rate is
40%. Mimi Recker and James Pitkow
made another early attempt to char-
acterize Web access patterns to engi-
neer Web caching systems.12 They
based their model for Web informa-
tion access on two metrics borrowed
from psychology research on human
memory: the frequency and recency
rates of past accesses.

Stephen Williams and his colleagues
present a taxonomy (and compare the
performance) of a number of proxy
cache replacement policies.13 Their

work suggests that proxy cache man-
agement should consider document
sizes when making replacement deci-
sions. Jean-Chrysostome Bolot and
Philipp Hoschka have confirmed this
idea.14 They showed the usefulness of
using information about document size
and network load in the replacement
algorithms of Web caches, based on
time-series-analysis techniques of Web
traffic. Marc Abrams and his colleagues
have presented similar results about the
inadequacy of classic LRU (least re-
cently used) cache replacement.15

Client-based caching research

References
1. J.H. Howard et al., “Scale and Performance in a Distributed File System,” ACM

Trans. Computer Systems, Vol. 6, No. 1, Feb. 1988, pp. 51–81.

2. R. Sandber et al., “Design and Implementation of the Sun Network File System,”
Proc. Usenix Summer Conf., Usenix Assoc., Berkeley, Calif., 1985, pp. 78–91.

3. J.H. Morris et al., “Andrew: A Distributed Personal Computing Environment,”
Comm. ACM, Vol. 29, No. 3, Mar. 1986, pp. 184–201.

4. M. Satyanarayanan et al., “Coda: A Highly Available File System for a Distributed Work-
station Environment,” IEEE Trans. Computers, Vol. 39, No. 4, Apr. 1990, pp. 447–459.

5. P. Danzig, R. Hall, and M. Schwartz, “A Case for Caching File Objects inside Inter-
networks,” Tech. Report CU-CS-642-93, Dept. of Computer Science, Univ. of Col-
orado, Boulder, Colo., 1993.

6. S. Acharya and S.B. Zdonik, “An Efficient Scheme for Dynamic Data Replication,” Tech.
Report CS-93-43, Dept. of Computer Science, Brown Univ., Providence, R.I., 1993.

7. C.H. Papadimitriou, S. Ramanathan, and P.V. Rangan, “Information Caching for
Delivery of Personalized Video Programs on Home Entertainment Channels,” Proc.
Int’l Conf. Multimedia Computing and Systems, IEEE CS Press, 1994, pp. 214–223.

8. D. Muntz and P. Honeyman, “Multi-Level Caching in Distributed File Systems or
Your Cache Ain’t Nuthing but Trash,” Proc. Winter 1992 Usenix, Usenix Assoc.,
1992, pp. 305–313.

9. M.A. Blaze, Caching in Large Scale Distributed File Systems, PhD thesis, Computer
Science Dept., Princeton Univ., Princeton, N.J., 1993.

10. M.D. Dahlin et al., “Cooperative Caching: Using Remote Client Memory to Improve
File System Performance,” First Symp. Operating Systems Design and Implementation
(OSDI), Usenix Assoc., 1994, pp. 267–280.

11. S. Glassman, “A Caching Relay for the World Wide Web,” Proc. First Int’l Conf.
WWW, North-Holland, Amsterdam, 1994, pp. 69–76.

12. M.M. Recker and J.E. Pitkow, “Predicting Document Access in Large, Multimedia
Repositories,” Tech. Report VU-GIT-94-35, Graphics, Visualization, and Usabil-
ity Center, Georgia Tech, Atlanta, 1994.

13. S. Williams et al., “Removal Policies in Network Caches for World-Wide Web Doc-
uments,” http://ei.cs.vt.edu/%7esucceed/96WAASF1/, Virgina Polytechnic Inst. and
State Univ., Blacksburg, Va., 1996.

14. J.-C. Bolot and Philipp Hoschka, “Performance Engineering of the World Wide
Web: Application to Dimensioning and Cache Design,” Proc. Fifth Int’l Conf. WWW,
Elsevier Press, Amsterdam, 1996; http://www5conf.inria.fr/fich_html/papers/P44/
Overview.html.

15. M. Abrams et al., “Caching Proxies: Limitations and Potentials,” Proc. Fourth Int’l
Conf. WWW, O’Reilly & Associates, Sebastopol, Calif., 1995, pp. 312–319.

.

58 IEEE Concurrency

Our protocol reduces the load on popular servers by
duplicating (on other servers) a small percentage of
their data. The extent of this duplication (how much,
where, and on how many sites) depends on two factors:
the server’s popularity and the expected reduction in
traffic if the dissemination is in a particular direction.
In other words, our protocol provides a mechanism that
automatically and dynamically disseminates popular
data toward consumers—the more popular the data,
the closer it gets to the clients. Demand-based dissem-
ination of information from producers to consumers is
not a new idea: it is used in the retail and newspaper
businesses, among other things. In this article, I pro-
pose the same philosophy for distributed information
systems. (See the “Related work” sidebar for research
similar to ours.)

We used the World Wide Web as the underlying dis-
tributed computing resource to be managed. First, the
WWW offers an unmatched opportunity to inspect a
wide range of distributed object types, structures, and
sizes. Second, thousands of institutions worldwide have
fully deployed the WWW, which gives us an unparal-
leled opportunity to apply our findings to a real-world
application.

Using extensive log data from HTTP servers, we’ve
developed an analytical model of our protocol. This
model demonstrates how to implement such dissemi-
nation, both efficiently and with minimal changes to the
Internet’s prevailing client-server infrastructure. Trace-
driven simulations based on the data have quantified the
potential performance gains from dissemination.

Client-based caching and locality
of reference
In a comprehensive study of client-based caching for the
Web, the Oceans group established its limited effective-
ness for very large distributed information systems.2 The
study measured the effectiveness of session caching, host
caching, and LAN proxy caching, using a unique set of
5,700 client traces (almost 600,000 URL requests) that
we obtained by instrumenting Mosaic.3 We concluded
that LAN proxy caching is ultimately limited by the low
level of sharing of remote documents among clients of
the same site. This finding agrees with Steven Glassman’s
predictions4 and was further confirmed for general proxy
caching by Marc Abrams and his colleagues.5

To understand client-based caching’s limited effec-
tiveness, we need to consider how locality of reference con-
tributes to enhanced cache performance. Access pat-
terns in a distributed information system (such as the
WWW) exhibit three locality of reference properties:
temporal, geographical, and spatial. Temporal locality
implies that recently accessed objects will likely be
accessed again. Geographical locality implies that an
object accessed by a client will likely be accessed again
by nearby clients. This property is similar to the proces-
sor locality of reference exhibited in parallel applica-
tions.6 Spatial locality implies that an object near a
recently accessed object will likely be accessed.

If client-based caching occurs on a per-session basis
(that is, the cache is cleared at the start of each client
session), only temporal locality of reference can be
exploited. The results of our client-based caching study
suggest that for a single client, the temporal locality of
reference is quite limited, especially for remote docu-
ments. In particular, we found that even with an infinite
cache size, the average byte hit rate is limited to 36% and
could be as low as 6% for some client traces. (The byte
hit rate is a “normalized” hit rate that takes into account
the size of the objects that are accessed.) This poor per-
formance could be attributed to the “surfing” behavior
of clients, which implies that recently examined docu-
ments are rarely revisited.

If client-based caching is on a per-site basis (that is,
all clients share a common proxy cache), you would
expect improved cache performance as a result of the
geographical locality of reference. However, the results
of our study suggest that for remote documents, the
amount of sharing between clients is limited. In par-
ticular, we found that even with an infinite proxy cache
size, the average byte hit rate improves only from 36%
to 50%.

Ca
ch

e
ex

pa
ns

io
n

in
de

x

7.0

6.5

6.0

5.5

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

50403020100

Slope of perfect geographic locality of reference

Number of clients

Byte hit rate
6%
8%
10%
12%

Sl
op

e o
f n

o
ge

og
ra

ph
ic

lo
ca

lit
y o

f r
ef

er
en

ce

Figure 1. The cache expansion index (the rate at which
the proxy cache should be inflated to maintain a
constant byte hit rate).

.

January–March 1997 59

Figure 1, based on the data in our study, illustrates
this point. It plots the cache expansion index: the rate at
which the proxy cache (called LAN cache in our study)
should be inflated to maintain a constant byte hit rate.
The figure indicates that the CEI is proportional to the
number of clients (N) sharing the proxy cache. For a
large number of clients concurrently using the cache,
the CEI is linearly related to N and does not seem to
level off.

Figure 1 does not imply that the relationship between
the CEI and N will continue to be linear for even larger
values of N; it only implies that for the levels of con-
currency likely to be aggregated at a single site through
a proxy cache, the relationship is linear. To get a higher
level of concurrency, we need to think about an econ-
omy of scale far beyond what a proxy cache at, say, an
organization can provide.

Therefore, temporal and geographical locality of ref-
erence for WWW access patterns are not strong enough
to result in an effective caching strategy at a single client
or site. However, we can exploit temporal and geo-
graphical locality of reference on a much larger scale
(for example, thousands of clients), as I’ll explain.

The premise of dissemination

To quantify the available locality of reference that could
be exploited on the WWW, we collected extensive
server traces from the HTTP server of Boston Univer-
sity’s Computer Science Department (http://cs-www.
bu.edu) and from the HTTP server of the Rolling
Stones Web site (http://www.stones.com/). Table 1 sum-
marizes these traces. Unless I state otherwise, this data
drove our model validation and trace simulations.

Carlos Cunha, Mark Crovell, and I have documented
the highly uneven popularity of various Web docu-
ments.3 This study confirmed the applicability of Zipf’s
law7,8 to Web documents. Zipf’s law originally applied
to the relationship between a word’s popularity in terms
of rank and its frequency of use (it has subsequently been
applied to other examples of popularity in the social sci-
ences.). It states that if you rank the popularity of words
in a given text (ρ) by their frequency of use (P), then P
, 1/ρ. This distribution is a parameterless hyperbolic

distribution—that is, ρ is raised to exactly −1, so that the
nth-most-popular document is exactly twice as likely to
be accessed as the 2nth-most-popular document.

Our data shows that Zipf’s law applies quite strongly
to Web documents serviced by Web servers. Figure 2a
demonstrates this for all 2,018 documents accessed in
data set 1 (see Table 1). The figure shows a log-log plot
of the total number of references (y axis) to each docu-
ment as a function of the document’s rank in overall
popularity (x axis). The tightness of the fit to a straight
line is strong (R2 = 0.99), as is the line’s slope: −0.95
(shown in the figure). So, the exponent relating popu-
larity to rank for Web documents is very nearly −1, as
Zipf’s law predicted. Out of some 2000+ files available
through the WWW server, the most popular 256-
Kbyte block of documents (that is, 0.5% of all available

Related work

James Gwertzman and Margo Seltzer’s research1 is
closest to ours. In particular, they propose geographical
push-caching. This method lets servers decide when and
where to cache information, based on geographical
information: the distance in miles between servers and
clients. Their work assumes that the physical distance
between two Internet nodes correlates with the number
of hops between these nodes. Abdelsalam Heddaya and
Sulaiman Mirdad attempt to achieve load-balancing
among servers through automatic document dissemi-
nation by adding a caching component to routing pro-
tocols.2 Such an approach requires the implementation
of new transport protocols and thus does not apply to
current TCP/IP-based networks.

References
1. J.S. Gwertzman and M. Seltzer, “The Case for Geo-

graphical Push-Caching,” Proc. Fifth Workshop on Hot Top-
ics in Operating Systems (HotOS-V), IEEE Computer Soci-
ety Press, Los Alamitos, Calif., 1995, pp. 51–55.

2. A. Heddaya and S. Mirdad, “Wave: Wide-Area Virtual
Environment for Distributing Published Documents,”
Proc. SIGCOMM’95: Workshop on Middleware, Cam-
bridge, Mass., 1995; http://www.cs.bu.edu/faculty/heddaya/
Papers-NonTR/middleware95.html.

Table 1. Summary statistics for log data used in this article.

CS-WWW.BU.EDU WWW.STONES.EDU

DATA SET 1 DATA SET 2 DATA SET 3

Days 56 182 110
URL requests 172,635 585,739 4,068,432
Mbytes transferred 1,447 6,544 112,015
Average daily transfer in Mbytes 26 36 1,018
Files on system 2,018 2,679 N/A
Files accessed (remotely) 974 (656) 1,628 (1,032) N/A (1,151)
Size of file system (amount accessed) in Mbytes 50 (37) 62 (42) N/A (402)
Unique clients (10+ requests) 8,123 8,474 60,461

.

60 IEEE Concurrency

documents) accounted for 69% of all requests. Only
10% of all blocks accounted for 91% of all requests!

This observation leads to the following question:
How much bandwidth could be saved if requests for
popular documents from outside the LAN were han-
dled at an earlier stage (for example, using a proxy at the
“edge” of the organization)? Figure 2b shows the per-
centage of the server load (measured in total bytes ser-

viced) that would be saved if some other server serviced
various block sizes, starting with the most popular blocks
and progressing to less popular blocks.

We corroborated our observations by analyzing the
HTTP logs of the Rolling Stones server from Novem-
ber 1, 1994, to February 19, 1995. As Table 1 shows,
this server—unlike the cs-www.bu.edu HTTP server—
is intended to serve remote clients exclusively. It is a
very popular server, servicing more than 1 Gbyte of
multimedia information per day to tens of thousands of
(distinct) clients. (During the analysis period, the server
handled 1,009,146,921 bytes per day, and 60,461 clients
retrieved at least 10 files.)

Figure 3a shows the access frequency for all documents
that were serviced at least once. Figure 3b shows the per-
centage of the remote bandwidth that would be saved if
some other server handled various block sizes of decreas-
ing popularity. Of the 400 MBytes of information
accessed at least once (the total number of bytes available
from that server is much larger than 400 MBytes), only 21
MBytes (5.25%) were responsible for 85% of the traffic.

A closer look at the logs of http://cs-www.bu.edu, which
is a typical server that caters primarily to local clients,
reveals three classes of documents. Figure 4 shows the
ratio of remote-to-local (and local-to-remote) accesses
for each of the 974 documents accessed at least once. Of
these documents, 99 had an access ratio larger than
85%—these are remotely popular documents; 510 docu-
ments had an access ratio smaller than 15%—these are
locally popular documents; 365 documents had an access
ratio between 85% and 15%—these are globally popular
documents. Servers could easily classify documents into
these three classes (based on temporal and geographical
locality of reference), to decide which documents to dis-
seminate and where to disseminate them.

An important factor that could affect our dissemina-
tion protocol’s performance is the rate at which popu-
lar documents are updated. The more frequently these
documents are updated, the more frequently the home
server must refresh the replicas at the proxies. In a
related study, we monitored the date of last update of
remotely, locally, and globally popular documents for a
six-month (26-week) period.9 The period started with
the 56-day period of Table 1, and continued for another
126 days. Both remotely popular and globally popular
documents were updated very infrequently (less than
0.5% update probability per document per day). Locally
popular documents were updated more frequently
(about 2% update probability per document per day).
(We counted multiple updates to a document in one day

Lo
ad

 re
du

ct
io

n
(%

)

100

90

80

70

60

50

40

30

20

10

0

5,000

2,000

1,000

500

200

100

50

20

10

5

2

1
1,000100101

Document rank
(a)

Ac
ce

ss
 fr

eq
ue

nc
y

(to
ta

l n
um

be
r o

f r
ef

er
en

ce
s)

50403020100

Mbytes disseminated

(b)

Figure 2. The popularity of documents versus their
rank (a), and the potential load reduction from
dissemination (b).

.

January–March 1997 61

as one update.) This result suggests that the documents
most likely to be disseminated are the ones least likely
to change. James Gwertzman and Margo Seltzer have
further investigated the significance of these findings,
in the context of WWW cache consistency.10

System model and analysis

In our model, home servers (producers) disseminate infor-
mation to service proxies (agents) closer to clients (con-
sumers). We assume a many-to-many mapping between
home servers and service proxies. A service proxy and
the set of home servers it represents form a cluster. We
model the WWW as a hierarchy of such clusters.

Our notion of a service proxy is similar to that of a
client proxy, except that the service proxy acts on behalf
of a cluster of servers rather than a cluster of clients. In
practice, we envision service proxies to be information
outlets that are available throughout the Internet, and
whose bandwidth could be, for example, rented. Alter-
nately, service proxies could be public engines, part of
a national computer information infrastructure, similar
to the NSF backbone. For the remainder of this article,
proxy means a service proxy.

Our model does not limit the number of proxies that
could be used to “front end” a particular server. Each
server in the system might belong to a number of clus-
ters, and thus might have a number of proxies acting on
its behalf, thereby disseminating its documents along
multiple routes (or toward various subnetworks). A
server can use (through bidding, for example) a subset
of these proxies to disseminate its data to clients.

For a given home server, we view the WWW clien-
tele as a tree rooted at the server. The tree’s leaves are
the clients, and the internal nodes are the potential prox-
ies. In “Performance evaluation,” I’ll describe an effi-
cient technique for building such a tree. Furthermore,
by analyzing the access patterns of clients (as recorded
in the server logs), we can optimally locate the set of
nodes to use as proxies for that home server. (We did
this for the http://cs-www.bu.edu home server, whose 26-
week clientele tree consisted of more than 34,000
nodes.)

A RESOURCE ALLOCATION STRATEGY AT SERVICE

PROXIES

Let C = S0, S1, S2, …, Sn denote all the servers in a clus-
ter, where server S0 is distinguished as the proxy of
cluster C. Let Ri denote the total number of bytes per

Figure 3. Access frequency (a), and projected
bandwidth reduction (b), for the www.stones.com
server.

Figure 4. Local versus remote popularity of
documents.

Ac
ce

ss
 fr

eq
ue

nc
y

(to
ta

l n
um

be
r o

f r
ef

er
en

ce
s)

220,000

200,000

180,000

160,000

140,000

120,000

100,000

80,000

60,000

40,000

20,000

1,000
File rank

800600400200

Se
rv

er
 lo

ad
 re

du
ct

io
n

(%
)

100

90

80

70

60

50

40

30

20

10

0

(a)

500400300200100
(b)

0
Document size (Mbytes)

100

80

60

40

20

0
1,000800600400200

Remotely
popular

documents

Globally
popular

documents

Locally
popular

documents

Local to remote

Remote to local

0

Ac
ce

ss
 ra

tio
 (%

)

File rank

.

62 IEEE Concurrency

unit time (say, one day) serviced by Si in C to clients out-
side that cluster. Furthermore, let Hi(b) denote the prob-
ability that a request for a document on Si can be ser-
viced at proxy S0 as a result of disseminating the most
popular b bytes from Si to S0. Finally, let Bi denote the
number of bytes that proxy S0 duplicates from server Si,
and let B0 denote the total storage space available at
proxy S0 (that is, B0 = B1 + B2 + … + Bn). By intercepting
requests from outside the cluster, S0 should be able to
service a fraction, αC, of these requests.

(1)

The objective of S0 is to allocate storage spaces B1,
B2, …, Bn to maximize the value of αC, subject to the
constraint that B0 ≤ B1 + B2 + … + Bn. This is a con-
strained-maximum problem, which can be solved using
the Lagrange multiplier theorem. Thus, the maximum
for αC occurs when for all j = 1, 2, …, n,

(2)

where hj(Bj) denotes the probability density function
corresponding to Hj(Bj). Equation 2 uses the value of k
(the Lagrange multiplier) to satisfy B0 = B1 + B2 + … +
Bn.

Our desire to make our protocol useful restricts the
type of assumptions we could make. Thus, in our proto-
col, we have avoided using any parameters that could not
be readily estimated from available logs of network pro-
tocols (for example, HTTP and FTP). However, future
work along the same lines could use other information
to better tune the system. For example, if information
about the communication cost between servers, proxies,
and clients is available, our protocol could be easily
adapted to weigh such knowledge into our resource-
allocation methodology.

ANALYSIS UNDER AN EXPONENTIAL POPULARITY

MODEL

We’ll use an exponential model to approximate the func-
tion Hi(b). We assume that for i = 1, 2, …, n,

, where λi is the distribution’s constant.
The probability density function to Hi(b) is hi(b), where

(3)

Given a server Sj, where 1 ≤ j ≤ n, we substitute for hj(b)
in Equation 2 to get a value for Bj.

(4)

Equation 4 specifies a set of n equations to ration the
total buffering space B0 available at S0 among the servers
Si, for i = 1, 2, …, n. To do so, we must find the value of
the constant k. We do this by observing the require-
ment that B0 ≤ B1 + B2 + … + Bn, which results in this
expression for k:

(5)

Substituting for k from Equation 5 into Equation 4, we
get the optimum storage capacity to allocate on S0 for a
particular server Sj, where 1 ≤ j ≤ n.

These calculations require that Ri and λi be estimated, for
i = 1, 2, …, n. This can be easily and efficiently computed
from the server logs. Actually, Figure 2 was produced by a
program that computed these parameters for cs-www.
bu.edu. Moreover, our measurements suggest that these
parameters are quite static, in that they change only slightly
over time. Hence, the calculation of Ri and λi, as well as the
allocation of storage space on S0 for servers Si, for i = 1, 2,
…, n, need not be done frequently. They could occur either
off line or periodically (for example, weekly).

SPECIAL CASES

To help explain our demand-based document-dissem-
ination protocol, I’ll present three special cases.

Equally effective duplication
Let λi = λ for i = 1 , 2, …, n. That is, let’s assume that the

k =
()

















=

=

∑

∑

∏ =1

1

1

1

1
1

0

1

R

R

e
i

i

n

i i
i

n

B

i ii

n

λ λ λ

B
R

R
j

j j

i
i

n

j

=



















=
∑

log
λ

λ

k

1

1

h b

b
H b ei i i

bi() = () = − ⋅δ
δ

λ λ

H b ei
bi() = − − ⋅1 λ

δ
δ

α

δ
δ

B

B

R H B

R

h B
R

R

j

j

i i i
i

n

i
i

n

j j

i
i

n

j

C =

× ()

















=

() = ⋅

=

=

=

∑

∑

∑

k k

k

k

, for a constant

1

1

1

αC =
× ()

=

=

∑

∑

R H B

R

i i i
i

n

i
i

n
1

1

..

January–March 1997 63

reduction in bandwidth that results from duplicating
some number of bytes from a particular server Sj is equal
to the reduction in bandwidth that results from dupli-
cating the same number of bytes from any other server
Si for i = 1, 2, …, n. Substituting in Equation 5 and then
Equation 4, we get

(6)

Equation 6 suggests that popular servers are allocated
extra storage capacity on the proxy. This extra storage
depends on two factors: 1/λ, which is a measure of dupli-
cation effectiveness, and

which reflects a server’s popularity relative to the geo-
metric mean of all servers in the system. This dual
dependency on duplication effectiveness and relative
popularity gives us a handle on how to extend our results
for arbitrary distributions of Hi(b). In particular, if the
skewness of Hi(b) can be measured for a particular server
(by analyzing its logs, as suggested earlier), this measure
can be used instead of 1/λ.

Equally popular servers
Let Ri = R for i = 1, 2, …, n. That is, let’s assume that all
servers in the system are equally popular. Substituting
in Equation 5 and then in Equation 4, we get

(7)

Equation 7 suggests that servers whose data are accessed
more uniformly (that is, servers with a smaller λ) should
be allotted more storage capacity on the proxy as long
as the proxy’s total capacity is large enough (that is, B0
@ n/λ i). However, if the server’s capacity is not big
enough, servers with intermediate values for λ should
be favored. Figure 5 shows the optimal storage capacity
to allocate to server Sj for various values of λj, assuming
that all other n − 1 servers have equal λi and that B0 =
1/λi (tight) or B0 = 10 1/λi (lax), for 1 ≤ i ≤ n and i ≠ j.

Symmetric clusters
To appreciate the effectiveness of demand-based docu-

ment dissemination, let’s consider a symmetric cluster,
where all servers have identical values for Ri and λi. From
Equation 5 and Equation 4, we get

(8)

As expected, Equation 8 equally allocates storage on S0
for all the servers in the cluster. By substituting the value
of Bj into Equation 1, we get

(9)

Equation 9 could be used to estimate the storage
requirements on the proxy as a function α:

(10)

Assume, for example, that the http://cs-www.bu.edu server
is one of 10 servers whose most popular data are dupli-
cated on a proxy. Equation 10 suggests that to reduce
the remote bandwidth by 90% on all servers, the proxy
must secure 36 Mbytes to be divided equally among all
servers. This assumes a value of λ = 6.247 × 10−7, which
we estimated from the HTTP demon logs on the
cs-www.bu.edu server. With a storage capacity of 500

B

n
0

1=
λ α

log
C

α
λ

C
i

n

i

n

B
n

R H
B
n

R
e=

× 





= −=

=

−
∑

∑

0

1

1

1
0

B

n
e

R

R

B
nj

n
B

i

n=

⋅



















=
−

=
∑

log
λ

λ λ

λ

0

1

1

0

B Bj
j

ii

n
i

j

ii

n
= +








=

=∑
∑1

1

0
1

1
λ
λ

λ
λ
λ

log

log R Rj i
i

n
n

=
∏











1

B
B
n

R

R
j

j

i
i

n
n

= +

=
∏

0 1

1

λ
log

Figure 5. Storage allocation for Ri = R and B = 1/λ i. λ j,
the constant of the Hj(b) distribution introduced in
Equation 3, measures how skewed Hj(b) is.

60

50

40

30

20

10

0
300100301031 1,000

λ j

Lax resources

B0 =
λ i

N = 2

N = 4

N = 64

10
Tight resources

B0 =
λ i

N = 2

N = 4

N = 64

1

St
or

ag
e

ca
pa

ci
ty

 a
llo

te
d

(%
)

.

64 IEEE Concurrency

Mbytes, a proxy could shield 100 servers from as much
as 96% of their remote bandwidth.

These numbers raise a legitimate question: If one
proxy serves 96% of all remote accesses to 100 servers
(or even 90% of all accesses to 10 servers), won’t that
proxy be a performance bottleneck? Yes, unless the
process of disseminating popular information contin-
ues for another level, and so on. If that is not possible,
then another solution would be for the proxy to dynam-
ically adjust the level of shielding it provides for its con-
stituent servers. In other words, when the proxy
becomes overloaded, B0 decreases, thus forcing more of
the requests back to the servers.

Performance evaluation

To evaluate our dissemination protocol, we had to
devise a realistic clustering of the Internet to reflect our
dissemination model. Several criteria could determine
this clustering. One criteria could be geographical infor-
mation (for example, distance in miles between clients).11

Another could be the institutional or network bound-
aries (for example, one service proxy per institution or
network). We based the clustering on the structure of
the routes between a server and its clients. Such a clus-
tering (based on the distance between the server and
client measured in actual route hops) lets us quantify the
savings achievable through dissemination, because it lets
us measure the bandwidth saved in bytes × hops units.

Using the record route option of TCP/IP, it is
possible to build a complete server-proxy-client tree.
We built such a tree for all traceable clients of http://
cs-www.bu.edu. A traceable client is a client for which
traceroute() succeeded in identifying a route that
remained consistent over several trace-route experi-
ments. Almost 90% of all bytes transferred from
http://cs-www.bu.edu transferred to traceable clients. For

data set 2 of Table 1, the constructed tree consisted of
more than 18,000 nodes.

Figure 6 shows a histogram of the number of clients
versus their distance in hops from the http://cs-www.bu.edu
server. This histogram shows three distinct client popu-
lations. The first population is within two to three hops
and represents on-campus clients at Boston University.
The second is within four to nine hops and represents
clients on the New England Academic and Research net-
work (NEARnet). The third is greater than nine hops
away and represents WAN clients. For servers where
WAN clients generate most of the demand, Figure 6 sug-
gests that popular documents could be disseminated as
much as eight to nine hops from the server. Such a dis-
semination would result in large savings. Specifically,

1,800

1,600

1,400

1,200

1,000

800

600

400

200

0

Hops from server to clients
302520151050

Nu
m

be
r o

f c
lie

nt
s

By
te

s
×

ho
ps

 s
av

ed
 (%

)

45

40

35

30

25

20

15

10

5

0
10080604020

Re
du

ct
io

n
in

 s
er

ve
r l

oa
d

(%
)

60

50

40

30

20

10

0
500400300200100

(a)

(b)
0

Number of proxies

0

Most popular 10% of data

Most popular 4% of data

Number of proxiesFigure 6. How far away are clients?

Figure 7. The results of dissemination: reductions in (a)
bandwidth and (b) home server load.

.

January–March 1997 65

replicating the most popular 25 Mbytes from http://www.
stones.com on proxies eight to nine hops closer to clients
would yield a whopping daily network bandwidth savings
of more than 8 Gbytes × hops.

We simulated our dissemination strategy based on
the structure of this server-to-client routing tree.
(Analysis of http://cs-www.bu.edu logs suggests that the
tree’s shape—especially internal nodes—and the load
distribution are quite static over time.) The 26-week
traces obtained from http://cs-www.bu.edu (data set 2 in
Table 1) drove our simulations.

Our simulations disseminated replicas of the most
popular files on http://cs-www.bu.edu every week, down
to proxies closer to the clients. The location of such
proxies depended on the demand during the previous
month from the various parts of the tree. (Our proto-
col proved to be quite robust with respect to the fre-
quency of dissemination and the history length used to
establish file popularity profiles. Because of space limi-
tations, I haven’t included simulation results to support
this.)

Our general dissemination protocol assumes a hier-
archy of proxies. Our implementation of this idea was
simpler; we flattened the hierarchy by having the home
server use the access patterns of all its clients to com-
pute the ultimate placement for the replicas. In other
words, our simulations did not consider multilevel prox-
ies, as would be possible under the general dissemination
model.

We assumed that any internal node is available as a
service proxy. In a real system, this assumption might
not be valid because internal nodes are routers, unlikely
to be available as service proxies. We envision that in
practice, the set of proxies available for rent by a partic-
ular server could be matched up to the optimum places
determined by our protocol.

The simulations required clients to always request
service from the home server. If the requested docu-
ments are available at proxies closer to the client, the
home server forwards the request to the proxy that is
closest to the client. This forwarding mechanism is sup-
ported by the HTTP protocol and requires much less
overhead than the more general hierarchical name-
resolution strategy.12

The simulations also assumed that the cost of prop-
agating updates to proxies can be ignored. To validate
this assumption, consider the ratio of a popular docu-
ment’s number of changes per unit time to its number
of accesses per unit time. As I noted earlier, popular doc-
uments are updated least. So, that ratio will be very small

(we measured it at less than 0.001 for popular docu-
ments). Thus, the inaccuracy of our simulations (by not
taking into account the cost of propagating updates) is
insignificant.

Figure 7a shows the reduction in bandwidth (measured
in bytes × hops) that is achievable by disseminating dif-
ferent amounts of the most popular data. The figure
shows two curves. In the first, the system disseminates
the most popular 10% of the data; whereas in the second,
it disseminates the most popular 4% of the data. A larger
number of proxies results in a deeper dissemination and,
thus, larger bandwidth savings. Figure 7b shows the
reduction in home server load (measured in bytes) achiev-
able by disseminating 4% of the most popular data.

Figure 7a shows that the dissemination of a very small
amount of data causes most of the bandwidth savings.
For example, increasing the level of dissemination by
150% (from 2 Mbytes per service proxy to 5 Mbytes per
service proxy) results in a meager 6% additional band-
width savings. Also, most of the saved bandwidth results
from using a small number of service proxies. For exam-
ple, tripling the number of service proxies from 20 to
60 saves only 21% additional bandwidth. Finally, Fig-
ure 7 shows that the payoff per replica decreases as the
number of replicas increases.

Figure 8 shows our algorithm’s sensitivity to changes
in the popularity profile for documents on the home
server. In particular, it shows the performance results
for four experiments, in which the dissemination
occurred once a week, using the logs of the previous n
weeks to compute the popularity profile, for n = 1, 2, 3,
and 5. For these experiments, the system disseminated
the 10% most popular data (computed over the n-week
period). The figure shows that the longer the history

By
te

s
×

ho
ps

 s
av

ed
 (%

)

5004003002001000
Number of proxies

5 weeks
3 weeks
2 weeks

1 week

60

50

40

30

20

10

0

Figure 8. The algorithm’s sensitivity to the length of
the history that is used to compute the popularity
profile.

.

66 IEEE Concurrency

that is used to compute the popularity profile, the
better the performance, especially when the number of
proxies is large.

Our simulation disseminated the same data to all
proxies. Better results are attainable if the dissemina-
tion strategy takes greater advantage of the geographic
locality of reference (by disseminating different data to
different proxies based on the access patterns of clients
served by each proxy).

These experiments demonstrate the potential savings
from dissemination. More experiments are needed to
generalize these findings by considering traces from a
larger set of servers. Also, more experiments are needed
to study the effects of dissemination from competing
service proxies. Finally, the Web is evolving in terms of
types of information and how this information is pre-
sented (for example, the increases in Common Gate
Interface queries, Java applets, and scripts). This evolu-
tion might require the development of more elaborate
dissemination protocols.

The basic premise of our work is that
servers are in a unique position to decide
which documents are worth replicating
through dissemination, how many repli-
cas should be disseminated, and where to

place these replicas. This, however, does not imply that
clients and their proxies do not (or should not) play a
role in improving the performance of information
retrieval and in alleviating communication bottlenecks.

For example, our work is not a substitute for client-
based caching; rather, it is a complement. Client-based
caching’s primary purpose is to reduce the latency of
information retrieval, whereas information dissemina-
tion’s primary purpose is to reduce traffic and balance
the load among servers. Of course, these purposes are
not completely independent—a protocol whose primary
purpose is to reduce traffic and balance load is likely to
improve the latency of information retrieval. Never-
theless, the highest reduction in latency will likely result
from a protocol whose primary purpose is to do just that
(client-based caching in this case).

Another example of how our work complements

client-based protocols concerns dynamic server selec-
tion, introduced by Mark Crovella and Robert Carter.13

The primary purpose of a client-based dynamic server-
selection protocol is to determine on the spot which one
of several servers to use to retrieve a document repli-
cated on all the servers. This selection is based on
dynamic measurements that attempt to locate the server
with the least congested route. Such a technique could
complement dissemination by allowing servers to com-
municate with clients the location of all (or some) repli-
cas that are deemed close to the client. The client-based
server-selection protocol would have the final decision
as to which replica to retrieve based on the dynamic con-
ditions of the network.

The protocol I’ve presented exemplifies the poten-
tial of client-access patterns in engineering scaleable
protocols and services in large-scale distributed in-
formation systems (such as the WWW). Ocean is
developing prototypes to test and evaluate similar
protocols.

ACKNOWLEDGMENTS
I would like to thank all the members of the Oceans group (http://
cs-www.bu.edu/groups/oceans) for their feedback and many discussions
on this work. I particularly thank Carlos Cunha for his trace-collec-
tion efforts and for helping with the trace-driven simulation of the
dissemination protocol presented in this article. This work has been
partially supported by NSF Grant CCR-9308344.

REFERENCES

1. M. Foster and R. Jump, NSF Solicitation 94-75, STIS Database,
Nat’l Science Foundation, Arlington, Va., 1994.

2. A. Bestavros et al., “Application Level Document Caching in the
Internet,” Proc. Second Int’l Workshop on Services in Distributed and
Networked Environments (SDNE ’95), IEEE Computer Society
Press, Los Alamitos, Calif., 1995, pp. 166–173.

.

January–March 1997 67

3. C. Cunha, A. Bestavros, and M. Crovella, “Characteristics of
WWW Client-Based Traces,” Tech. Report TR-95-010, Com-
puter Science Dept., Boston Univ., Boston, 1995.

4. S. Glassman, “A Caching Relay for the World Wide Web,” Proc.
First Int’l Conf. WWW, North-Holland, Amsterdam, 1994, pp.
69–76.

5. M. Abrams et al., “Caching Proxies: Limitations and Potentials,”
Proc. Fourth Int’l Conf. WWW, O’Reilly & Associates, Sebastopol,
Calif., 1995, pp. 312–319.

6. S.J. Eggers and R.H. Katz, “A Characterisation of Sharing in
Parallel Programs and Its Application to Coherence Protocol
Evaluation,” Proc. 15th Ann. Int’l Symp. Computer Architecture,
IEEE CS Press, 1988, pp. 373–382.

7. B.B. Mandelbrot, The Fractal Geometry of Nature, W.H. Freed-
man and Co., New York, 1983.

8. G.K. Zipf, Human Behavior and the Principle of Least-Effort, Addi-
son-Wesley, Reading, Mass., 1949.

9. A. Bestavros, “Speculative Data Dissemination and Service to
Reduce Server Load, Network Traffic and Service Time in Dis-
tributed Information Systems,” Proc. ICDE ’96: 12th Int’l Conf.
Data Eng., IEEE CS Press, 1996, pp. 180–187.

10. J. Gwertzman and M. Seltzer, “World Wide Web Cache Con-
sistency,” Proc. 1996 USENIX Tech. Conf., Usenix Assoc., Berke-

ley, Calif., 1996, pp. 141–152.

11. J.S. Gwertzman and M. Seltzer, “The Case for Geographical
Push-Caching,” Proc. Fifth Workshop on Hot Topics in Operating
Systems (HotOS-V), IEEE CS Press, 1995, pp. 51–55.

12. P. Danzig, R. Hall, and M. Schwartz, “A Case for Caching File
Objects inside Internetworks,” Tech. Report CU-CS-642-93,
Computer Science Dept., Univ. of Colorado, Boulder, Colo.,
1993.

13. M. Crovella and R. Carter, “Dynamic Server Selection in the
Internet,” Proc. Third IEEE Workshop on the Architecture and Imple-
mentation of High Performance Communication Subsystems (HPCS
’95), IEEE Communication Soc., New York, 1995, pp. 158–162.

Azer Bestavros is on the faculty of Boston University’s Computer
Science Department. His research mainly concerns real-time systems
and distributed systems, and is partially funded by research grants
from the National Science Foundation, the US Army Research Office,
and GTE. His work on large-scale distributed information systems
is conducted with Boston University’s Oceans research group, which
he cofounded in 1994. He is the editor of the Newsletter of the IEEE
Computer Society Technical Committee on Real-Time Systems and main-
tains its archives at Boston University. He obtained his SM and PhD
from Harvard University in 1988 and 1992. He can be reached at the
Computer Science Dept., Boston Univ., MA 02215; best@cs.bu.edu.

E X E C U T I V E
C O M M I T T E E

President: BARRY JOHNSON*
University of Virginia, Dept.
of Electrical Engineering,
Thornon Hall,
Charlottesville, VA 22903
O: (804) 924-7623;
F: (804) 924-8818
b.w.johnson@computer.org
President-Elect:
DORIS L. CARVER*
Past President:
MARIO R. BARBACCI*
VP, Press Activities:
I. MARK HAAS †

VP, Educational Activities:
WILLIS K. KING †

VP, Conferences and Tutorials:
GUYLAINE M. POLLOCK (2ND VP)*
VP, Membership Activities:
DAVID PESSEL*
VP, Publications:
RICHARD H. ECKHOUSE *
VP, Standards Activities:
JAMES D. ISAAK *
VP, Technical Activities:
LEONARD TRIPP (1ST VP)*
Secretary:
MICHEL ISRAEL*
Treasurer:
BENJAMIN W. WAH*
IEEE Division V Director:
MICHAEL C. MULDER †

IEEE Division VIII Director:
LAUREL V. KALEDA †

Executive Director:
T. MICHAEL ELLIOTT †

P U R P O S E The IEEE Computer Society is
the world’s largest association of computing pro-
fessionals, and is the leading provider of tech-
nical information in the field.

M E M B E R S H I P Members receive the
monthly magazine COMPUTER, discounts, and
opportunities to serve (all activities are led by
volunteer members). Membership is open to all
IEEE members, affiliate society members, and
others interested in the computer field.

C O M P U T E R
S O C I E T Y I N T E R A C T I V E

The IEEE Computer Society‘s Web site, at http://www.
computer.org, offers information and samples from the
society’s publications and conferences, as well as a broad
range of information about technical committees, stan-
dards student activities, and more.

B O A R D O F G O V E R N O R S
Term Expiring 1997: L.F. Cabrera, Carl K.
Chang, Wolfgang K. Giloi, John A.N. Lee, Guylaine
M. Pollock, Sallie V. Sheppard, Ronald D. Williams
Term Expiring 1998: Elliot J. Chikofsky,
JoAnne E. DeGroat, Ted G. Lewis, David Pessel,
Benjamin W. Wah, Ronald Waxman, Thomas W.
Williams
Term Expiring 1999: Steve L. Diamond, Richard

A. Eckhouse, Gene F. Hoffnagle, Tadao Ichikawa,
James D. Isaak, Karl Reed, Deborah K. Scherrer

Next Board Meeting: February 21, 1997,
San Francisco, Calif.

E X E C U T I V E S T A F F
Executive Director: T. MICHAEL ELLIOTT
Publisher: MATTHEW S. LOEB
Director, Volunteer Services: ANNE MARIE KELLY
Director, Finance & Administration: VIOLET S. DOAN
Director, Information Technology & Services: ROBERT G. CARE
Manager, Research & Planning: JOHN C. KEATON

I E E E O F F I C E R S
President: CHARLES K. ALEXANDER
President-Elect: JOSEPH BORDOGNA
Executive Director: THEODORE W. HISSEY Sec-
retary: PAUL Y.S. CHEUNG
Treasurer: HOWARD L. WOLFMAN
VP, Educational Activities: JERRY R. YEARGAN
VP, Professional Activities: DANIEL R. BENIGNI
VP, Publications: FRIEDOLF M. SMITS
VP, Regional Activities: RAYMOND D. FINDLAY
VP, Standards Activities: DONALD C. LOUGHRY
VP, Technical Activities: LLOYD A. MORLEY

C O M P U T E R S O C I E T Y O F F I C E S
Headquarters Office
1730 Massachusetts Ave. NW, Washington, DC 20036-1992
Phone: (202) 371-0101 • Fax: (202) 728-9614
E-mail: hq.ofc@computer.org
Publications Office
10662 Los Vaqueros Cir., PO Box 3014
Los Alamitos, CA 90720-1314
General Information:
Phone: (714) 821-8380 • membership@computer.org
Membership and Publication Orders:
(800) 272-6657 • Fax: (714) 821-4641
E-mail: cs.books@computer.org
European Office
13, Ave. de L’Aquilon
B-1200 Brussels, Belgium
Phone: 32 (2) 770-21-98 • Fax: 32 (2) 770-85-05
E-mail: euro.ofc@computer.org
Asia/Pacific Office
Ooshima Building
2-19-1 Minami-Aoyama, Minato-ku, Tokyo 107, Japan
Phone: 81 (3) 3408-3118 • Fax: 81 (3) 3408-3553

*voting member of the Board of Governors
†nonvoting member of the Board of Governors

.

