
Safe Compositional Network Sketches: Tool & Use Cases

Azer Bestavros
Computer Science Dept
Boston University, MA
best@cs.bu.edu

Assaf Kfoury
Computer Science Dept
Boston University, MA
kfoury@cs.bu.edu

Andrei Lapets
Computer Science Dept
Boston University, MA
lapets@cs.bu.edu

Michael Ocean
Computer Science Dept
Endicott College, MA

mocean@endicott.edu

Abstract—NetSketch is a tool that enables the specification
of network-flow applications and the certification of desirable
safety properties imposed thereon. NetSketch is conceived to
assist system integrators in two types of activities: modeling
and design. As a modeling tool, it enables the abstraction of
an existing system while retaining sufficient information about
it to enable future analysis of safety properties. As a design
tool, NetSketch enables the exploration of alternative safe
designs as well as the identification of minimal requirements
for outsourced subsystems. NetSketch embodies a lightweight
formal verification philosophy, whereby the power (but not the
heavy machinery) of a rigorous formalism is made accessible to
users via a friendly interface. NetSketch does so by exposing
tradeoffs between exactness of analysis and scalability, and
by combining traditional whole-system analysis with a more
flexible compositional analysis. The compositional analysis is
based on a strongly-typed Domain-Specific Language (DSL)
for describing and reasoning about constrained-flow networks
at various levels of sketchiness along with invariants that
need to be enforced thereupon. In this paper, we overview
NetSketch, highlight the tool’s philosophy and salient features,
and illustrate how it could be used in applications that include:
the management/shaping of traffic flows in a vehicular network
(as a proxy for CPS applications) and in a streaming media
network (as a proxy for Internet applications). In a companion
paper, we define the formal system underlying the operation
of NetSketch, in particular the DSL behind NetSketch’s user-
interface when used in “sketch mode”, and prove its soundness
relative to appropriately-defined notions of validity.

Keywords-Compositional Analysis; Whole-System Analy-
sis; Type Systems, Domain Specific Languages, Network Flow
Applications

I. MOTIVATION AND SCOPE

Traditionally, the design and implementation of trustworthy
systems follows a bottom-up approach, enabling system
designers and builders to certify (assert and assess) desirable
safety invariants of the entire system as a whole. For exam-
ple, the development of applications with predictable timing
properties necessitates the use of special-purpose, real-time
kernels so that timing properties at the application layer (top)
could be established through knowledge and/or tweaking of
much lower-level kernel details (bottom) such as worst-case
context switching times and specific scheduling parameters.
While justifiable in some instances, this vertical (bottom-up)
approach does not lend itself well to current practices in
the assembly of complex, large-scale systems – namely, the
integration of various subsystems into a whole by “system
integrators” who may not necessarily possess the requisite
expertise or knowledge of the internals of the subsystems
on which they rely. This alternative horizontal approach has
significant merits with respect to scalability and modularity,
but at the same time it poses significant challenges with
respect to aspects of trustworthiness – namely, certifying

that the system as a whole will satisfy specific invariants
(e.g., related to safety, security, and timeliness). While it is
possible to reason about and/or automatically infer the exact
(tight) conditions under which safety constraints are satisfied
for small-scale (toy), fully-specified subsystems, the same
cannot be expected for large-scale, complex systems. Thus,
we recognize in this context three specific challenges that
the work we present in this paper aims to mitigate.
Exposing Tradeoffs: The environments and tools used
by system integrators must expose the inherent tradeoff
between the exactness of safety analysis of the underlying
subsystems, and the computational complexity necessary for
automated analysis. For example, it should be possible for a
system integrator to sketch (under-specify) any guarantees or
constraints expected to hold in a subsystem for less critical
functionalities (or early on in the design phase), and yet
expect a level of support for system-wide safety analysis that
is commensurate with the provided details. Such a capability
would enable system integrators to establish “minimal” sub-
system requirements ensuring system-wide safety properties.
Similarily, it should be possible for a system integrator to
escalate the automated analysis of safety properties based
on the low computational cost of such an analysis.
Lowering the Bar: Support for safety analysis in design
and/or development environments must be based on sound
formalisms that are not specific to (and do not require
expertise in) particular domains. While acceptable and
perhaps expected for vertically-designed and smaller-scale
(sub)systems, deep domain expertise cannot be assumed for
designers of horizontally-integrated, large-scale systems. Not
only should the underlying formalism be domain-agnostic, it
must also be possible for the formalism to act as a unifying
glue across multiple theories and calculi. In particular, such
a formalism should enable system integrators to manipulate
results obtained through multiple, esoteric domain-specific
techniques (e.g., using network calculus to obtain worst-case
delay envelopes, using scheduling theory to derive upper
bounds on resource utilizations, or using queuing theory to
derive steady-state average delays). 1 In doing so, we lower
the bar of expertise required to take full advantage of such
domain-specific results at the small (subsystem) scale, while
at the same time enabling scalability of safety analysis at the
large (system) scale.
Enabling Compositional Network Flow Analysis: Most
large-scale systems are modeled/viewed as interconnections
of subsystems, or gadgets, each of which is a producer,
consumer, or regulator of flows that are characterized by

1Naturally, end-user tools that leverage such formalism would be cus-
tomized to present entities relevent to specific application domains.

Gadgets Whole-system vs Compositional analysis

A [[A]] = [[A]]

A ⊗ B ⊗ C [[A ⊗ B ⊗ C]] = [[A]] ? [[B]] ? [[C]]

A ⊗ 〈 〉 ⊗ C [[A ⊗ 〈 〉 ⊗ C]] ?
?
= [[A]] ? [[〈 〉]] ? [[C]]

A ⊗ B′ ⊗ C [[A ⊗ B′ ⊗ C]] = [[A]] ? [[B′]] ? [[C]]

Figure 1. Contrasting whole-system and compositional analyses.

a set of variables and a set of constraints thereof, reflecting
inherent or assumed properties or rules for how the gadgets
operate (and what constitutes safe operation). We argue that
system integration can be seen primarily as a network flow
management exercise, and consequently that tools developed
to assist in modeling and/or analysis recognize and leverage
this view by enabling compositional analysis of networks
of gadgets. This then facilitates the checking of safety
properties or the inference of conditions or constraints under
which safe operation is guaranteed.

Towards the stated goals, we propose in this paper
a methodology and tool (NetSketch) for specifying and
analyzing large network flow problems.

II. COMPOSITIONAL ANALYSIS IN NETSKETCH

As a tool, NetSketch supports compositional (in contrast
to whole-system) analysis, which is additionally incremental
(distributed in time) and modular (distributed in space).
Schematically and somewhat simplistically, we can contrast
whole-system and compositional analyses according to Fig-
ure 1, where “ [[x]] ” denotes “the analysis of object x”,
“⊗” an associative operation for connecting two components
of a larger network, and “?” an associative operation for
combining two analyses.

Here it is important to note that for an analysis to be
compositional, it must allow inter-checking of gadgets to
happen in any order, thus enabling more flexible patterns
of development and update. This stands in sharp contrast to
modular analysis, which may prescribe a particular order in
which the modules have to be analyzed. 2

Analysis of Incomplete or Sketchy Specifications: By its
nature, whole-system analysis cannot be undertaken if a
gadget (such as B in Figure 1) is missing or if it breaks
down (indicated by the question mark “?”). Moreover, if
the missing gadget is to be replaced by a new one (B′ in
Figure 1), whole-system analysis must be delayed until the
new gadget becomes available for examination and then the
entire network must be re-analyzed from scratch. If we are
interested in certifying that a particular invariant is preserved
throughout the network without running into the limitations
of whole-system analysis – specifically, inability to deal with
incomplete or “sketchy” topologies and/or incurring the cost
of having to re-examine the entire network – and if we can
formalize this invariant using type-theoretic notions at the
interfaces of gadgets (denoted by 〈 〉 in Figure 1), then we
can adopt the alternative approach of compositional analysis,
which is not invalidated by the presence of holes (the empty

2A good example of the difference between modular and compositional
analysis is provided by type inference for ML-like functional languages.
Type inference is one approach to analyze programs statically. ML-like
type inference is modular but not compositional.

interfaces 〈 〉 in Figure 1). Simply put, one can think of
a “hole” as a placeholder where a system integrator can
place different gadgets satisfying the same interface types,
interchangeably and at different times.

Our schematic comparison above, between composi-
tional and whole-system analyses, calls for an important
proviso if we are to reap the benefits of the former. The
cost of combining two analyses (via the operation “?” in
Figure 1) should be significantly smaller – specifically,
below a computational complexity that is acceptable to the
user – than the cost of combining two networks (via the
operation “⊗” in Figure 1) and then analyzing the combi-
nation again from scratch. However, even with that proviso
and the additional proviso that all the pieces (gadgets) of
a network are in place so that a whole-system analysis is
at all an option, it will not be that compositional analysis
always wins over whole-system analysis. An analysis – any
analysis – is of a few properties of interest and, as such, an
abstraction of the actual network. An analysis determines
conditions under which the network can operate safely
(relative to appropriately defined safety criteria). Within
the parameters and limits of the modeling abstraction, an
exact analysis is one that determines all conditions of safe
operation. An exact analysis typically requires whole-system
analysis and, as such, may be very expensive. But will its
cost always outweigh its benefits? It depends. Reverting
to a compositional and computationally feasible analysis
may force additional abstraction, at the price of perhaps
excessive and unacceptable approximation in the results,
as we shall illustrate later. An approximate analysis will
typically determine a proper subset of the conditions of safe
operation and, as such, will be sound but not complete.
The tradeoff offered to users will be between completeness
and precision of results (typically via exact and whole-
system analysis) and computational feasibility (typically via
approximate and compositional analysis).

III. A NETWORK SKETCHING DSL

Each gadget (i.e., node) of a network flow may impose
constraints on its respective inputs and outputs; a topology
coupled with its entire constraint set form an exact model,
and a whole-system analysis of the network must solve the
constraint set for the given topology. Our compositional ap-
proach uses types to approximate (i.e., sketch) the constraints
on each gadget’s interfaces. Our DSL is used to describe the
connectivity of gadgets (and holes) and to infer and check
the types across the network.

To illustrate and motivate the need for our DSL,
consider a particular network flow application, namely
vehicular-traffic networks, where types of interest are veloc-
ity types and density types. A simple version of such types
can be formalized as non-empty intervals over the natural
numbers, each denoting a range of permissible velocities or
densities. Velocity and density types can be inferred in an
inside-out fashion, starting from the constraints regulating
traffic at each of the nodes in the network. Such constraints
can be formalized as equalities and inequalities of polyno-
mial expressions over velocity and density parameters.

Suppose M and N are traffic flow networks of some
sort – here “traffic flow” may equally refer to the flow

CONNECT

Γ ` M : (In1, Out1) Γ ` N : (In2, Out2)

Γ ` M2N : (In1, Out2)

where if Out1 = 〈σ1, . . . , σn〉 and In2 = 〈τ1, . . . , τn〉
then σ1 <: τ1, . . . , σn <: τn

LET

∀ k ∈ {1 . . . n} : Γ ` Mk : (Ink, Outk) Γ, X : (In′, Out′) ` N : (In, Out)

Γ ` let X∈ {M1, . . . ,Mn} in N : (In, Out)

where In1 = · · · = Inn = In′ and Out1 = · · · = Outn = Out′

Figure 2. Examples of two rules from NetSketch DSL Specification.

of packets in a communication networks, the flow of data
tupples in a stream database, or the flow of vehicles in a
network of roads. Suppose M has the same number n of
output (exiting) links as N has of input (entering) links, and
both are given as ordered sequences of length n. Suppose
M : (In1,Out1) and N : (In2,Out2) are typings of M and
N assigning appropriately defined types to their input/output
links. The formal syntax of our strongly-typed DSL will be
defined by rules of the form shown in Figure 2.

The side condition of the rule CONNECT is written right
after it, stating that to safely connect the output links of M
to the input links of N , the output types of M must be
subtypes of the corresponding input types of N . Figure 2
shows another rule for the LET construct, which formalizes
the idea that, in a hole X of a network N , we can place at
will any of n different networks {M1, . . . ,Mn} as long as
they satisfy the same interface types.

The above two rules are presented to illustrate the
nature of NetSketch’s underlying formalism. Refinements
and generalizations of these two rules, as well as several
others, which we employ “under-the-hood” from within
the tool, constitute the formalism. Collectively, they define
the formal syntax of NetSketch’s network flow DSL. We
refer interested readers to a companion paper [1] for a full
definition of the NetSketch formalism.

With a DSL and constraints of the form just described,
we can enforce various desirable properties across, for
example, a vehicular-traffic network, such as no backups
(traffic is not piling up at any of the links entering a node
at any time), fairness (there is no link along which traffic
is permanently prevented from moving, though it may be
slowed down), conservation of flow (entering traffic flow in
a network is equal to exiting traffic flow), no gridlock (mu-
tually conflicting traffics along some of the links ultimately
result in blocking traffics along all links), etc.

There is more than one reasonable way to formalize the
semantics of network typings. We consider two, correspond-
ing to what we call “weak validity” and “strong validity” of
typed specifications. A gadget typing is considered weakly
valid if for every traffic satisfying the input types there exists
a way of channelling traffic through the gadget, consistent
with its internal constraints, that satisfies the output types.
Strongly valid types are such that every way of channeling
traffic under the input types satisfies the output types.
From Modules and Gadgets to Network Sketches: In
our formalism, a module corresponds to the basic building
block of a flow network. Modules are fully specified in the
sense that exact (tight) constraints characterizing their safe
operation (e.g., invariants relating parameters associated with
their input and output links) are known a priori. The specific
mechanism via which exact characterizations of modules are

acquired is an orthogonal issue: They may be the outcome
of a whole-system analysis; they may be distilled from
implementation code; they may be lifted from data sheets;
or they may be simply assumed. NetSketch gadgets are
inductively defined: A module is a (base) gadget, a hole
is a gadget, and any interconnection of gadgets is itself a
(network) gadget. For ease of exposition, we use network to
refer to a network gadget.

The definition of a network implies that (unlike mod-
ules), networks admit incomplete specification by allowing
for holes. More importantly, networks may be typed in the
sense that specific constraints or invariants at their interfaces
do not have to be exact – i.e., such type constraints may
allow for looser bounds than what is absolutely necessary.
As such networks can be seen as approximations of the
systems they model, and it is in that sense that they constitute
“sketches” of the system being modeled or analyzed. Such
approximations may arise as the result of trading off whole-
system for compositional analyses, and/or trading off exact-
ness of analysis for computational efficiency and scalability.
As we alluded before, exposing this tradeoff is one of the
main design goals of NetSketch.

IV. THE NETSKETCH TOOL

NetSketch presents its user with two modes of operation:
Base and Sketch. These reflect the granularity of the descrip-
tion within the tool (Unyped and Typed) and whether whole-
system analysis or compositional analysis will be employed,
respectively. In the base mode of operation, NetSketch’s in-
terface allows users to describe exact (typically small) spec-
ifications of gadgets consisting of connected components for
which whole-system analysis is viable. In the sketch mode
of operation, NetSketch allows users to describe and explore
network gadgets for which compositional analysis is desired.
The NetSketch operational process is illustrated in Figure 3.

In the base mode of operation, a user defines a graph
topology by selecting from predefined classes of network
gadgets (of which she may define her own) and by graphi-
cally drawing connections between these gadgets. The topol-
ogy of these gadgets and their respective edges form a graph
of constraints. Prior to entering the sketch mode of operation,
NetSketch performs an analysis of the gadget constraint
set and presents to the user a simplified (“black box”)
representation of the gadget graph. The sketch interface for
this representation provides the user with scalar bounds as
input and output types derived from the constraint set with
respect to some specific target criteria. Once in sketch mode,
the user may further refine or constrain the current network
sketch (i.e., return to the base (untyped) mode to consider
other constraint criteria), or investigate the connection of
other existing networks to the current network, including

Base

Gadget

Specification

Untyped

Gadget(s)

Type

Discovery

Base Mode

constraints

Whole-System Analysis

Inconsistent or infeasible

Constraints?

Typed

Gadget(s)

types

Network

Gadgets

(Typed)

Typed

Gadget

Selection

Type

Checking

& Inference

Typed

Network

Gadget

types

Base

Gadgets

(Untyped)

Typing or Threshold

Violation?

Sketch Mode

Compositional Analysis

User Input User Input User Input

Figure 3. A process overview of Network Flow modeling and assessment with NetSketch.

the specification and analysis of “holes” (placeholders for
future gadgets) in the topology.
Manipulating Base (Untyped) Gadgets: The specification
(modeling) of base gadgets in NetSketch is done graphically
by placing and connecting instances of gadget classes. Each
gadget class defines the number of ingress and egress ports
for all gadgets of this class, as well as the generic, relational
constraints between the inputs and outputs. For example,
in a vehicular traffic domain, a gadget class “Merge” may
take two inputs, produce one output and have the generic
constraint that the vehicular output density (i.e., number of
vehicles) is equal to the sum of the inputs (out0 = in0 + in1).
A user may define a base gadget (or a class of gadgets) on-
the-fly within the tool and this gadget definition can be used
immediately or saved for future reuse. The specific gadgets
that are available for placement on the canvas consist of
those previously defined by users (or other domain experts).
Users may ultimately build a library of gadget definitions
that form a domain-specific operating context.

The placement of a gadget class on the canvas creates a
gadget instance. The ports of a gadget instance are populated
with new constraint variables and generic constraints are
instantiated using these specific variables and added to the
constraint set. When a user inserts a gadget instance, the
system immediately prompts for specific numeric bounds
on these variables (if possible) to distinguish a specific
instance of a gadget from the generic class of gadget.
Gadget instances may be connected to other instances on
the canvas via edge placement. Edge placement imposes
equality constraints on the ports at the ends of the edge.
To improve readability, all references to the head variable in
the constraint set (and UI) are replaced with the tail variable.

As a user places gadgets and/or edges, she will see the
direct effects of these changes in the constraint set presented
in the bottom frame of the GUI. The constraint set is stored
with respect to the gadget that introduced the constraints. If
a gadget is removed from the topology, the corresponding
constraints may be removed also. When an edge is deleted
the variables at the head and tail must be re-separated and
some gadget constraints may be updated as a result.

Beyond stand-alone, direct definition and specification
of gadget classes, classes may also be created by folding
connected gadget instances together to create a reusable
envelope: a visual simplification of a gadget topology. An
envelope is rendered as a single node that contains all of the
constraints of its constituent gadget and edges. An envelope

exposes all non-connected ports (both to and from the
collection of gadgets) as inputs and outputs of the envelope.
The constraints for the gadget within the envelope (and their
edges) become the generic constraint set for the envelope. In
order to make the envelope sufficiently abstract, some of the
constraints that are automatically folded into the envelope
definition may be removed manually since specific bounds
for some gadget instances may not apply to the entirety of
the envelope class. Envelopes are useful both for abstracting
particularly complex configurations of gadgets (i.e., complex
or unwieldy topologies) and for the promotion of reuse for
commonly needed gadget instances. For example, a user may
create a 3-way merge by connecting two merge gadgets and
exporting an envelope of that model.
Manipulating (Typed) Network Gadgets: Using the sketch
mode of operation involves placing and connecting typed
gadgets (and holes) into a typed network. This enables a user
to construct networks and to explore their connectivity and
interface properties. The presentation and use of simplified
type-centric (interval) interface lets a user immediately see
the range of valid inputs into a network of typed gadgets,
yet still safely ignore the complete set of constraints when
connecting to other typed gadgets or networks.

To use an untyped gadget in the sketch mode, the Net-
Sketch tool performs an automated whole-system analysis on
the gadgets to produce types. While in the analysis phase,
the constraint solver processes the current constraint set and
assigns feasible bounds (if they exist) to constituent gadgets.
If the user specifies optimization criteria/constraints (e.g.,
maximize a specific edge, verify that flow is conserved)
when converting an untyped gadget to a typed one, the solver
will attempt to produce a feasible range with respect to
such constraints. If no constraints are specified, the analysis
tool tries to find the widest bounds (types) for the given
untyped gadget. Should the whole system analysis fail to
find a feasible solution to provide the basis for types, the
user must either adjust the gadgets or the target criteria.

Within the sketch mode of operation, the user may load
other typed gadgets or networks from the repository (or load
and convert other untyped gadgets into gadgets) and the
system can suggest possible placement locations (and restrict
illegal placements) for new edges based on the visible (and
saved) type information of these gadgets. This behavior
illustrates the benefit of a type-centric interface: depending
on the shape of the constraint set within the untyped gadgets,
it may not have been possible to perform the same analysis
when connecting modules directly.

Transitioning from Base to Sketch Mode: An important
“decision point” for a NetSketch user is choosing the point
at which to abandon whole-system (exact) analysis and to
switch to compositional (sketched) analysis (i.e., transition
from base to sketch modes of operation). Similarly, when
converting an untyped gadget of any size greater than one to
a typed interface, the user must choose the gadget granularity
in the resulting network (whether to make each untyped
gadget an individual typed gadget, to combine all gadgets
into a single typed gadget, or to group untyped gadgets into
typed gadgets). For instance, while a user may decide to
transition each individual untyped gadget into a stand alone
typed gadget for, say, a preference for the simpler interface,
such a choice will result in a loss of specificity, which may
not be warranted. Thus, the time of transition from base to
sketch modes, and the choice of typed gadget granularity
should be considered carefully.

Independent of user choices, at some point the con-
straint sets in a topology of untyped gadgets may become
sufficiently complex that compositional analysis becomes
the preferred (if not only) possibility for analysis. We
identify this point using the constraint threshold, which may
be set in a number of ways – e.g., based on number of
gadgets, number of edges, number of constraints, number
of variables within the constraints, time taken to bound
the feasible region of the solution, the shape of the con-
straints. Automatically determining this threshold given the
shape/complexity of a constraint set (and the use of various
non-linear programming libraries) is planned future work.
Manipulating Holes: A hole is a placeholder for any
unknown or under-specified gadget or network. Holes enable
modeling and verification to proceed even if only part of the
system is known. While the specification of a topology with
incomplete information may seem contrived, many valuable
usage scenarios for NetSketch (and underlying formalisms)
stem from the ability to assess safe component replacement
within existing topologies and the ability to determine the
interface properties of an unbound gadget or network so that
other valid gadgets (or combinations thereof) may substi-
tute it. NetSketch’s compositional analysis and verification
engine may be used to infer type constraints for any such
holes from the typed network and, in so doing, essentially
indicates which typed gadgets or networks may be later used
in the location of the hole. This usage of holes is inspired
from (and directly analogous to) the inference of types for
variables in programming languages. While NetSketch does
not automatically find and suggest all possible gadgets that
fit in a given type signature, the tool will ultimately allow
the user to attempt to place a network into a hole, and will
use type information to permit or restrict such placement.
Implementation Details: NetSketch has been implemented
in Java 1.6 and uses the JGraphX (JGraph 6) Open Source
graph drawing component [2] libraries to facilitate graph vi-
sualization. The GNU Linear Programming Toolkit (GLPK)
[3] is used to solve the constraint sets that are built as a
result of the composition of modules in the GUI.

V. USE CASE 1: TASK SCHEDULING

The generality of the NetSketch formalism is such that it
can be applied to problems that are not immediately appar-

ent as constrained-flow network problems. For illustrative
purposes, consider a single processor scheduled via EDF.
Periodic tasks each require ci time units of computation
within their respective fixed periods of ti time units. A
simple notion of safety here is the schedulability test that
the sum of all utilizations (ci/ti) is less than or equal to
100%. One way to model this domain in NetSketch requires
two gadgets classes. The first gadget class required would
be used to represent the individual tasks to be scheduled;
this gadget class would have two inputs (one for ci and one
for ti) and would produce a single output representing ci/ti.
The second necessary gadget class accepts arbitrarily many
inputs and produces a single output. This gadget would have
a constraint that the output is equal to the sum of the inputs,
and another that reflects that the output is within the range
[0,100].3

Even with these simple constructs, one may consider
several interesting usage scenarios: (1) Swapping the schedu-
lability test gadget to that of another scheduling policy –e.g.,
a Rate Monotonic Scheduling policy, which would have a
constraint that the combined utilizations is <= n(2(1/n)−1);
(2) Investigating the remaining utilization of a task set by
generating types against a specific task set and then placing
a hole as an input to the test gadget; (3) Allowing the
“supply” of cycles, (i.e., total available utilization) to also be
an input of the gadget to model (e.g., a virtual server that is
able to produce x time units every y time units), requiring
more involved constraints. More complicated gadgets can
be constructed for richer task models (e.g., allowing for a
maximum number of deadlines over a window), virtualized
resources (e.g., periodic servers), as well as more elaborate
schedulers (e.g., statistical RMS, pinwheel scheduling).

VI. USE CASE 2: VEHICULAR TRAFFIC

An engineer working for a large metropolitan traffic author-
ity has the following problem. Her city lies on a river bank
across from the suburbs, and every morning hundreds of
thousands of motorists drive across only a few bridges to get
to work in the city center. Each bridge has a fixed number
of lanes, but they are all reversible: the operator has the
ability to decide how many lanes are available to inbound
and outbound traffic during different times of the day. The
engineer must decide how many inbound lanes to open in the
morning with the primary goal of ensuring that no vehicular
backups occur in the city center, with a secondary goal of
maximizing the amount of traffic that can get into the city.

The city street grid is a network of a large number of
only a few distinct kinds of traffic junctions: fork, merge,
and crossing junctions. We call streets with traffic going
into and out of a junction links. Both the structure of each
kind of junction and the problem the engineer must solve
can be modeled using (untyped) base gadgets. Once she has
specified the entire network, she may switch to a (typed)
network gadget. The types assigned to each gadget and the
links into and out of the typed network gadget can help
her decide how many lanes to open on each bridge while
ensuring no backups.

3Scaling this range by 100 avoids non-integer values.

Example 1: A fork has one incoming link (call it 1) and
two outgoing links (call them 2 and 3). This traffic junction
can be modeled using a gadget (call it AF) consisting of a
single node (call it F). Let link i be associated with velocity
parameter vi and density parameter di, for i ∈ {1, 2, 3},
and Con the set of constraints associated with AF. We par-
tition Con into two subsets, Connodes (constraints regulating
traffic through F) and Conlinks (lower and upper bounds on
v1, d1, v2, d2, v3, d3). The set Connodes contains predefined
constraints that are required for all fork gadgets:

(1) d1 = d2 + d3; (2) d1 ∗ v1 6 d2 ∗ v2 + d3 ∗ v3

Constraint (1) enforces conservation of density when F is
neither a “sink” nor a “source”, whereas constraint (2) en-
codes the non-decreasing flow invariant, namely that traffic
along exit links may accelerate. Notice that constraint (1)
is linear constraint, while (2) is quadratic. Notice also that
these constraints are mutually consistent, i.e., simultaneously
satisfiable by a particular valuation (an assignment of values
to the 6 parameters d1, v1, d2, v2, d3, v3). Combined, these
constraints ensure that traffic is not piling up at the fork
entrance. Strictly speaking, we should also add a constraint
of the form: “If v2 ∗ d2 + v3 ∗ d3 > 0 then v1 ∗ d1 > 0”
or, given that d1 = d2 + d3, “If v2 + v3 > 0 then v1 > 0”,
i.e., if exiting traffic flow 6= 0 then entering traffic flow
6= 0. Our syntax of constraints does not allow the writing of
conditional constraints of this form. However, if we assume
v1 6= 0, a reasonable assumption, this conditional constraint
is already implied by constraints (1) and (2). The set Conlinks
specifies lower and upper bounds on the parameters, i.e., it
consists of constraints of the form alo

p 6 vp 6 aup
p and

blo
p 6 dp 6 bup

p for p ∈ {1, 2, 3}, where alo
p , aup

p , blo
p , bup

p are
particular scalar values.

Other meaningful constraints may be introduced into
Connodes to alter the goal of the construction:
– Balanced densities at exits: d2 6 d3 6 d2 + 1
– Balanced flows at exits: d2 ∗ v2 6 d3 ∗ v3 6 d2 ∗ v2 + 1
– Constant velocities from entry to exit: v1 = v2 = v3

– Conservation of kinetic energy: d1 ∗v2
1 = d2 ∗v2

2 +d3 ∗v2
3

Before we specify the other two junction types, suppose that
the junction connected directly to a bridge is a fork junction.
A typed specification for the fork gadget would consist of
an assignment of types to the input and output links. If the
problem were trivial, containing only one bridge and one
junction, this type would specify exactly the bounds that
would guarantee no backups and could be used to decide
exactly how many lanes to open on the bridge.

Example 2: A merge junction has two incoming links
(call them 1 and 2) and one outgoing link (call it 3). The
corresponding gadget (call it AM) for this junction is very
similar to the fork module in Example 1. There is a single
node, call it M. We omit the details and justifications for
this gadget, which are similar to those in Example 1.

Example 3: A crossing junction has two incoming links
(call them 1 and 2) and two outgoing links (call them 3
and 4). The corresponding gadget (call it AX) again has a
single node, call it X. Let link i be associated with velocity
parameter vi and density parameter di, for i ∈ {1, 2, 3, 4},
and Con the set of constraints associated with AX. Again

here, we partition Con into two subsets, Connodes (constraints
regulating traffic through X) and Conlinks (lower and upper
bounds on v1, d1, v2, d2, v3, d3, v4, d4). The constraints in
Connodes can be of different kinds, depending on different
considerations, such as whether or not the incoming traffics,
through links 1 and 2, are given a choice to exit through
link 3 or link 4. We restrict attention in this example to
the simple case when there is no such choice: All traffic
entering through link 1 must exit through link 3 and at the
same velocity, and all traffic entering through link 2 must
exit through link 4 and at the same velocity. This is expressed
by four constraints:

v1 = v3; v2 = v4; d1 = d3; d2 = d4

If the total density of entering traffic, namely d1 + d2,
exceeds a “jam density” that makes the two entering traf-
fics block each other, there will be backups. We therefore
presume there is an upper bound, say 10, on d1 + d2 below
which the two traffics do not impede each other and there
are no backups as a result:

d1 + d2 6 10

Below a total density of 10, we can imagine that the two
incoming traffics are sparse enough so that they smoothly
alternate taking turns to pass through the crossing junction.

The modeling of a crossing in this example makes
all the constraints in Con linear. More complicated situa-
tions, enforcing additional desirable properties besides no-
backups, will typically introduce non-linear constraints such
as those listed in Example 1.

The entire city grid can be modelled by a network
N of connected instances of the typed gadget AF, AM,
and AX. The incoming edges of N would represent the
bridges. Since the constraints that restrict the intervals for the
link parameters in each individual gadget instance guarantee
no backups (thanks to the fact that the inference rules are
sound), this guarantee also holds for links of the composed
network N that consists of these gadget instances. Thus, as
soon as the best (widest) types are inferred for the incoming
links to N , the engineer can set the number of lanes of traffic
in a manner that respects these bounds and she can be certain
that no backups will occur in the city center.

It is possible that the types generated in this process will
not allow any traffic to flow into the city. In this situation, the
engineer always has the option of loosening the constraints
specified for each module, and trying again.

Example 4: This example is more complicated than
the preceding ones in this section. Consider our engineer
modeling a traffic module that represents the center of the
city, which is accessible by three inbound lanes and three
outbound lanes. The untyped gadgets that she connects
now (that will ultimately be the network M) are based on
the previous three example gadgets. M, consists of three
gadgets named A,B, C and has 10 links named 1, 2, . . . , 10.

To complete the (untyped) specification of M, we
associate parameters with each of its links and define a set
Con (constraints over these parameters). For simplicity in
this example, we restrict attention to density parameters,
ignoring velocity parameters. The assignment of density
parameters to the links of M is shown in Figure 4.

Figure 4. The traffic module from Example 4, shown abstractly (inset)
and from within NetSketch (main).

As in preceding examples, the constraints in Con specify
relationships between incoming and outgoing densities at
each junction, as well as lower and upper bounds on these
densities. The NetSketch GUI being used to define M is
shown in Figure 4. The instance of B shown is a user-defined
gadget, while C which is shown as a single node in Figure
4 (inset) has been modeled in the tool using two gadgets: a
Merge junction and a Crossing junction. While assembling
the untyped gadgets, our user has the following constraint set
automatically constructed (as defined by the gadget class):

d1 = d4 + d5 (A); d2 + d3 + d4 6 10 (B)
d2 + d3 = d6 (C); d2 + d3 + d5 6 10 (C)

Only the lower and upper bounds on the density parameters
must be specified by our engineer, and she is prompted to
provide them after placing each module on the canvas.

2 6 d1, d4, d5, d6 6 8 0 6 d2, d3 6 6

If our user decides to convert this untyped gadget topology
to a Typed Network to analyze the density bounds for traffic
into and out of the city center, the user supplied bounds alone
are insufficient. The user supplied bounds do not constitute
a valid type for the inputs and outputs of a Typed Network.4
Instead, the tool prompts our user for an objective function to
try to find a specific valid typing for each of the constituent
gadgets. Assuming the engineer’s city center is connected
to a large thoroughfare via d6, she may generate types that
abide by this request. Moreover, should she have models
of the rest of the city, but not the portion of roadway that
connects to d4, she may use a hole connected to d4 in
her Network. The tool will indicate the range of densities
expected to enter that hole in the event that d6 is maximized.

VII. USE CASE 3: VIDEO STREAMING

As another use case of NetSketch, we consider the problem
of video stream aggregation into a constant bit rate pipe,

4For a more complete treatment invalid, weakly valid, strongly valid, and
optimal types, we refer the reader to our companion paper [1].

e.g., into the upstream bandwidth of a video server. To
safely serve a set of video streams, we must ensure that
in any period of time the video streams do not exhibit
an aggregate rate that is larger than that of the pipe. This
problem would be quite simple if the bit rates of the video
streams were fixed. This is not the case for current video
encoding standards, which exhibit highly variable bit rates
due to the different types of underlying frames (e.g., MPEG-
2/4 I, P, and B frames).

Let a(t) denote the cumulative number of bits for a
video stream. Two important parameters describing a video
stream are the mean bitrate and the peak bitrate:

Mean Rate =
a(tf)
tf

; Peak Rate =max
i

{
a(ti+1)− a(ti)

ti+1 − ti

}
where ti is the time of the ith frame and tf is the time of
the last frame (assuming that the stream starts a t1 = 0).

Using the stream’s mean rate for reserving resources is
not practical as it does not provide a small enough bound
on the playback delay and, potentially, may require a very
large buffer to avoid buffer underruns at the receiver. On
the other hand, while using the peak rate would give the
minimum playback delay and would minimize the amount
of buffering required, it also wastes resources because band-
width utilization will be very low, making it impossible to
scale the system to a large number of streams. To deal with
this dilemma, one may use the effective bandwidth as a way
to characterize (using a tight constant rate envelope) any time
interval of the stream, so that the buffering delay experienced
during this interval is bounded. One way to characterize the
effective bandwidth is by specifying a rate r for the stream as
well as the maximum burst size s that is possible under that
rate, as well as the minimum window of time w necessary
for such a burst to build up (which is typically well defined
for encoding standards – e.g., a GoP for MPEG-2/4).

For a given stream, multiple (r, s, w) values may exist,
reflecting a tradeoff between bandwidth and delay. In partic-
ular, if r is the peak rate (as described above) then there will
be no need for any buffering at the server, since there will
always be reserved uplink capacity to immediately serve the
content, i.e., s = 0 and w = 1. Similarly, if r is the mean
rate (or less) then the corresponding values of s and w will
increase. In general one can see that: r+s/w < rmax where
rmax is the peak rate mentioned above.
Aggregation Gadget: While in practice one would be
interested in the aggregation of a set of video streams, the
basic building block we consider is that of aggregating two
video streams (or video stream aggregates) on a server.
Such a gadget would have two incoming links (In = 〈1, 2〉)
and one outgoing link (Out = 〈3〉). The incoming links
capture the properties of the two streams to be aggregated,
whereas the outgoing link captures the properties of the
aggregated stream. We note that the aggregation gadget
induces a relationship between the three links that could
be specified using the following relationships:

r3 = r1 + r2; s3 = s1 + s2; w3 = min(w1, w2)

Smoothing Gadget: Another operation that one may per-
form on a video stream (or an aggregate thereof) at the server

is smoothing. Smoothing a video stream is done through
buffering (and hence introducing an end-to-end delay). Thus,
a smoothing gadget with a buffer of size b would have one
incoming link (In = 〈1〉) and one outgoing link (Out = 〈2〉)
subject to the following constraint relating the characteristics
of the incoming and outgoing links:

r2 = r1; s2 = max(s1 − b, 0); w2 ≤ w1

Transmission Gadget: Finally, in order to transmit a video
stream (or an aggregate of video streams) from the server
with a constant-bit-rate uplink capacity c, we define a gadget
with one incoming link (In = 〈1〉) and one outgoing link
(Out = 〈2〉) subject to the following constraint relating the
characteristics of the incoming and outgoing links:

r2 = r1; s2 = s1; w2 = w1; r1 +
s1

w1
≤ c

Example 5: Now, consider a user with an existing video
streaming network who wants to find out the “maximal”
stream that can be “inserted” without violating any existing
constraints of on-going streams. In its simplest form, this
could be an aggregation gadget where the output link as
well as one of the input links are “specified” (constrained),
leaving the second input link as a hole.

Example 6: As a second example, consider an aggre-
gated set of streams which need to be transmitted but, to
match the aggregate to the transmission link, the aggregate
must be smoothed through buffering. Notice that smoothing
reduces the size of the (aggregate) bursts, which in turn
reduces the requirement on the capacity of the transmission
gadget. In this topology a user designates a hole (i.e., an
unspecified smoothing gadget) ahead of the transmission
gadget and, given a particular capacity, we can find the
minimal smoothing necessary for the plumbing to work.

The constraints associated with the gadgets presented
above only exemplify safe constraints that could be asserted
by a programmer or system integrator. These constraints
could be refined and/or made “tighter” (i.e., more permis-
sive). By introducing additional “variables” (e.g., delay or
loss rates), the gadgets could also be made more faithful
to specific implementation details, e.g., using concepts from
Network Calculus to establish relationships between flows.

VIII. RELATED AND FUTURE WORK

Previously proposed systems for reasoning about the behav-
ior of distributed programs ([4], [5], [6], [7], and [8], [9]) re-
tain extensive details about the internals of a system’s com-
ponents in assessing their interaction. While this improves
expressive power, analyses become inherently unmodular.
Details are not easily added to or shed from a model
when it is interfaced with another. In a global analysis,
the specification of components is highly coordinated and
inevitably wedded to particular methodologies. Not being
sufficiently general, such specifications preclude analysis of
interactions between components specified using different
methodologies. Furthermore, it is not generally possible to
analyze parts of a system independently and then, ignoring
their internals, assess if those parts can be assembled.

An essential functionality of NetSketch is the ability to
reason about, and find solution ranges that respect, sets of

constraints. In its general form, this is the widely studied
constraint satisfaction problem [10]. NetSketch types are
linear constraints, and linear constraint satisfaction is a
classic problem for which many documented algorithms
exist. A distinguishing feature of NetSketch is that it does
not treat the set of constraints as monolithic. Instead, a
tradeoff is made in favor of providing users a way to manage
large constraint sets through abstraction, encapsulation, and
composition. Complex constraint sets can be hidden behind
simpler constraints (NetSketch types) in exchange for a more
restrictive solution range. The conjunction of large constraint
sets is made more tractable using compositional techniques.

This work extends and generalizes our work in TRAFFIC
[11]), and complements our earlier work in CHAIN [12]).

NetSketch’s current constraint system for untyped gad-
gets (limited to linear constraints) is a proof-of-concept
enabling our work on typed networks (holes, types and
bounds). We are working to extend the constraint solver to
support more complex untyped gadgets. There is also a need
to automatically assess systems of non-linear constraints and
determine the threshold. As indicated in the accompanying
paper on the NetSketch formalism [1], there is no natural
ordering of types for sketches. The algorithm for assigning
types can be amended to consider a measure and ordering on
types reflecting application-dependent objective functions.

REFERENCES

[1] A. Bestavros, A. Kfoury, A Lapets, and M. Ocean,
“Safe Compositional Network Sketches: Formalism,”
CS Dept., Boston University, Tech. Rep. BUCS-
TR-2009-029, September 29 2009. [Online]. Avail-
able: http://www.cs.bu.edu/techreports/2009-029-netsketch-
formalism.ps.Z

[2] JGraph Ltd., “JGraph: The Java Open Source Graph Drawing
Component,” http://www.jgraph.com/jgraph.html.

[3] Andrew Makhorin, Department for Applied Informatics,
Moscow Aviation Institute, Moscow, Russia, “GNU Linear
Programming Kit,” http://www.gnu.org/software/glpk/.

[4] J. Baeten and W. Weijland, Process Algebra. Cambridge
University Press, 1990.

[5] R. Milner, J. Parrow, and D. Walker, “A Calculus of Mobile
Processes (Part I and II),” Information and Computation, no.
100, pp. 1–77, 1992.

[6] N. Lynch and M. Tuttle, “An introduction to input/output
automata,” CWI-Quarterly, vol. 2(3), no. 3, pp. 219–246, Sep.
1989.

[7] N. Lynch and F. Vaandrager, “Forward and backward simu-
lations – part I: Untimed systems,” Information and Compu-
tation, vol. 121(2), pp. 214–233, Sep. 1995.

[8] G. J. Holzmann, “The Model Checker SPIN,” IEEE Transac-
tions on Software Engineering, vol. 23, no. 5, pp. 1–17, May
1997.

[9] G. J. Holzmann and M. H. Smith, “A practical method
for verifying event-driven software,” in Proc. ICSE99, Los
Angeles, CA, May 1999, pp. 597–607.

[10] E. P. K. Tsang, Foundations of Constraint Satisfaction. Lon-
don and San Diego: Academic Press, 1993.

[11] A. Bestavros, A. Bradley, A. Kfoury, and
I. Matta, “Typed Abstraction of Complex Network
Compositions,” in Proceedings of the 13th IEEE
International Conference on Network Protocols (ICNP’05),
Boston, MA, November 2005. [Online]. Available:
http://www.cs.bu.edu/faculty/matta/Papers/icnp05.pdf

[12] A. Bradley, A. Bestavros, and A. Kfoury, “Systematic
Verification of Safety Properties of Arbitrary Network
Protocol Compositions Using CHAIN,” in Proceedings of
ICNP’03: The 11th IEEE International Conference on
Network Protocols, Atlanta, GA, November 2003.

