In Proceedings of DART’96: ACM CIKM Workshop on Databases. Active & Real-Time, Rockville, Maryland, November 1996.

Timely and fault-tolerant data access from broadcast disks: A
pinwheel-based approach*

SANJOY BARUAH

sanjoy@cs.uvm.edu

Department of CS & EE

University of Vermont

A7ZER BESTAVROS
best@cs.bu.edu

CS Department
Boston University

October 30, 1996

Abstract: A combination of AIDA (the Adaptive In-
formation Dispersal Algorithm) and pinwheel scheduling
18 proposed as a solution to the problem of designing data
access strategies in environments where (i) the data is fre-
quently updated at a server, and needs to be made available
to clients upon demand, (ii) the server-to-client bandwidth
far exceeds the bandwidth from any individual client back
to the server, and (i) timely retrieval of data is essential,
even in the presence of transmission or other errors

1 Introduction

Mobile computers are likely to play an important role
at the extremities of future large-scale distributed
real-time databases. One such example is the use of
on-board automotive navigational systems that in-
teract with the database of an Intelligent Vehicle
Highway System (IVHS). IVHS systems allow for
automated route guidance and automated rerouting
around traffic incidents by allowing the mobile vehi-
cle software to query and react to changes in IVHS
databases [24, 23]. Other examples include wear-
able computers for soldiers in the battlefield and
computerized cable boxes for future interactive TV
networks and video-on-demand. Such systems are
characterized by the significant discrepancy between
the downstream communication capacity from servers
(e.g. TVHS backbone) to clients (e.g. vehicles) and
the upstream communication capacity from clients to
servers. This discrepancy is the result of: (1) the
huge disparity between the transmission capabilities
of clients and servers (e.g., broadcasting via satellite
from IVHS backbone to vehicles as opposed to cel-
lular modem communication from vehicles to IVHS
backbone), and (2) the scale of information flow (e.g.,
thousands of clients may be connecting to a single

*This work has been partially supported by the NSF (grants
CCR-9308344 and CCR—9596282).

computer for service). Moreover, the limited power
capacity of some mobile systems (e.g., wearable com-
puters) requires them to have no secondary 1/0 de-
vices and to have only a small buffer space (relative
to the size of the database) that acts as a cache for
the information system to which the mobile system
is attached.

Broadcast disks: The concept of Broadcast Disks
(Bdisks) was introduced by Zdonik et al. [31] as a
mechanism that uses communication bandwidth to
emulate a storage device (or a memory hierarchy in
general) for mobile clients of a database system. The
basic idea is to exploit the abundant bandwidth ca-
pacity available from a server to its clients by continu-
ously and repeatedly broadcasting data to clients, thus
in effect making the broadcast channel act as a set of
disks (hence the term “Broadcast Disks”) from which
clients could fetch data “as it goes by.” Work on
Bdisks is different from previous work in both wired
and wireless networks [14, 22] in that several sources
of data are multiplexed and broadcast to clients, thus
creating a hierarchy of Bdisks with different sizes and
speeds. On the server side, this hierarchy gives rise to
memory management issues (e.g., allocation of data
to Bdisks based on priority /urgency). On the client
side, this hierarchy gives rise to cache management
and prefetching issues (e.g., cache replacement strate-
gies to improve the hit ratio or reduce miss penalty).
In [4], Acharya, Franklin and Zdonik discuss Bdisks
organization issues, including client cache manage-
ment [1], client-initiated prefetching to improve the
communication latency for database access systems
[3], and techniques for disseminating updates [2].

Real-time considerations: There are many rea-
sons for subjecting Bdisk data retrieval to timing con-
straints. Perhaps the most compelling is due to the

absolute temporal consistency constraints [28] that
may be imposed on data objects. For example, the
data item in an Airborne Warning and Control Sys-
tem (AWACS) recording the position of an aircraft
with a velocity of 900 km/hour may be subject to
an absolute temporal consistency constraint of 400
msecs, in order to ensure a positional accuracy of 100
meters for client transactions (e.g. active transac-
tions that are fired up to warn soldiers to take shel-
ter). Notice that not all database object will have
the same temporal consistency constraint. For ex-
ample, the constraint would only be 6,000 msecs for
the data item recording the position of a tank with a
velocity of 60 km /hour. Other reasons for imposing
timing constraints on data retrieval from a Bdisk are
due to the requirements of database protocols for ad-
mission control [10], concurrency control, transaction
scheduling [26], recovery [21], and bounded impreci-
sion [29, 30].

The real-time constraints imposed on Bdisks proto-
cols become even more pressing when issues of fault-
tolerance are to be considered. Current Bdisks proto-
cols assume that the broadcast infrastructure is not
prone to failure. Therefore, when data i1s broadcast
from servers to clients, it is assumed that clients will
succeed in fetching that data as soon “as it goes by.”
The result of an error in fetching data from a Bdisk is
that clients have to wait until this data is re-broadcast
by the server. In a real-time environment, waiting for
a complete retransmission may imply missing a criti-
cal deadline, and subjecting clients to possibly severe
consequences.

In [9], Bestavros showed how to allocate data items
to Bdisks so as to mask (or otherwise minimize) the
impact of intermittent failures in a real-time environ-
ment. In that respect, he proposed the use of the
Adaptive Information Dispersal Algorithm (ATDA)
[8], which allows for a controllable and efficient trade-
off of bandwidth for reliability, and derived lower
bounds on the bandwidth requirements for AIDA-
based fault-tolerant real-time Bdisks.

In this paper, we explore the issue of integrating
AIDA and pinwheel scheduling [18] to design Bdisk
layouts that offer real-time guarantees even in the
presence of faults. In Section 2, we provide a brief in-
troduction to AIDA. In Section 3, we model the data
layout problem on Bdisks as a pinwheel scheduling
problem; further, we observe that a simple version of
fault-tolerance requirements can also be so modelled
with little additional effort. In Section 4, we define a
more general concept of fault-tolerance than the ones
considered in [9], and discuss extensions to pinwheel
scheduling theory that are necessary in order to de-

sign Bdisk layouts which possess this generalized form
of fault-tolerance.

2 Information Dispersal and Retrieval

Let F represent the original data object (hereinafter
referred to as the file) to be communicated (or re-
trieved). Furthermore, assume that file F is to be
communicated by sending N independent transmis-
sions. Using Rabin’s IDA algorithm [27], the file '
can be processed to obtain /N distinct blocks in such a
way that recombining any m of these blocks, m < N,
is sufficient to retrieve F'. The process of process-
ing F1s called the dispersal of F', whereas the pro-
cess of retrieving F' by collecting m of its pieces is
called the reconstruction of F. Figure 1 illustrates
the dispersal, communication, and reconstruction of
an object using IDA. Both the dispersal and recon-
struction operations can be performed in real-time.
This was demonstrated in [7], where an architecture
and a CMOS implementation of a VLSI chip that
implements IDA was presented.

In our research, we assume that broadcasted blocks
are self-identifying. In particular, each block has two
identifiers. The first specifies the data item to which
the block belongs (e.g., thisis page 3 of object Z). The
second specifies the sequence number of the block rel-
ative to all blocks that make-up the data item (e.g.,
this is block 4 out of 5). This is necessary so that
clients could relate blocks to objects, and more im-
portantly, to allow clients to correctly choose the in-
verse transformation when using IDA.

Adaptive information dispersal and retrieval:
Several fault-tolerant redundancy-injecting protocols
have been suggested in the literature. In most of
these protocols, redundancy 1s injected in the form of
parity blocks, which are only used for error detection
and/or correction purposes [13]. The IDA approach
is different in that redundancy is added uniformly;
there is simply no distinction between data and par-
ity. It is this feature that makes it possible to scale
the amount of redundancy used in IDA. Indeed, this
is the basis for the adaptive IDA (AIDA) [8]. Using
AIDA, a bandwidth allocation operation 1s inserted af-
ter the dispersal operation but prior to transmission.
This bandwidth allocation step allows the system to
scale the amount of redundancy used in the transmis-
sion. In particular, the number of blocks to be trans-
mitted, namely n, is allowed to vary from m (i.e. no
redundancy) to N (i.e. maximum redundancy).

The reliability and accessibility requirements of
various data objects in a distributed real-time appli-

Original
Data Object

Disperse

memory page,
video frame,

D.B. a. .
recor Dispersed

Object

Unavailable
Data Blocks

T

Retrieved
Data Object

Communication
Network/Protocol

Reconstruct

Available ¥
Data Blocks

Figure 1: Dispersal and reconstruction of information using IDA.

cation depend on the system mode of operation. For
example, the fault-tolerant timely access of a data
object (e.g., “location of nearby aircrafts”) could be
critical in a given mode of operation (e.g., “combat”),
but less critical in a different mode (e.g., “landing”),
and even completely unimportant in others. Using
the proposed AIDA, it is possible to dynamically ad-
just the reliability and accessibility profiles for the
various objects (files) in the system by controlling
their level of dispersal. In other words, given the re-
quirements of a particular mode of operation, servers
could use the bandwidth allocation step of AIDA to
scale down the redundancy used with unimportant
(e.g., non-real-time) data items, while boosting it for
critical data items.

3 Pinwheel Task Systems

Pinwheel task systems were introduced by Holte
et al. [18], in the context of offline scheduling for
satellite-based communication. Since its introduc-
tion, this task model has been used to model the
requirements of a wide variety of real-time systems.
For example, Han & Lin [15] have used pinwheel tech-
niques to model distance-constrained tasks; Hsueh,
Lin, and Fan [20] have extended this research to dis-
tributed systems. Baruah, Rosier, and Varvel [6] have
used pinwheel scheduling to construct static sched-
ules for sporadic task systems. Recently, Han &
Shin [16, 17] have applied pinwheel techniques to real-
time network scheduling.

Consider a shared resource that is to be scheduled
in accordance with the Integral Boundary Constraint:
for each integer ¢ > 0, the resource must be allocated
to exactly one task (or remain unallocated) over the
entire time interval [¢,t + 1). (We refer to this time
interval as time slot t.) For our purposes, a pinwheel
task 1 is characterized by two positive integer param-

eters — a computation requirement a and a window
size b — with the interpretation that the task ¢ needs
to be allocated the shared resource for at least a out
The ratio of the
computation requirement of a task to its window size
is referred to as the density of the task. The density
of a system of tasks is simply the sum of the densi-
ties of all the tasks in the system. Observe that for
a task system to be schedulable, it is necessary (al-
though not sufficient) that the density of the system
be at most one.

of every b consecutive time slots.

The issue of designing efficient scheduling algo-
rithms for pinwheel task systems has been the sub-
ject of much research. Holte et al [19] presented
an algorithm which schedules any pinwheel task sys-
tem of two tasks with density at most one. Lin &
Lin [25] have designed an algorithm which schedules
any pinwheel task system of three tasks with a den-
sity at most five-sixth’s (this algorithm is optimal
in the sense that there are three-task systems with
density 5/6 + € that are infeasible, for ¢ arbitrarily
small). When the number of tasks is not restricted,
Holte et al [18] have a simple and elegant algorithm
for scheduling any pinwheel task system with density
at most one-half. Chan and Chin [12, 11] have sig-
nificantly improved this result, designing a series of
algorithms with successively better density bounds,
culminating finally in one that can schedule any pin-
wheel system with a density at most 7/10 [11].

Pinwheel scheduling for Bdisks: Suppose that
a broadcast file F; is specified by a size m; € N
in blocks and a latency T; € N in seconds. Given
Fy Fs, ... F,, the problem of determining minimum
bandwidth (in blocks/sec) reduces to determining the
smallest B € N such that the system of pinwheel
tasks {(1,mq1, BT1), (2, m2, BT3),...,(n,my,, BT,)}

can be scheduled. Since the algorithm of Chan and
Chin [11] can schedule any pinwheel task system with
density at most 7/10, "1, B < % is sufficient
for this purpose. That is, a bandwidth

10 == m;
B:{Tsz

i=1

1s sufficient; since 2?21 ”73: is clearly necessary, this
represents a reasonably efficient upper bound, in that
at most 43% extra bandwidth is being required. Fur-
thermore, this upper bound is easily and efficiently
realised — given this much bandwidth, the schedul-
ing algorithm of Chan and Chin [11] can be used to

determine the actual layout of blocks on the Bdisk.

Fault-tolerant pinwheel scheduling for Bdisks:
Suppose now that each file F; is characterized by a
fault-tolerance requirement r; in addition to m; and
T;. That is, access to the file is expected to be accom-
plished with a latency of at most 7; seconds even in
the presence of up to r; faulty blokcs. Determining
the minimum bandwidth for such systems is again
not difficult — as above, we can derive

10 - m; + r;
32{72 T w

i=1

and argue that this is again efficient with an at most
43% overhead cost.

4 Generalized Fault-tolerant Real-

Time Bdisks

In certain applications, 1t may be desirable to asso-
ciate with each file different latencies depending upon
the occurrence and severity of faults. Thus, we may
want very small latency under normal circumstances,
but be willing to live with a certain degradation in
performance when faults occur. This model is exam-
ined below.

Model and Definitions: Let us assume that the
available bandwidth is known. A generalized fauli-
tolerant real-time broadcast file F; 1s specified by a
positive integer size m; and a positive integer latency
vector d; = [dgo), dgl), e dgr’)], with the interpreta-
tion that i1t consists of m; blocks, and the worst-case
latency tolerable in the presence of j faults is equal to
the time required to transmit dgj) blocks, 0 < j < r;.

It is important to note that the generalized fault-
tolerant real-time Bdisks constitute a generalization

of the broadcast disk models discussed above. “Reg-
ular” real-time Bdisks — those with real-time but no
fault-tolerance constraints — are represented in this
model by setting r; to zero for each file. “Regular”
fault-tolerant real-time Bdisks — those with both

real-time and fault-tolerance constraints — may be
represented by setting all the latencies of a file equal
to each other: dgo) = dgl) =...= dgr’).

We would like to map the problem of scheduling
such generalized fault-tolerant Bdisks to related prob-
lems in pinwheel scheduling. Unfortunately, it turns
out that this mapping is not as straightforward as in
the case of regular Bdisks.

We start with some definitions:

1. A broadcast program P for a system of n
files Fy, F5, ..., F, in a generalized Bdisks sys-
tem is a function from the positive integers to
{0,1,...,n}, with the interpretation that P(¢) =
1, 1 < i < n, iff a block of file F; is transmitted
during time-slot ¢, and P(¢) = 0 iff nothing is
transmitted during time-slot ¢.

2. P.iis the sequence of integers ¢ for which P(¢) =
2.

3. Broadcast program P satisfies broadcast file con-
dition be(i, m;, d;) iff P.i contains at least m; + j
out of every dgj) consecutive positive integers,

for all j > 0, where d; = [dgo), dgl), Cel dgr’)] Is a

vector of positive integers.

4. Broadcast program P satisfies pinwheel task con-
dition pc(i,a,b) iff P.i contains at least a out of
every b consecutive positive integers.

5. Broadcast program P satisfies a conjunct of
(pinwheel task or broadcast file) conditions iff it
satisfies each individual condition.

6. Let S; and S3 be (broadcast/ pinwheel/ con-
junct) conditions. We say that S; = S iff any
broadcast program satisfying S7 also satisfies Sa.

We say S; = S5 iff 51 = S5 and Sy = 55,

Observe that constructing a broadcast schedule for
a given set of files Fy, Fs, ..., F,, with F; charac-
terized by size m; and latency vector d_;, is exactly
equivalent to determining a broadcast program that
satisfies A\[_, be(i, m;, ci;)

From the definitions of broadcast file condition and
pinwheel task condition (the be() and pe() conditions
above), we obtain

bc(i,mi,ci;) = /\ pe(i, m; + J, dgj)) .
Jj20

(1)

Lemma 1 follows as a direct consequence:

Lemma 1 The problem of constructing a broadcast
schedule for Iy, Iy, ..., F, is equivalent to the follow-
ing pinwheel scheduling problem: Determine a broad-
cast program that satisfies

n

/\ /\ pc(iami + 7, dgj))

i=1 \j>0

(2)
n

Obtaining broadcast programs for generalized
Bdisks: Recall that Chan and Chin [11] have de-
signed an algorithm for scheduling any system of pin-
wheel tasks that has a density of at most 0.7. In
our notation, this algorithm determines a P satis-
fying [pe(1, a1, b1) A pe(2,as,b2) A ... A pe(n,an, by),
provided (3°7_, a;/b;) < 0.7.

An important observation about this algorithm of
Chan and Chin [11] is that it can only schedule pin-
wheel task systems where each task is constrained by
a single pinwheel condition. That 1s, we do not have
any ¢ such that both pe(7,a,b) and pe(é,a’, ') must
be satisfied.

Definition 1 A conjunct of pinwheel conditions
A, pe(ks, a;,b;) is nice if and only if k; # k, for
all j # L.

Since the Chan and Chin algorithm can only deter-
mine schedules satisfying nice conjuncts of pinwheel
conditions, it is necessary that we reformulate Equa-
tion 2 into a nice form if we are to be able to use
the Chan and Chin algorithm. That is, we are look-
ing to convert a conjunct of pinwheel conditions on
a single task into either a single pinwheel condition,
or to a conjunct of pinwheel conditions on several
tasks, such that these new conditions imply the orig-
inal ones. Since the test of [11] is density-based, we
would like to be able to perform such a conversion
while causing the minimum possible increase in the
density of the system. That is, we are attempting to
solve the following problem:

Conversion to nice pinwheel: Given a
conjunct of pinwheel conditions, determine
a nice conjunct of pinwheel conditions of
minimum density which implies the given
conjunct.

This seems to be a very difficult problem — indeed,
we conjecture that it is NP-hard. In [5], we present
several heuristic rules for obtaining a nice conjunct
of pinwheel conditions that implies a given conjunct

of pinwheel conditions; the design of more and better
such heuristics remains an open and potentially fruit-
ful research area. All these rules guarantee that the
nice conjunct will in fact imply the given conjunct;
further, they all attempt to obtain a minimal-density
nice conjunct.

5 Conclusion

With the advent of mobile computers and cellular
communication, it is expected that most clients in
large-scale distributed environments will have limited
storage capacities. More importantly these clients
will have a limited upstream bandwidth (if any) for
transferring information to servers, as opposed to a
large downstream broadcast bandwidth for receiving
information from servers. The significant asymme-
try between downstream and upstream communica-
tion capacities, and the significant disparity between
server and client storage capacities have prompted re-
searchers to suggest the use of the downstream band-
width as a “broadcast disk”, on which data items
that may be needed by clients are continuously and
repeatedly transmitted by servers. The execution of
critical tasks in such asymmetric client-server envi-
ronments requires that data retrievals be successfully
completed before some set deadlines. Previous work
on broadcast disks did not deal explicitly with the
fault-tolerance and timeliness constraints imposed by
such critical tasks. In this research, we have defined
a formal model for the specification of fault-tolerance
and real-time requirements for broadcast disk files.
We have shown a close link between the design of
broadcast programs for such disks and the previously
studied problem of pinwheel scheduling.

References

[1] S. Acharya, R. Alonso, M. Franklin, and S. Zdonik.
Broadcast disks: Data management for asymmet-
ric communications environments. In Proceedings of

ACM SIGMOD conference,San Jose, CA, May 1995.
[2] S. Acharya, M. Franklin, and S. Zdonik. Dissemi-

nating updates on broadcast disks. In Proceedings
of VLDB’96: The 1996 International Conference on
Very Large Databases, India, September 1996.

[3] S. Acharya, M. Franklin, and S. Zdonik. Prefetching
from a broadcast disk. In Proceedings of ICDF’96:
The 1996 International Conference on Data Engi-
neering, New Orleans, Louisiana, March 1996.

[4] Swarup Acharya, Michael Franklin, and Stanley
Zdonik. Dissemination-based data delivery using
broadcast disks. [EFE Personal Communications,
2(6), December 1995.

(5]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

S. Baruah and A. Bestavros. Pinwheel scheduling for
fault-tolerant broadcast disks in real-time database
systems. Technical Report TR-1996-023, Depart-
ment of Computer Science, Boston University, Au-
gust 1996.

S. Baruah, L. Rosier, and D. Varvel. Static and
dynamic scheduling of sporadic tasks for single-
processor systems. In Proceedings of the Third Eu-
romecro Workshop on Real-time Systems, June 1991.

SETH: A VLSI chip for the real-
time information dispersal and retrieval for security
and fault-tolerance. In Proceedings of ICPP’90, The
1990 International Conference on Parallel Process-
ing, Chicago, [llinois, August 1990.

Azer Bestavros.

Azer Bestavros. An adaptive information dispersal
algorithm for time-critical reliable communication.
In Ivan Frisch, Manu Malek, and Shivendra Panwar,
editors, Network Management and Control, Volume
1. Plenum Publishing Corporation, New York, New
York, 1994.

Azer Bestavros. AIDA-based real-time fault-tolerant
broadcast disks. In Proceedings of RTAS’96: The
1996 IEFE Real-Time Technology and Applications
Symposium, Boston, Massachusetts, May 1996.

Azer Bestavros and Sue Nagy. Value-cognizant
admission control for rtdbs. In Proceedings of
RTSS5'96: The 16" IEEE Real-Time System Sym-
posium, Washington, DC, December 1996.

M. Y. Chan and Francis Chin. Schedulers for the
pinwheel problem based on double-integer reduction.
IEEE Transactions on Computers, 41(6):755-768,
June 1992.

M. Y. Chan and Francis Chin. Schedulers for larger
classes of pinwheel instances. Algorithmica, 9:425—

462, 1993.

Garth Gibson, Lisa Hellerstein, Richard Karp,
Randy Katz, and David Patterson. Coding tech-
niques for handling failures in large disk arrays. Tech-
nical Report UCB/CSD 88/477, Computer Science
Division, University of California, July 1988.

David Gifford. Ploychannel systems for mass digital
communication. Communications of the ACM, 33,

February 1990.
C. C. Han and K. J. Lin. Scheduling distance-

constrained real-time tasks. In Proceedings of the
Real-Time Systems Symposium, December 1992,

C. C. Han and K. G. Shin. A polynomial time op-
timal synchronous bandwidth allocation scheme for
the time-token MAC protocol. In Proceedings of
IEFE INFOCOMM’95, April 1995.

C. C. Han and K. G. Shin. Real-time communication
in FieldBus multiaccess networks. In Proceedings of
the Real-Time Technology and Applications Sympo-
seum, May 1995.

[18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

R. Holte, A. Mok, L. Rosier, I. Tulchinsky, and
D. Varvel. The pinwheel: A real-time scheduling
problem. In Proceedings of the 22nd Hawait Interna-
tional Conference on System Science, pages 693-702,
Kailua-Kona, January 1989.

R. Holte, L. Rosier, I. Tulchinsky, and D. Varvel.
Pinwheel scheduling with two distinct numbers. The-
oretical Computer Science, 100(1):105-135, 1992.

C. W. Hsueh, K. J. Lin, and N. Fan. Distributed pin-
wheel scheduling with end-to-end timing constraints.
In Proceedings of the Real- Time Systems Symposium,
December 1995.

Jing Huang and Le Gruenwald. An update-
frequency-valid-interval partition checkpoint tech-
nique for real-time main memory databases. In Pro-
ceedings of RTDB’96: The 1996 Workshop on Real-
Time Databases, pages 135-143, Newport Beach,
California, March 1996.

T. Imielinski and B. Badrinath. Mobile wireless com-
puting: Challenges in data management. Communi-
cations of the ACM, 37, October 1994.

IVHS America. IVHS architecture development pro-
gram: Interim status report, April 1994.

R.K. Jurgen. Smart cars and highways go global.
IFEE Spectrum, pages 26-37, May 1991.

S. S. Lin and K. J. Lin. Pinwheel scheduling with
three distinct numbers. In Proceedings of the Eu-
roMicro Workshop on Real-Time Systems, Vaester-
aas, Sweden, June 1994.

ézgﬁr Ulusoy and Alejandro Buchmann. Exploit-
ing main memory dbms features to improve real-
time concurrency protocols. ACM SIGMOD Record,
25(1), March 1996.

Michael O. Rabin. Efficient dispersal of informa-
tion for security, load balancing and fault tolerance.
Journal of the Association for Computing Machin-
ery, 36(2):335-348, April 1989.

Krithi Ramamritham. Real-time databases. Interna-
tional journal of Distributed and Parallel Databases,
1(2), 1993.

Wei-Kuan Shih, Jane Liu, and Jen-Yao Chung. Al-
gorithms for scheduling imprecise computations with
timing constraints. SIAM journal of Computing,
July 1991.

V. Fay Wolfe, L. Cingiser DiPippo, and J. K. Black.
Supporting concurrency, timing constraints and im-
precision in objects. Technical Report TR94-230,
University of Rhode Island, Computer Science De-
partment, December 1994.

S. Zdonik, M. Franklin, R. Alonso, and S. Acharya.
Are ‘disks in the air’ just pie in the sky? In Proceed-
ings of the IEEE Workshop on Mobile Computing
Systems and Applications, Santa Cruz, CA, Decem-
ber 1994.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

