
Chapter 1

VIRTUALIZATION AND PROGRAMMING
SUPPORT FOR VIDEO SENSOR NETWORKS
WITH APPLICATION TO WIRELESS AND
PHYSICAL SECURITY ∗

Azer Bestavros,1 and Michael J. Ocean1,2

1Computer Science Department
Boston University, Boston, MA
best@cs.bu.edu

2Computer Science Department
Endicott College, Beverly, MA
mocean@endicott.edu

Abstract Network Security Systems are heavily anchored in the digital plane of
“cyber space” and hence cannot be used effectively to derive the physi-
cal identity of an intruder in order to prevent further malicious wireless
broadcasts (i.e., escorting an intruder off the premises based on physical
evidence). Embedded Sensor Networks (SNs) can be used to bridge the
gap between digital and physical security planes, and thus can provide
reciprocal benefit to security tasks on both planes. Toward that end, we
present our experience integrating wireless networking security services
into snBench (the Sensor Network workBench). snBench provides
an extensible framework that enables the rapid development and auto-
mated deployment of SN applications on a shared, embedded sensing
and actuation infrastructure. snBench’s extensible architecture allows
an engineer to quickly integrate new sensing and response capabilities
into the snBench framework, while high-level languages, compilers and
execution environments allow novice SN programmers to compose SN

∗This research was supported in part by a number of NSF awards, including CISE/CSR
Award #0720604, ENG/EFRI Award #0735974, CISE/CNS Awards #0524477, #0952145,
CNS/NeTS Award #0520166, CNS/ITR Award #0205294, CISE/EIA RI Award #0202067,
and CISE/CCF Award #0820138.

2

service logic, unaware of the lower-level components on which their ser-
vices rely. Concrete examples are provided to illustrate the power and
potential of Wireless Security Services that span both the physical and
digital plane.

Keywords: Wireless Sensor Networks, Video Networks, Intrusion Detection, Phys-
ical Security, Software Environments.

1. Motivation
A variety of Wireless Intrusion Detection Systems (WIDS) have been
created to address Wireless Network Security concerns. WIDS employ
wireless probes/sensors to monitor the Media Access Control (MAC)
frames transmitted on the wireless medium and identify misuse by ob-
serving either suspicious characteristics of individual frames (e.g., ex-
hibiting characteristics imprinted by standard hacking tools) or a par-
ticular pattern in a sequence of frames (e.g., sequences in violation of
protocol standards). Wireless misuse includes illegitimate users attempt-
ing to gain access to the network (intrusion), man-in-the-middle attacks
(e.g., luring legitimate users into communication with a rogue access
point), and various Denial of Service (DoS) attacks [5] (e.g., spoofing
a legitimate wireless Access Point (AP) and sending a disauthenticate
beacon to legitimate users).

Wireless intrusion is often dealt with using Layer-3 mechanisms (e.g.,
content based packet filtering, IP address isolation), essentially ignor-
ing the option of Layer-2 detection and prevention. Layer-3 IDSs are
likely popular because there is far more data available at Layer-3, mak-
ing it straightforward to respond to attacks, and because detection and
response at Layer-3 is independent of the Layer-2 connection medium.
On the other hand, Layer-3 response to Layer-2 wireless DoS attacks
is limited given that attackers will likely utilize fictitious or spoofed
MAC addresses and may not have an IP address to retaliate against.
Ultimately the only way to respond to these types of attack is to uti-
lize information derived from the wireless medium (e.g., received signal
strength) to reconstruct physical location toward the goal of preventing
further wireless transmissions from that user [8].

Wireless Intrusion Detection Systems provide mechanisms to identify,
detect and locate DoS attacks, yet these systems are generally limited
to logging or email alert response mechanisms. Many works ultimately
recommend dispatching administration personnel to further analyze and
respond to a detected attack – a costly and impractical solution in many
situations. Instead, once the physical area of an attack has been derived
it is possible to utilize automated responses from a variety of actuation

Virtualization and Programming Support for Video Sensor Networks 3

hardware, if available; e.g., embedded pan-tilt-zoom video cameras to
capture an image, wireless detectors on pan-tilt motors to pin-point a
signal, programmable robots to triangulate signal, a common message
display (virtual bulletin board) in the environment informing users why
their service has been interrupted and who is responsible. Additionally,
there would be a clear benefit from including other, non-network centric
inputs to the Wireless Network Security System (e.g., a MAC whitelist
from Bluetooth/RFID tracking, analysis of security camera images or
passcard logs).

Generally, attaining such cross-modal interaction within the context
of a Network Intrusion Detection tool would require the generation of
highly customized, package and deployment specific software (modules,
scripts, etc.) that are, by their very nature, cumbersome to maintain.
Indeed, such an approach is wrong headed. We observe that Wireless
Network Security Services are specific, narrowly focused instantiations
of an Embedded Sensor Network wherein sensory data includes the out-
put of such monitoring tools. Rather than “hack” a Wireless Security
System to include Sensor Network functionality, we advocate the inclu-
sion of Wireless Security within a Sensor Network. Thinking differently
about Network Security, the integration of new sensory data (e.g., mo-
tion detection, face detection) and actuation responses expand Network
Security beyond the digital plane and into the physical plane.

This chapter details the inclusion of wireless network monitoring de-
vices in our Sensor Network infrastructure, snBench (Sensor Network
Workbench) to achieve precisely these goals. snBench provides a high-
level programmatic interface to the resources of a Sensor Network (SN)
and thus the inclusion of wireless network sensors enables intrusion de-
tection and response services to be written quickly and easily. snBench
has been designed with extensibility and modularity as a central tenet
and therefore the changes required to include these new sensing modali-
ties are quite modest. Moreover, the framework’s modular nature allows
a user to swap in any improved emergent wireless surveillance tool or
technology (be it algorithmic or a physical turn-key device) with nom-
inal effort and such changes would be transparent to their dependent
services. We submit that our programmable, adaptable SN framework
is the ideal foundation on which to compose Wireless Network Security
services and physical security services alike, providing reciprocal ben-
efit to each. The example programs given provide some insight into
the highly customized, cross-modal Wireless Security behaviors that are
possible in this context.

4

2. Related Work
While many Network Intrusion Detection (Security) Systems exist (both
commercial and open-source), we are presently unaware of any other
work that leverages a programmable Sensor Network framework toward
joint physical and Wireless Network Security, and thus believe we are
unique in this regard. We present works that are related in three ma-
jor thrusts; We distinguish between works that provide detection on a
single wireless source (probe) as Wireless Intrusion Detectors (WIDs),
those works that detect events across multiple detectors simultaneously
as Intrusion Detection Systems (IDSs) and finally those that determine
attack location as Wireless Intrusion Detection Systems (WIDSs). Al-
though WIDSs contain a WID component, these works are not neces-
sarily proper subsets of each other, as IDSs may not provide wireless
detection. The distinction that a WIDS must determine attack location
is sensible, considering that MAC addresses are easily spoofed [5] and
that Layer-2 DoS attack response generally requires physical interven-
tion [8].

Wireless Intrusion Detection: Kismet [9] is the de facto open-source
Layer-2 Wireless Intrusion Detector. Kismet passively scans 802.11
channels for activity and will generate alert events when suspicious
frames are detected (among other uses). A Kismet deployment may
consist of three distinct components, (1) a Kismet Drone that passively
captures the wireless frames from its local interface and sends them to
(2) a Kismet Server that processes the frames from drones to detect ei-
ther fingerprint or trend based suspicious activity and (3) an optional
remote Kismet client that connects to the Server to receive notifications
and render the results. By writing a custom client (using the published
client protocol) Kismet may drive “external” wireless event notification.
Kismet may be configured as an IDS by associating several drones with a
single server process to build a single, central wireless event log. Kismet
has also recently been updated to track which physical drone is responsi-
ble for an alert, enabling ad-hoc spatial intrusion tracking; thus, assum-
ing a custom client that processes this data, such Kismet deployments
would be considered Wireless Intrusion Detection Systems by our defi-
nition. Other notable WID tools have existed prior to Kismet but have
been unmaintained in recent years.
Intrusion Detection Systems: As Kismet is to Layer-2 WID and IDS,
Snort [11] is the de facto standard IDS for Layer-3 (IP traffic analysis).
Snort is a mature IDS with a large user base and comprehensive set of
detection rules for detecting malicious content in IP packets for a wide

Virtualization and Programming Support for Video Sensor Networks 5

range of attacks. Snort also offers very basic response mechanisms (e.g.,
logging or email alert mechanisms) and projects (e.g., Barnyard) that
claim to enable the creation and use of custom output plug-ins. As Snort
is aimed at Layer-3, it offers no support for wireless-specific events; plans
to integrate wireless frame capture appear to have been abandoned.

In many ways, our vision is similar to that of modular (or so-called
“Hybrid”) IDSs (e.g., [14], [13]). These systems are designed to allow
various Intrusion Detection Software packages to be integrated as “sen-
sors” in the IDS. This modular approach is similar in spirit to the cross
tool integration that we hope to provide to the Network Security com-
munity, yet these works are narrowly focused on issues of traditional
Network Security. Our work enables sense and respond programs that
manipulate both network and physical sensory data (e.g., image process-
ing on embedded video cameras) in a manner that would be impossible
on these platforms without significant changes.
Wireless Intrusion Detection Systems: Many approaches to de-
rive location from multiple sensors’ Signal Strength Information (SSI)
of RF transmissions have been undertaken, including addressing issues
of transmission reflection, diffraction and interference (e.g., [4], [15]).
The WIDS architecture detailed in [2] provides detailed analysis of spe-
cific directional antennas (as opposed to the typical, omni-directional
antennas) to form a sweeping perimeter around an access point and is
able to accurately pinpoint wireless intruders. Not only would our work
be compatible with the use of sweeping directional antenna, snBench
could likely direct the servos that control antenna movement explicitly
within the security logic (easing future changes).

Finally, commercial offerings provide turn-key detection and response
systems for corporate wireless networks (e.g., [3]). Responses to wireless
attack detection in these systems are more proactive (e.g., disauthenti-
cating malicious users from the network), yet they do not provide inte-
gration with third-party tools or offer a programming interface to adjust
the sense and respond behavior. Commercial sense and respond WIDSs
lack the extensibility required to enable cross-modal monitoring (e.g.,
utilizing video frames).

3. SNBench Overview
To orient the reader to the platform to ease further discussion, in this
section we briefly highlight the salient features of snBench. The vision,
goals and high-level overview of the snBench infrastructure have been
reported elsewhere [6] and implementation details may be found in [10].

6

snBench consists of programming support and a runtime infrastruc-
ture for Sensor Networks comprised of heterogeneous sensing and com-
puting elements that are physically embedded into a shared environ-
ment. We refer to such a physical space with an embedded SN as a
Sensorium. The snBench framework allows Sensorium users to easily
program, deploy, and monitor the services that run in this space while
insulating the user from the complexity of the physical resources therein.
We liken the support that snBench extends to a Sensor Network to the
support that higher-level languages and operating systems provide to
traditional, single machine environments (language safety, APIs, virtu-
alization of resources, scheduling, resource management, etc). snBench
is designed such that new hardware and software capabilities may be
painlessly folded into the infrastructure by its advanced users and those
new capabilities easily leveraged by its novice users.

snBench provides a high-level programming language with which to
specify programs (services) that are submitted to the resource manage-
ment component which in turn disseminates program fragments to the
run-time infrastructure for execution. At the lowest level, each sens-
ing and/or computing element hosts a Sensor eXecution Environment
(SXE) that abstracts away specific details of the host and attached sen-
sory hardware. SXEs are assigned tasks by the resource management
components of snBench; the Sensorium Service Dispatcher and Senso-
rium Resource Manager in tandem monitor SN resources, schedule (link)
and deploy (bind) tasks on to available SXEs.

The Virtual Instruction Set Architecture of snBench is the Senso-
rium Task Execution Plan (STEP), a tasking-language used to describe
complete programs and fragments alike. A STEP program is a graph
of an SN program’s data-flow and computational dependency, with the
nodes of a STEP graph representing the atomic computation and sens-
ing operations and edges representing data flow. In execution, demand
for evaluation is pushed down from the root of the graph to the leaves,
and values percolate up from the leaves back to the root. STEP nodes
describe data, control flow (e.g., repetition, branching) and computation
operations that we refer to as STEP Opcodes, and the SXE maintains
implementations of the Opcodes with which it may be tasked.

Opcodes do not directly manipulate sensors, but rather manipulate
snBench typed data. Specific details of the sensor hardware of the
SXE are abstracted away by a SensorHandler module that is capable of
communicating with and reformatting the data from a specific sensor to
produce to snBench typed data; support for new sensor device types
require the addition of new SensorHandler modules1. In snBench there
is a distinction between a SN Service Developer who uses high-level pro-

Virtualization and Programming Support for Video Sensor Networks 7

gramming languages to compose Services by gluing together Opcodes
and sensors (generally without regard for how the Opcodes are actu-
ally implemented beyond their type signature) and the snBench “engi-
neers” who are responsible for expanding the Opcode and SensorHandler
libraries to enable new functionalities.

4. Enabling Wireless Monitoring
snBench is extensible by design insofar as support for new sensing de-
vices may be added to the Sensor eXecution Environment (SXE) by pro-
viding implementations of two relatively small interfaces; a SensorHan-
dler translates snBench requests to interact with a specific device and
a SensorDetector module must provide a facility to detect new devices
of this type and inspect their state. The SensorHandler is akin to a de-
vice driver, abstracting away the specific idiosyncrasies of the particular
device’s interface and enabling the device to be accessed by higher-level
programming constructs. As far as the snBench framework is con-
cerned, the abstracted device becomes just another managed input de-
vice/event generator only different from a video camera or motion sensor
insofar as the datatype of its output.

To enable wireless network security service composition on snBench,
two new sensors and a new actuator were added; the WifiAlertSensor
reports wireless alert detection events, the WifiActivitySensor reports
MAC addresses and Received Signal Strength Indication (RSSI) for any
passively observed wireless activity, and the WifiResponder actuator
sends a disauthenticate flood to a particular MAC address. Rather than
implement wireless Layer-2 tools from scratch, we opted to leverage sev-
eral existing open-source software packages.

WifiAlertSensor: The WifiAlertSensor is a SensorHandler implemen-
tation that leverages the Kismet [9] wireless intrusion detector via a
self-contained customized Kismet client. The Java based WifiAlertSen-
sor class is hosted by a “non-lightweight” SXE and translates the pro-
prietary Kismet client-server protocol into structured, typed snBench
objects (tagged XML) that encapsulate notifications from the Kismet
server. The decision to use Kismet stems from its passive scanning abil-
ity, wide range of hardware support, and modular design (described in
Section 2). While the decision to use this package in particular may be
debated, the inclusion of any another functionally-equivalent Wireless
Intrusion Detector would be equally straightforward.

A Kismet client may request to receive several types of Kismet mes-
sages from a Kismet server/drone pair (client traffic, AP detection, sus-

8

picious activity alerts, etc.). In the case of the Alert Sensor, the client
requests notification of all wireless alerts supported by the current stable
build of Kismet. Whenever the Kismet server detects an alert condition
from its corresponding drone’s data feed, an alert is sent to the WifiAlert-
Sensor client which translates and buffers the alert message. In addition
to translating the Kismet protocol, the WifiAlertSensor adds additional
fields to the alert message: a local timestamp to measure buffer service
delay, a sensor source to identify the physical sensor (drone) that pro-
duced the message, and a severity field that indicates the relative threat
of the particular attack.

The WifiAlertSensor’s message buffer is configurable in length (where
length is measured in either size or time) and alert messages are re-
trieved from the buffer by Opcodes requesting data from this sensor.
Implementation of the retrieval Opcode may impose a blocking or non-
blocking semantic, as needed. In our experimentation we implemented
a single alert-centric Opcode, sxe.core.wifi.get, that performs a non-
blocking read from the Alert Sensor’s buffer to populate and return a
WifiAlert. The WifiAlert data-type is a subtype of snStruct, with tagged
fields corresponding to the fields populated by the WifiAlertSensor and
thus accessing the data within a WifiAlert reuses the existing snStruct
manipulation opcodes. A Service Developer retrieves WifiAlerts via the
high-level function DetectWifiAlert() that is compiled into a call to the
Opcode sxe.core.wifi.get with a WifiAlertSensor (or set of sensors) as a
parameter. High-level service logic examples are given in Section 7.

WifiActivitySensor: The Activity sensor provides data regarding wire-
less transmissions that have been detected by a passive, promiscuous-
mode wireless sensor. In particular, we are interested in the MAC ad-
dress of a transmission, the observed signal strength (RSSI) and the
mode of the transmission (i.e., Access Points, Clients, Ad-hoc partici-
pants). While determining physical location from RSSI is imperfect (as
RSSI readings themselves may not be entirely accurate depending on
the driver implementation and other physical factors), the use of RSSI
readings can better estimate the physical location of a MAC address
beyond the simple cell-of-origin. WifiActivitySensor maintains a hash-
table of the detected wireless activity (keyed by MAC address), which
can be used either to report new/updated wireless activity (similar to
the Alert Sensor) or to query the activity log to find information about
a particular MAC address. Like the Alert Sensor, the activity sensor
also communicates with a remote sensor “server” process responsible for
gathering data.

Virtualization and Programming Support for Video Sensor Networks 9

As the Kismet drone/server cannot retrieve the RSSI on all hardware
platform, two different physical implementations for the activity sen-
sor server are supported. For Kismet’s RSSI-supported hardware, the
client, which is derived from the WifiAlertSensor implementation, re-
quests and parses NETWORK and CLIENT messages from the Kismet
server rather than ALERT messages. For the OpenWRT platform, a
custom monitoring program sends ioctl’s to the wireless device to put
the device in passive monitor mode, accept frames, and retrieve data
from the frames and device (including the RSSI). This program is based
on code from the open source WiViz [12] package for OpenWRT, which
contains the ioctl codes needed to achieve the proper device state and
interaction. Like the Kismet server, this program provides notifications
of activity messages which are received and hashed by the WifiActivity-
Sensor.

The high-level Opcode DetectWifiActivity() is compiled into sxe.core-

.wifi.get with a WifiActivitySensor as a parameter and blocks until a
new activity message is available from that sensor. In addition QueryWifi-

Activity() (compiled into sxe.core.wifi.find) searches the WifiActivity-
Sensor’s hash table for the latest reading associated with the specified
MAC address. As with the WifiAlertSensor, returned data is an snStruct
derivative.

WifiResponder: In addition to the wireless network sensing described
above, the Layer-2 wireless actuator (i.e., output device) WifiRespon-
der may be used as a retaliatory action against a detected attacker. The
WifiResponder invokes a script on a trusted (whitelisted) device run-
ning Linux with a compatible 802.11 interface and the airreplay-ng [7]
tool. The Opcode APDeauth() takes as arguments a WifiResponder that
will send a flood of deauthenticate messages to a particular MAC ad-
dress (the second argument) from a particular MAC address (the third
argument).2 An actuator is nearly identical to a Sensor in its imple-
mentation within snBench. The Handler for WifiResponder invokes
the remote common gateway interface (CGI) script to initiate the deau-
thenticate “attack” against the specified host.

5. Deployment Environment
Our test-bed deployment contains several OpenWRT[1] Linux enabled
Linksys WRT54GL Access Points (APs), each with the kismet-drone,
airreplay-ng, and signal strength monitor packages installed. The APs
are configured to use their wireless interface in client mode, and are
connected to our gigabit research LAN by its 100Mbit Ethernet port.

10

To support the WifiAlertSensor, each of the APs run a Kismet drone
process, while the Kismet server process runs on the same host as the
SXE. Although the Kismet server process could also be run directly
on the AP, the RAM and CPU limitations of these devices lead to a
less responsive system in that scenario. As the Kismet server did not
distinguish the results from different Kismet drones at the time of our
experiments, one Kismet server process was required per drone, and
each WifiAlertSensor connects to a unique Kismet server process thus
allowing snBench to distinguish which drone generated a wireless event.
Running one Kismet server per drone also carries the advantage of min-
imizing the impact of a Kismet server process hanging, or failing to
process updates from its drones (admittedly a fairly uncommon occur-
rence).

In our tests of the WifiAlertSensor we were able to simulate and de-
tect all relevant attacks detected by Kismet and were unable to measure
any significant induced delay on event detection in the snBench infras-
tructure. Analysis confirmed the expectation that the amount of time
a single Kismet message spent in the Sensor buffer was directly related
to the computation load on the SXE host and the alert generation rate.
In general the observed buffer service delay oscillated between zero and
15ms per alert under moderate load with unrealistically high message
flooding arrival rates (in practice, Kismet can and will throttle alert
notification rates, however this was disabled for our performance tests).
Under heavy load conditions with alert message flooding, we experienced
queuing delay as long as 300ms. This gives us a good indication as to
the maximum acceptable workload for an individual SXE before it is no
longer a viable host for wireless sensing tasks. Ultimately any response
detection under one second is reasonable as it is unlikely that the at-
tacker would, say, flee the premises (or video frame) within that amount
of time.

6. Service Programming Primer
To understand the Wireless Security Services examples it is important
to understand the key concepts and unique constructs of snBench
programming.3 The Sensorium Task Execution Plan (STEP) language
has a functional-style, high-level sibling called SNAFU (Sensor Network
Applications as Functions). SNAFU serves as a readable, accessible
language that is compiled into the graph-centric STEP for execution.
Broadly speaking, functions in SNAFU correspond to the computational

Virtualization and Programming Support for Video Sensor Networks 11

nodes of a STEP graph while terminals represent nodes that convey sen-
sors, actuators, and constant values.

SNAFU provides symbolic assignment and function definition, how-
ever it forbids explicit recursion by reference. Instead SNAFU provides
iteration constructs called triggers. A trigger takes two arguments: a
predicate and a response clause. The predicate is repeatedly evaluated
until it evaluates to true, at which point the response clause is evalu-
ated and returned as the result of the trigger expression. For example,
consider the expression Trigger(P,Q) in which P is the detection of an
AP intrusion and Q is an expression that shuts down the AP. The While-

Trigger(P,Q) is similar to the previous trigger, except that it evaluates Q

every time P evaluates to true and when P eventually evaluates to false
returns the last value of Q (or NIL if P was initially false).

Persistent triggers extend the basic triggers in that they return a
stream of values over their persistent evaluation. A LevelTrigger evalu-
ates the predicate P indefinitely (or for some specified length of time or
conditional termination) and evaluates and returns a value of Q every
time P evaluates to true. In practice P may be the detection of a par-
ticular MAC address being used in the network and Q is the recording
of an image at the detected locale. An EdgeTrigger continually evaluates
the predicate, but will only evaluate and return the clause Q whenever
the predicate P transitions to be true (i.e., on the edge of the signal P).
Consider, if the expression P represents detection of two deauthenticate
beacons (indicating the start of a deauthenticate flood) and Q is an SMS
pager alert, we do not want to generate a separate notification for every
consecutive deauthenticate beacon for the duration of the flood.

SNAFU also allows a programmer to refer to an expression by sym-
bolic reference (e.g., let X = Y in Z, wherein X stands for the complete
expression Y in the expression Z) or refer to a computational result by
symbolic reference (e.g., let const X = Y in Z, wherein X stands in for the
result of the expression Y in the expression Z). Finally the trigger con-
struct begs for the creation of a unique reference that allows the symbol
to be recomputed once per iteration of the trigger. The “let once” bind-
ing (e.g., let once X = Y in Z) provides exactly that facility, ensuring the
expression Y is evaluated once per iteration of the trigger (Z) at the first
occurrence of the symbol X, while all latter instances of the symbol X

in the same iteration of Z are evaluated by reference to the previous
evaluation.

12

7. Wireless Security Services
An example SNAFU program that provides simple logging is given

in Program 1. A level trigger is used to assign an event handler to
the detection of a high severity wireless alert. The storage.append Op-
code modifies a named storage entity (i.e., table) by inserting a data
object and its corresponding unique key. The storage table is keyed by
timestamp and includes entries for each detected violation containing the
recorded MAC address, the sensor from which the alert was detected,
and the type of alert. Unlike the logging provided by Kismet as an IDS,
this service records which sensor has detected the event and is backed by
an SQL server. The logged data is available programmatically via stor-
age access Opcodes or direct SQL queries, or through a standard web
browser via the SXE host’s web service that performs XSL translations
to render the local data storage.

SNAFU Program 1 Add to a central log on detection of a wireless
alert.
let_once ALERT = DetectWifiAlert(sensor(WifiAlert,ALL)) in

level_trigger(

equals(ALERT."SEVERITY","HIGH"),

storageappend("ALERTLOG",

concat(ALERT."TIMESTAMP",ALERT."SOURCE"),ALERT))

This sample SNAFU program could easily be extended to establish a
log of all observed wireless activity (not just attacks) by adjusting the
predicate of the trigger from DetectWifiAlert to DetectWifiActivity and
removing the severity check. Another simple example is given in Pro-
gram 2, which automatically emails an administrator when a specific
wireless attack is detected.

The previous examples are essentially the status quo for a response to
the detection of a breach in a Wireless Network – an entry into a log file
or an email alert. The advantage of employing the snBench in the wire-
less security domain is the wider range of responses possible. Nominally,
the email operation in Program 2 could be replaced with any number
of response mechanisms including sending an explicit deauthorization
to the detected MAC address4 using the WifiResponder and APDeauth
opcode described in Section 4. Instead, we explore the unique cross sec-
tion of the network plane (e.g., wireless data frames) with the physical
plane (e.g., signal strength and signal loss of signal over distances). For
example, an embedded, cross-modal Sensor Network such as the Senso-
rium can utilize both wireless network sensors (i.e., network plane) and

Virtualization and Programming Support for Video Sensor Networks 13

a pan-tilt-zoom video camera network (i.e., physical plane) to catch an
image of the attacker “in the act.”

SNAFU Program 2 E-mail an admin when a specific wireless alert is
detected.
let_once ALERT = DetectWifiAlert(sensor(WifiAlert,ALL)) in

level_trigger(equals(ALERT."TYPE","DEAUTHFLOOD"),

email("mocean@cs.bu.edu",

concat("NOW",

": Deauth flood detected from MAC ",

ALERT."MAC", " at time ", ALERT."TIMESTAMP",

" by sensor ", ALERT."SOURCE")))

Any user detected engaged in wireless network intrusion is clearly
within a bounded distance from the detecting sensor. This coarse, cell-
of-origin based physical location of wireless users is available, imprinted
in all wireless data returned from the WifiSensors (determined by which
sensor has detected the user). A very simple wireless cell-of-origin
location example is specified in Program 3. The program’s content is
very similar to the previous examples and introduces some pan-tilt-zoom
sensor (PTZCamera) specific opcodes, the function of which should be
clear from context. This sample streams images of a region where an
attack has been detected. The location estimation is explicit in the
service logic, selecting an image from the camera that best covers the
physical space within the signal coverage region of the relevant Wifi
sensor, which (in this example) requires some knowledge of the specific
physical layout of the sensor deployment. The case expression takes the
same syntax as in StandardML and is used for readability as syntactic
sugar (i.e., a macro) for nested conditionals. Connecting this program
fragment to either of the previous examples would log or email images
that correspond to the attack location.

Alternatively user location reconstruction could be implemented within
an Opcode, resulting in IDS logic that is agnostic to the particular lo-
cation resolution mechanism used. Such an approach makes sense if the
deployment environment already contains a wireless location infrastruc-
ture (e.g., network appliance, all knowing oracle) that could be accessed
from an Opcode call. An example of this approach is given in Program 4.
WifiLocateMac encapsulates the physical location of MAC addresses and
PTZLocate determines the best PTZ Camera (and corresponding angle) to
capture an image of that location. The implementation of WifiLocateMac

is functionally similar to BestPTZForViewOf in the example in Program 3,
yet uses a received signal strength from multiple sensors to estimate the
target’s location between the sensors.

14

SNAFU Program 3 Whenever a wireless alert is detected, pan a PTZ
camera to that region and return its image.
def BestPTZForViewOf(alert) = case APName(alert.SOURCE) of

"CS Grad Lab West" => List(45,0,0,sensor(PTZCamera,"PTZ1"),

| "CS Grad Lab East" => List(15,0,0,sensor(PTZCamera,"PTZ1"),

| "CS Grad Lab Lounge" => List(0,0,0,sensor(PTZCamera,"PTZ3"),

| "CS UGrad Lab" => List(0,0,0,sensor(PTZCamera,"PTZ4")

let_each ALERTSENSORS = sensor(WifiAlert,"ALL") in

let_once ALERT = DetectWifiAlert(ALERTSENSORS) in

level_trigger(not(isNull(ALERT)),

PTZSnapshot(BestPTZForViewOf(ALERT)))

SNAFU Program 4 Equivalent to Program 3, but uses “black-box”
opcodes.
let_each ACTSENSORS = sensor(WifiActivity,ALL) in

let_each PTZSENSORS = sensor(ptz_image,ALL) in

let_once ALERT = DetectWifiAlert(sensor(WifiAlert,ALL))

in level_trigger(not(isNull(ALERT)), PTZSnapshot(

PTZLocate(QueryWifiAlert(ALERT."MAC",ACTSENSORS)),

PTZSENSORS)))

snBench not only eases the composition of such alert services, it
also eases deployment by automating the re-use of existing computa-
tion/deployments to improve resource utility. All the examples given
thus far share the same predicate logic and could share a single instan-
tiation of that portion of the logic.

8. Future Work and Conclusions
Wireless Access Lists from Physical Data: With this infrastruc-
ture in place, programs may use information detected on the physical
plane to (re-)configure the wireless network. For example, an embedded
camera network and face detection Opcodes can be used to detect the
identities of individuals entering or leaving as a trigger to enable the de-
tected user’s wireless MAC address for service in a physical space. Put
simply, when we see Jane enter the lab we want to enable Jane’s MAC
address (added to the whitelist), and disable her MAC address when she
leaves the lab. A dynamic whitelist would make it more difficult for a
malicious user to abuse unused, authorized wireless MAC addresses for
great lengths of time. Modification of the WLAN’s access control list in
this way assumes the presence of a MAC whitelist; such an implementa-

Virtualization and Programming Support for Video Sensor Networks 15

tion is straightforward on OpenWRT enabled APs, using a CGI script
to modify the device’s configuration. In addition, other physical sensors
could be used in tandem with face detection as the trigger predicate in
this expression; e.g., biometric sensors, magnetic card or RFID readers.

snBench as a Complete, Turn-Key Network Security Solution:
The Network Security provided by snBench need not be limited to
Layer-2 alone. Integrating Layer-3 detection (e.g., Snort) as a sensor
would enable the detection of misuse from IP contents that could be
used to drive isolation or removal responses at Layer-2. Including port
scanning or other fingerprinting tools as sensors could increase the ac-
curacy of user identification thus further open the possibilities for more
“severe” automated response.

Ideally we could imagine migrating our own campus IT departments
to use snBench as their Network Security and Intrusion suite, a tran-
sition that could be eased by the development of a declarative/rule-
oriented domain-specific language (and corresponding STEP compiler)
that is similar to existing network rule specification languages. Finally,
our work on lightweight Sensor eXecution Environments for embedded
devices could be used to run the SXE directly on OpenWRT enabled
APs to provide snBench as a turn-key solution for Wireless Network
Security services.

In Conclusion: Network Security (specifically, wireless security) is not
a problem that exists in a vacuum detached from the physical space in
which the network is deployed. We promote an approach that unifies
physical site surveillance and network security under the umbrella of
snBench — our general purpose sensing infrastructure. In that regard,
we have demonstrated how snBench enables the rapid development and
deployment of cross-modal security services. We have shown that with
snBench (1) detection of wireless anomalies can be correlated with
other sensory inputs providing reciprocal benefit to merging security on
the physical and cyber planes, (2) detection and response services may
be easily composed and modified without technical knowledge of the
specific protocols or implementations of the underlying sensory tools,
and (3) adding new intrusion detection tools as input or other devices for
response is straightforward given snBench’s modular architecture. The
illustrative example programs provided include the status quo (simple
logging and email alerts) and hint at where we may go from here, in
an attempt to spark the reader’s imagination to consider what sensors,
actuators and new hybrid services may be enabled by the snBench
platform.

16

Notes
1. SXEs can retrieve Opcode implementations at run-time; however, support for loading

new sensing devices at run-time is not currently supported. Such functionality is not difficult
to support, and is analogous to dynamically loading device drivers to support new hardware.

2. Readers may readily note that this opcode is a loaded weapon and may gasp or recoil
in horror. In fact, this is not the first Opcode that requires special user privileges to ensure
correct use.

3. We refer the reader to [10] for a more thorough treatment of the SNAFU language and
its evaluation.

4. A MAC address is far from the best way to uniquely identify an attacker as the attacker
will likely use a fictitious MAC address or worse, clone a legitimate user’s MAC during an
attack.

References

[1] OpenWRT Project Homepage, http://openwrt.org/.
[2] Frank Adelstein, Prasanth Alla, Rob Joyce, and Golden G. Richard

III, Physically locating wireless intruders, ITCC ’04: Proceedings
of the International Conference on Information Technology: Cod-
ing and Computing (ITCC’04) Volume 2 (Washington, DC, USA),
IEEE Computer Society, 2004, p. 482.

[3] AirDefense, Inc., AirDefense Enterprise Product Homepage,
http://www.airdefense.net/products/enterprise.php.

[4] Paramvir Bahl and Venkata N. Padmanabhan, RADAR: An in-
building RF-based user location and tracking system, INFOCOM
(2), 2000, pp. 775–784.

[5] John Bellardo and Stefan Savage, 802.11 denial-of-service attacks:
real vulnerabilities and practical solutions, SSYM’03: Proceedings
of the 12th conference on USENIX Security Symposium (Berkeley,
CA, USA), USENIX Association, 2003, pp. 2–2.

[6] Azer Bestavros, Adam Bradley, Assaf Kfoury, and Michael Ocean,
SNBENCH: A Development and Run-Time Platform for Rapid
Deployment of Sensor Network Applications, IEEE International
Workshop on Broadband Advanced Sensor Networks (Basenets),
October, 2005.

[7] Christophe Devine, Aircrack-ng homepage,
http://www.aircrack-ng.org/.

[8] Jamil Farshchi, Wireless intrusion detection systems,
http://www.securityfocus.com/infocus/1742, 2003-11-05.

[9] Mike Kershaw, Kismet (version 2007-01-r1b),
http://www.kismetwireless.net/documentation.shtml.

Virtualization and Programming Support for Video Sensor Networks 17

[10] Michael J. Ocean, Azer Bestavros, and Assaf J. Kfoury, SNBENCH:
Programming and Virtualization Framework for Distributed Multi-
tasking Sensor Networks, VEE ’06: Proceedings of the 2nd inter-
national conference on Virtual execution environments (New York,
NY, USA), ACM Press, 2006, pp. 89–99.

[11] Martin Roesch, Snort - Lightweight Intrusion Detection for Net-
works, LISA ’99: Proceedings of the 13th USENIX conference on
System administration (Berkeley, CA, USA), USENIX Association,
1999, pp. 229–238.

[12] Nathan True, Wi-viz: Wireless Network Environment Visualization,
http://devices.natetrue.com/wiviz/.

[13] Giovanni Vigna, Fredrik Valeur, and Richard A. Kemmerer, De-
signing and implementing a family of intrusion detection systems,
SIGSOFT Softw. Eng. Notes 28 (2003), no. 5, 88–97.

[14] Yoann Vandoorselaere, et. el., Prelude Hybrid IDS,
http://www.prelude-ids.org/.

[15] Moustafa Youssef, Ashok Agrawala, and Udaya Shankar, WLAN
Location Determination via Clustering and Probability Distribu-
tions, March 2003.

