
Basis Token Consistency:
Supporting Strong Web Cache Consistency

Adam D. Bradley and Azer Bestavros
Computer Science Department, Boston University

111 Cummington Street
Boston, MA 02215

Abstract- With web caching and cache-related services like
CDNs and edge services playing an increasingly significant role in
the modern Internet, the problem of the weak consistency and co-
herence provisions in current web protocols is drawing increasing
attention. Toward this end, we differentiate definitions of consis-
tency and coherence for web-like caching environments, and then
present a novel web protocol we call “Basis Token Consistency”
(BTC). This protocol allows compliant caches to guarantee strong
consistency of content retrieved from supporting servers. We then
compare the performance of BTC with the traditional TTL (Time
To Live) algorithm under a range of synthetic workloads in order
to illustrate its qualitative performance properties.

I. INTRODUCTION

For many years it has been asserted that one of the keys to
a more efficient and performant web is effective reuse of con-
tent stored away from origin servers. This has taken a number
of forms: Basic caching, varieties of prefetching, and more re-
cently, Content Distribution Networks (CDNs). What has be-
come increasingly clear in recent years is that the traditional
target of research, poor eviction and replacement algorithms,
is not in fact a serious obstacle to “good” use of a caching in-
frastructure [1].

In the current web, many cache eviction events and uncac-
ahable resources are driven by two server application goals:
First, providing clients with a recent view of the state of the
application (i.e., information that is not too old); Second, pro-
viding clients with a consistent view of the application’s state
as it changes (i.e., the client’s perception of changes to server
state should be non-decreasing in time). The current web pro-
tocol, HTTP/1.1 [2], addresses the first goal by way of an
expiry mechanism and the second only in a few very tightly
constrained ways; unfortunately, the latter mechanisms are not
general enough for needs of non-trivial dynamic or interactive
web applications.

In this paper we propose Basis Token Consistency (BTC), a
backwards-compatible and transparently interoperable exten-
sion to the HTTP protocol which enables caches to maintain a
completely consistent view of the server without requiring out-
of-band communications or per-client server state. We then
present simulations which compare the performance and be-
haviors of BTC with those of the expiry-based weak consis-
tency model.

II. CONSISTENCY AND COHERENCE
WITHIN A WEB-LIKE FRAMEWORK

Much of the current body of web cache consistency liter-
ature focuses upon a model of consistency drawn from dis-
tributed filesystem work; namely, consistency between a single

This research was supported in part by NSF (awards ANI-9986397 and ANI-
0095988) and U.S. Department of Education (GAANN Fellowship).

object at the origin server and a cached copy of that same ob-
ject on the network. While this model has its uses, the web is
a much more complicated system than a distributed filesystem;
particularly, the relationships among multiple objects provided
by a single server are akin to views of a distributed database.
As such, for the web we propose definitions of consistency
and coherence more in keeping with those used in distributed
database research.

A. Consistency

For our purposes, cache consistency refers to a property of the
entities served by a single logical cache, such that no response
served from the cache will reflect an older state of the server
than that reflected by previously served responses. Another
way of stating this is that a consistent cache provides a non-
decreasing view of data the server uses to construct its output;
informally, once you have seen the result of some event hav-
ing happened, you should never see anything which contradicts
that. This is the definition used in [3].

This definition is a special case of view consistency [4],
in which a cache may provide different responses to differ-
ent clients in order to optimize some application goal (such
as maximizing client cache utilization), just so long as each
client sees an internally consistent (non-decreasing) response
stream. Our definition is a special case in that the consistency
of the aggregated response stream implies that any subset of
that stream will also be consistent.

Notice that this definition is completely independent of re-
cency, and of “consistency” between two different caches’
copies of the same entity. We define these as coherence prop-
erties.

B. Coherence

We define a cache coherence protocol for the web as a means
for making updates to entities propagate through the caching
network such that all clients interested in entities affected by
those updates eventually see their results; the word “eventu-
ally” is given meaning by the details of the coherence protocol
itself.

There are two coherence models used in the current web.
The first is “immediate coherence” in which caches are for-
bidden from returning a response other than that which would
be returned were the origin server contacted; this guarantees
semantic transparency, and as a side-effect also guarantees a
consistent view of the server’s state.1 While the current web
can only provide this level of coherence by pre-expiring all en-
tities (forcing all caches to re-validate with the origin server
on every request), a number of proposed coherence extensions

�
I.e., any given cache’s copy of an entity is only usable if it is “consistent”

with the server’s copy, hence the widespread use of “consistency” to mean
“immediate coherence.”

use server-originated invalidation methods [5], [6], [7], [8], [9]
to proactively notify caches when content is modified. Unfor-
tunately, these messages must generally be sent either via an
out-of-band channel (not part of regular HTTP transactions,
which poses difficulties in the presence of non-implementing
intermediaries or of asymmetric-reachability networks) or a
mixed channel (invalidations are attached to response which
they may be unrelated to, which raises problems when inter-
mediary proxies do not understand the protocol).

The second model is “bounded staleness”; this is accom-
plished by expiry mechanisms in the current HTTP protocol
which limit how old a cached response can become before it
must be validated with the server, guaranteeing that no single
cached entity will ever be more than some known timespan
out-of-date.

Several proposed mechanisms combine aspects of the above
two techniques with a lease mechanism to provide a bounded-
in-time relaxation of immediate coherence over a finite time-
frame without requiring caches to periodically validate their
contents. This model is known as

�
-consistency [8], [9], [10].

Coherence is not addressed further in this paper; we believe
that a reasonable expiry policy or any of the invalidation-driven
models can act as an excellent complement to our proposed
consistency mechanism.

III. BASIS TOKEN CONSISTENCY

We have devised a caching extension to HTTP we call “Ba-
sis Token Consistency” (BTC) with the following properties:
(a) Strong point-to-point consistency is supported without re-
lying upon intermediary cooperation. (b) No per-client state
is required at the server or proxy caches. (c) Invalidations are
naturally aggregated in semantically meaningful ways. (d) In-
validation is driven by web applications, not heuristics. (e) The
necessary data is transmitted only in related responses, hence
out-of-band and mixed-channel messages are not required.

A. Conceptual Overview of BTC

The BTC protocol and algorithms are based upon the concept
of a logical vector clock [11], [12]. Each server maintains
a logical vector clock, where each element represents a data
source (“origin datum”) used by the server’s application logic;
each response is annotated with a list of the elements used to
construct it (cctokens) and their current logical clock values
(ccgenerations). Whenever an origin datum is updated, its
clock value is incremented; it is therefore trivial to determine if
two responses could have co-existed in time or if one necessar-
ily obsoletes the other by comparing the generation numbers
of elements appearing in both responses.

This information is provided by the server using the
Cache-Consistent entity header; a simplified2 grammar
is presented in Figure 1. Each origin datum is represented by
an opaque string (cctoken), and its clock value is represented
in hexadecimal (ccgeneration). For example:
Cache-Consistent:db1row;4e9, db2row@bu.edu;7a

Caches implementing BTC index their entries on the opaque
token strings. Whenever a new entity arrives, each of its to-
kens’ generation numbers are checked against the cache’s “cur-
rent” generation numbers for the same tokens. If they match,

�
The complete grammar can be found in [13]; it includes several productions

corresponding to an extension not presented in this paper.

CacheConsistent =
‘‘Cache-Consistent’’ ‘‘:’’
#cctokengeneration

cctokengeneration =
cctoken
‘‘;’’ ccgeneration

cctoken = cctokenid [cctokenscope]
cctokenscope = ‘‘@’’ host
cctokenid = token
ccgeneration = 1*HEX

Fig. 1. The Cache-Consistent HTTP Entity Header

no further action is taken. If the newly seen generation num-
ber is greater, all entities affiliated with the older generation
of that token are marked as invalid while the “current” gener-
ation number is updated to the new value. If the newly seen
generation number is less than the current value, then the re-
sponse itself is stale and inconsistent (perhaps produced by an
inconsistent cache upstream), so the request should be repeated
using the end-to-end reload mechanism.

Tokens can be scoped to particular DNS domains in a man-
ner similar to cookies; this allows data sources to be shared
among multiple hosts within a domain. If no scope string is
specified, it defaults to the value of the Host header provided
by the client. This string is part of the token for matching pur-
poses; this is done as a security measure [14].

The vector clock is a powerful construct, and the simple al-
gorithm and protocol presented here can be elaborated upon in
a number of ways; for example, we can parametrically relax
generation number matching to a range, affording a control-
lably less stringent consistency model [15] which lazily ap-
proximates

�
-consistency in logical time. This and several

other practical extensions to BTC are discussed in [13].

B. Requirements for BTC

Unlike other approaches, BTC will not work effectively with-
out support from the applications behind the web server. The
basis tokens essentially offer a “window” into the state of
databases, files, and other resources which those applications
normally insulate from the outside world. This requires that
web service applications be engineered with support for this
feature in mind; the complexity and cost of doing so may vary
greatly with the structure, data model, and data access methods
of the application.

BTC is highly scalable in the sense that servers need not
maintain any per-client state. However, it does require that
each cache store and index upon what may be arbitrarily many
basis tokens. While we expect basis tokens to be short strings
(on the same order as common URIs), the number of tokens re-
quired to support a given working set of pages can vary greatly
with the structure of the backing server applications; as such, it
would not be unreasonable for heuristic per-resource and per-
server limits to be set.

IV. VALIDATION

To illustrate the qualitative performance effects of BTC,
we implemented a simple server-and-cache simulation which
compares the performance and correctness characteristics of
multiple consistency models under a range of workloads and
parameters.

Table A
Aggregate Stats

Fragment
HTML Fragment

HTML
Fragment

HTML

HTML Object
Compound

Resource 1 Resource 2 Resource 3 Resource 4
(...)

Table A
Row 1

Table A
Row 2

Table A’s
Other Rows...

Fig. 2. Sample Object Dependence Graph (ODG)

As BTC algorithm’s behavior is driven by events within the
server’s application logic (which provoke document changes),
a document update model [16] is not sufficient; a meaning-
ful simulation requires a meaningful model for the application.
A particularly interesting and useful application to model is
a modern Content Management System (CMS); we base our
CMS model upon the DUP-based system [17], [3].

One of a CMS’s basic jobs is to assemble fragments to pro-
duce complete responses. The relationships among and be-
tween fragments and resources are codified in an object depen-
dence graph (ODG), a directed graph with nodes representing
origin data, edges representing access to data, and other nodes
representing resources and intermediary fragments. A simpli-
fied sample ODG is presented in Figure 2.

This graph provides us with all the interdependence infor-
mation needed to address consistency; the most straightfor-
ward way to employ the ODG for BTC is to represent nodes
of the graph with basis tokens. Thus, implementing BTC in an
ODG-based CMS should be a relatively straightforward pro-
gramming exercise; all that need be added are monotonically
increasing generation numbers for each node, a persistent map-
ping from nodes to token strings, and the code to construct the
appropriateCache-Consistent headers from these values.

A. Simulation Design

Lacking any thorough study of ODGs found in the wild3, our
model incorporated a number of simplifications. Rather than
claim our simulations are representative, we included a variety
of parameters that allow us to explore our protocol’s perfor-
mance under a wide range of potential conditions. The set of
results presented here explicitly are illustrative of the qualita-
tive performance properties we observed under a wide range of
parameterizations.

We modeled our simple CMS using a bipartite graph of da-
tum nodes and resource nodes, built with two parameters: size
and saturation. Size could be 40, 200, and 400 resources and
200, 1000, and 2000 datum nodes, respectively; saturation (the
percentage of possible edges in the graph present) was inde-
pendently set to 12.5%, 25%, and 50%. Each datum node can
then be assigned a parameterized update process (periodic, ex-
ponential, pareto, normal). The resource nodes are assigned
popularities according to a Zipf-like distribution.

In this paper we focus upon results for “small and dense”
ODGs (40 resources, 200 datum nodes, 50% saturation) with

�
The observations presented in [3] are certainly interesting and illustrative,

but not necessarily representative.

exponential update processes whose means are themselves ex-
ponentially distributed. We do not model locality or popularity
among origin data; while unfortunate, this simplification is mo-
tivated by the relative lack of topological studies of ODGs. We
report on experiments where resource popularities are found
using a Zipf parameter of 0.7, which approximates the current
web [18].

For each simulation, the model produces a list of some num-
ber (5000 for small graphs) of update events timestamped ac-
cording to their update processes. A list of requests with con-
stant inter-arrival times is also synthesized, and merged with
the stream of update events. The number of requests is a mul-
tiple of the number of updates: 1, 20, or 400, labeled slow,
medium, and fast, respectively. While we would like to have
modeled request arrivals more precisely [19], the rather ad hoc
way in which the update process is constructed suggests that
the marginal value of such detail would be very limited for
these experiments.

Finally, this combined event list is fed to the server-cache
simulator. This simulator outputs a number of cache perfor-
mance metrics (discussed below) for a set of simple expiry
caches (each with its own fixed TTL value) and a set of “Hy-
brid” caches which use both BTC and expiry driven by the
same TTL values. (Of course, a single TTL value across all
documents is clearly not reflective of a well-designed expiry
policy; again, our goal is for these experiments to be simple
and illustrative, not representative.) TTL values are normal-
ized to the length of the event stream; a value of 1.0 means
that a document fetched at the beginning of the simulation will
not expire for the length of the simulation. The “pure” BTC
behavior is illustrated by the Hybrid case with a TTL of 1.0.

B. Simulation Results

Graphs present the time-to-live parameter on the X axis. The
Y axis is normalized to the total number of requests made in a
simulation run.

Figure 3 shows the results for the small-and-dense simula-
tion with a slow request stream. This could reflect, for exam-
ple, a highly dynamic server interacting with a single user or
small-population shared cache. The figure shows three param-
eters for each cache control algorithm: fresh responses (how
many cached responses were the same as would have been pro-
vided by the server at that same point in time), response quality
(a continuous variant of freshness, indicating how many of the
origin data used to produce a page have not been updated at the
time the cache serves it), and server load (how many requests
were not served by the cache).

Notice that the TTL algorithm sheds significant server load
for moderate time-to-live values, but this is accompanied by a
matching falloff in the number of fresh responses; this is in-
dicative of the large number of “false hits” as TTLs exceed the
very short response freshness lifespans. The accumulation of
poor quality (poor immediacy) is less dramatic; quality seems
to follow its load shedding and fresh response curves at a mul-
tiplicative TTL offset. This makes intuitive sense, as it reflects
the ongoing and continuous (analog v. binary) accumulation
of single events, each causing a small fraction of the cached
response to become stale.

At the same time, note that the Hybrid algorithm only allows
about 15% of the server’s load to be shed. However, its re-
sponse quality remains extremely high, and the number of stale
responses is held to about 10%. This is not surprising; more

0

0.2

0.4

0.6

0.8

1

0.0001 0.001 0.01 0.1 1

V
al

ue
 (

no
rm

al
iz

ed
)

TTL (normalized)

fresh responses (TTL)
response quality (TTL)

server load (TTL)
fresh responses (Hybrid)
response quality (Hybrid)

server load (Hybrid)

Fig. 3. Freshness, Quality, and Load - Slow Request Rate

0

0.2

0.4

0.6

0.8

1

0.0001 0.001 0.01 0.1 1

V
al

ue
 (

no
rm

al
iz

ed
)

TTL (normalized)

consistent responses (TTL)
server load (TTL)

consistent response (Hybrid)
server load (Hybrid)

Fig. 4. Consistency and Load - Slow Request Rate

resources are updated in the average unit of time than requests
are made, so it is likely that many requests are for resources
that are consistency-related to already-cached responses which
are then immediately obsoleted by each new response.

Figure 4 illustrates how, under the same experiments, BTC’s
limited reduction of server load relates to our design goal
of strong consistency where TTL fails. The “consistent re-
sponses” value indicates the number of responses that do no
reflect any older versions of origin data than have already
been seen by the cache (i.e., how many responses were “non-
decreasing”); notice how server load and consistency decline
in parallel for large TTLs under the TTL algorithm, while the
Hybrid algorithm maintains consistency and more gradually
reduces server load.

The small-and-dense setup under a medium request rate ex-
hibits some very interesting behaviors and contrasts, as shown
in figures 5 and 6. Notice particularly how, for smaller TTL
values, the Hybrid algorithm sheds load almost as quickly as
TTL, and levels off at a 60% cache hit rate (40% server load)
over several orders of magnitude, maintaining in parallel a very
high fresh response value (about 90%) while TTL’s fresh re-
sponse count quickly declines as load shedding increases.

TTL’s quality value seems to follow its load shedding and
fresh response curves at a multiplicative TTL offset; this is the

0

0.2

0.4

0.6

0.8

1

1e-06 1e-05 0.0001 0.001 0.01 0.1 1

V
al

ue
 (

no
rm

al
iz

ed
)

TTL (normalized)

fresh responses (TTL)
response quality (TTL)

server load (TTL)
fresh responses (Hybrid)
response quality (Hybrid)

server load (Hybrid)

Fig. 5. Freshness, Quality, and Load - Medium Request Rate

0

0.2

0.4

0.6

0.8

1

1e-06 1e-05 0.0001 0.001 0.01 0.1 1

V
al

ue
 (

no
rm

al
iz

ed
)

TTL (normalized)

consistent responses (TTL)
server load (TTL)

consistent response (Hybrid)
server load (Hybrid)

Fig. 6. Consistency and Load - Medium Request Rate

same effect noted above under the slow request rate.
Quality and fresh responses for the Hybrid algorithm both

deteriorate quickly under very large TTLs. This makes intu-
itive sense in light of Figure 6; notice how TTL’s number of
consistent responses actually increases for very large TTL val-
ues. This happens because, when requests arrive fast enough,
the cache can become populated with a long-lived and self-
consistent snapshot of the server’s state. Under Hybrid with
long lifetimes, this is exactly what happens; the cache quickly
acquires a snapshot at the beginning of the simulation run, and
because all the responses making up that snapshot are long-
lived, it stops talking with the server and therefore stops receiv-
ing the (lazily delivered) invalidation-provoking tokens. This
property for plain TTL caches across the different request rates
is illustrated in Figure 7, which shows the internal consistency
of TTL caches’ responses at the slow, medium, and fast request
rates; as the request rate increases with respect to the update
rate, caches (whether TTL or BTC) are more frequently able
to acquire large internally consistent snapshots of server state,
significantly reducing server load but sacrificing recency. Un-
der a high request rate this effect is amplified, but other graphs
describing behavior under those conditions provide little addi-
tional insight.

It is under these higher request rate conditions that the in-

0

0.2

0.4

0.6

0.8

1

1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1 1 10

V
al

ue
 (

no
rm

al
iz

ed
)

TTL (normalized)

Slow Requests
Medium Requests

Fast Requests

Fig. 7. TTL Response Consistency under Various Request Rates

teraction between the number of resources, the Zipf parameter,
and the request rate becomes significant to the performance of
the BTC algorithm; for example, it is hard to get a complete
snapshot when the number of resources is particularly large
relative to the request rate, or when the Zipf parameter is par-
ticularly large; at the same time, large Zipf parameters make it
less likely that those rarely-accessed (and thus potential “snap-
shot breaking”) resources will actually be requested, making
it difficult for strong consistency alone to drive cache content
recency.

V. CONCLUSION

We have described a novel protocol, Basis Token Consis-
tency (BTC), which provides strong consistency via lazy notifi-
cation to any participating cache regardless of the presence and
participation of intermediaries. We then presented results from
a simple simulation of a modern Content Management System
(CMS) driving a set of TTL and BTC caches and compared
their behaviors under a range of parameters, illustrating some
of the tradeoffs and effects of each in terms of their ability to
shed server load and quantitative measures of the “correctness”
of the response stream delivered by each.

While BTC requires the explicit cooperation of server ap-
plications and a potential moderate increase in cache state, we
believe its low implementation complexity for caches, its in-
teroperability with the current infrastructure, and its guaran-
teed properties make it a desirable extension to deploy in the
present-day web infrastructure.

ACKNOWLEDGMENTS

The authors wish to thank Assaf Kfoury and the anonymous
reviewers for their helpful comments on this paper.

REFERENCES

[1] R. Caceres, F. Douglis, A. Feldman, G. Glass, and M. Ra-
binovich, “Web proxy caching: The devil is in the de-
tails,” in ACM SIGMETRICS Performance Evaluation
Review, Dec. 1998.

[2] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,
P. Leach, and T. Berners-Lee, “Hypertext transfer proto-
col – HTTP/1.1.” RFC2616, 1999.

[3] J. Challenger, A. Iyengar, K. Witting, C. Ferstat, and
P. Reed, “A publishing system for efficiently creating
dynamic web content,” in INFOCOM (2), pp. 844–853,
2000.

[4] A. Goel, “View consistency for optimistic replication,”
Master’s thesis, University of California, Los Angeles,
Febrruary 1996. Available as UCLA Technical Report
CSD-960011.

[5] P. Cao and C. Lui, “Maintaining strong cache consistency
in the world-wide web,” in ICDCS, 1997.

[6] B. Krishnamurthy and C. Wills, “Piggyback server inval-
idation for proxy cache coherency,” in Proceedings of the
WWW-7 Conference, (Brisbane, Australia), pp. 185–194,
Apr. 1998.

[7] H. Zhu and T. Yang, “Class-based cache management for
dynamic web content,” in IEEE INFOCOM, 2001.

[8] J. Yin, L. Alvisi, M. Dahlin, and A. Iyengar, “Engineer-
ing server-driven consistency for large scale dynamic web
services,” in WWW10, (Hong Kong), May 1-5, 2001.

[9] A. Ninan, P. Kulkarni, P. Shenoy, K. Ramamritham,
and R. Tewari, “Cooperative leases: Scalable consis-
tency maintenance in content distribution networks,” in
WWW2002, (Honolulu, Hawaii), May 2002.

[10] R. Tewari, T. Niranajan, and S. Ramamurthy, “WCDP
2.0: Web content distribution protocol,” Feb. 2002. In-
ternet Draft (work in progress) draft-tewardi-webi-wcdp-
00.txt.

[11] C. Fidge, “Logical time in distributed computing sys-
tems,” Computer, vol. 24, pp. 28–33, Aug. 1991.

[12] F. Mattern, “Virtual time and global states of distributed
systems,” in Proc. Parallel and Distributed Algorithms
Conf., pp. 215–226, 1988.

[13] A. D. Bradley and A. Bestavros, “Basis token consis-
tency: Extending and evaluating a novel web consistency
algorithm,” in Workshop on Caching, Coherence, and
Consistency (WC3), (New York), June 2002.

[14] A. D. Bradley and A. Bestavros, “Basis token consis-
tency: A practical mechanism for strong web cache con-
sistency,” Tech. Rep. BUCS-TR-2001-024, Boston Uni-
versity Computer Science, 2001.

[15] H. Yu and A. Vahdat, “Design and evaluation of a contin-
uous consistency model for replicated services,” in Pro-
ceedings of Operating Systems Design and Implementa-
tion (OSDI), Oct. 2000.

[16] M. Reddy and G. P. Fletcher, “Intelligent web caching
using document life histories: A comparison with exist-
ing cache management techniques,” in 3rd International
WWW Caching Workshop, (Manchester, England), June
1998.

[17] A. Iyengar and J. Challenger, “Data update propogation:
A method for determining how changes to underlying
data affect cached objects on the web,” Tech. Rep. RC
21093(94368), IBM T. J. Watson Research Center, 1998.

[18] P. Barford, A. Bestavros, A. Bradley, and M. Crovella,
“Changes in web client access patterns : Characteris-
tics and caching implications,” World Wide Web, vol. 2,
pp. 15–28, 1999.

[19] P. Barford and M. Crovella, “Generating representative
web workloads for network and server performance eval-
uation,” in ACM SIGMETRICS, 1998.

