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Abstract GisMo is a toolkit for the generation of synthetic streaming meabgcts and
workloads that capture a number of empirically verified eleteristics, includ-
ing object popularity, temporal correlation of requesgssmal access patterns,
user session durations, user inter-activity times, anidvbe bit-rate (VBR) self-
similarity and marginal distributions. The embodimenttete characteristics in
GisMo enables the generation of realistic and scalable requesinss for use in
benchmarking and comparative evaluation of Internet stieg media delivery
techniques. To demonstrate the usefulnes&wivio, we present a case study
that shows the importance of various workload charactesigt evaluating the
bandwidth requireemnts of proxy caching and server pagct@iohniques.

Keywords:  Performance modeling and evaluation; streaming mediaetgliinternet char-
acterization.

1. Introduction

The use ofthe Internet as a channel for the delivery of stisg(audio/video)
media is paramount. This makes the characterization anthestym genera-
tion of streaming access workloads of fundamental impogan the evalu-
ation of Internet and streaming delivery systems. While yrstndies have
considered the characterization of HTTP workloads Almeidal., 1996, Ar-
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litt and Williamson, 1996, Barford et al., 1999, Breslau kf 4999, Crov-
ella and Bestavros, 1996, Cunha et al., 1995, Gribble ana/@rel997, Jin
and Bestavros, 2000, Padmanabhan and Qiu, 2000 and sgntiedir TP
request streams Barford and Crovella, 1998, The Standafdr®@ance Eval-
uation Corporation, , Trent and Sake, 1995, only very fewlistifocused on
characterizing streaming media workloads Acharya andth@&98, Acharya
et al., 2000, Almeida et al., 2001, Chesire et al., 2001, Padimd Kurose,
1998, Cherkasova and Gupta, 2002, Veloso et al., 2002, vakdelave et al.,
2002, and none has tried to generate representative strganeédia work-
loads. Because HTTP requests and streaming accessesfarerdjfHTTP
request generators are not suitable for generating stnggaicess workloads.
These differences include the duration of the accessesjzb@f the objects,
the timeliness requiremenetg.

In the absence of synthetic workload generators, and irr todvaluate the
performance of streaming access techniques, one has talsemlatives, such
as using real traces, or using analysis/simulation undepl#iying and often
incorrect assumptione.@., unsing independent reference model, sequential
accessetc.). Indeed, these alternatives have been used in prior wockaoiing
Acharya and Smith, 2000, Hua et al., 1998, Rejaie et al., 2880 et al., 1999,
Wang et al., 1998 and on patching Hua et al., 1998, Gao and@pvi®99, for
example. While the use of such alternatives allows anabsisperformance
evaluation, the resulting conclusions may not be accuraiagh, and certainly
could not be reliable enough to assess performance wheritiomsdunder
which the traces were collected (or modeling assumptiongenta simplify
analysis) are violated. For example, when a limited traagsed in a trace-
driven simulation, it may not be possible to generalize thectusions of such
a simulation when the system is subjected to scaled-up dé&naairwhen the
distribution of some elements of the traeg(, size and popularity distributions
of objects) are changed. Synthetic workload generators tievadvantage of
being able to produce traces with controllable parametetsistributions. The
challenge is in ensuring that such synthetic workload gepes reflect (in a
parameterizable fashion) known characteristics of stiegmedia and their
access patterns.

This chapter overview&ismo—a tool for synthesizing streaming access
workloads that exhibit various properties observed in ssdegs and in real
traces. One of the salient features of our work is the indég@eihmodeling of
both session arrival processes and individual sessioracteaistics. For ses-
sion arrival processes, we use a Zipf-like distributiondbre et al., 1999, Zipf,
1929 to model reference correlation due to streaming olgeptilarity. For
individual sessions, we use a model that exhibits rich ptggse including ses-
sion durations, user interactivity times, VBR self-simitia and heavy-tailed
marginal distributions. These properties have been obdeamd validated by
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studies on streaming access workload characterizatioimgld&smo, we are
able to generate synthetic workloads with parameterizeldeacteristics. To
demonstrate the usefulnesg@sMmo, we present results from a case study com-
paring the effectiveness of recently proposed proxy caghivd server patching
techniques. We show how workload characteristics affeciprformance of
these techniques.

2. Related Wor k

HTTP Workload Characterization. Workload characterization is funda-
mental to the synthesis of realistic workloads. Many stsidiémeida et al.,
1996, Arlitt and Williamson, 1996, Barford et al., 1999, Blau et al., 1999,
Cunha et al., 1995, Gribble and Brewer, 1997, Jin and Bestaw#000 fo-
cused on the characterization of HTTP requests. Main firdinglude the
characterization of Zipf-like document popularity dibtrtion Barford et al.,
1999, Breslau et al., 1999, Cunha et al., 1995, the charaation of object
and request size distributions Barford et al., 1999, Cunlah 1995, and the
characterization of reference locality properties Alnaegd al., 1996, Arlitt and
Williamson, 1996, Jin and Bestavros, 2000.

Web traffic is self similar, exhibiting burstiness at ditet time scales Crov-
ella and Bestavros, 1996, Leland et al., 1994. A represeatsl!f-similar Web
traffic generator, SURGE Barford and Crovella, 1998 modesterall request
streams as the aggregation of many individual user regtreainss, which have
heavy-tailed inter-arrival time distribution, and/or kigdailed request size dis-
tribution. Request streams generated in such a way havicagly different
characteristics than the ones from the workloads genelogtild TP benchmark
tools such as SpecWeb96 The Standard Performance Eval@diporation,
and WebStone Trent and Sake, 1995.

Streaming Media Workload Characterization. As we mentioned at
the outset, there have been few studies that considerech#raateristics of
streamed media on the Web Acharya and Smith, 1998 and theatbastics of
access patterns for streamed media Acharya et al., 200@8eEhadies revealed
several findings that are also known for non-streamed Webaneatiuding:
high variability in object sizes, skewed object populariyd temporal locality
of reference. In addition, these studies highlighted tregppnderance of par-
tial accesses to streamed media—namely, a large percesttagsponses to
user requests are stopped before the streamed objecthedeit its entirety.
Chesire et al., 2001 analyzed a client-based steamingamemtikload. They
found that most streaming objects are small, and that a geatentage of
requests are responsible for almost half of the total teassfThey also found
that the popularity of objects follows a Zipf-like distrithon and that requests
during periods of peak loads exhibit a high degree of tempacality. Almeida
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et al., 2001 analyzed workloads from two media servers facational pur-
poses. They studied the request arrival patterns, skewgdtgiopularity,
and user inter-activity times. Examples of charactemaéfforts targeted at
non-web environments include the work of Padhye and Kur@sthy®e and
Kurose, 1998, which studied the patterns of user interastigithin a media
server, and the work of Harel et al., 1999, which charactera workload of
media-enhanced classrooms, and observed user inteiyastich as “jumping
behavior”. More recently, Cherkasova and Gupta, 2002 aedlenterprise
media server workloads, in particular locality of access awolution of ac-
cess patterns. They pointed out a number of differences fraditional Web
server workloads. Veloso et al., 2002 presented the firdysin live streaming
access workload characterization at different granyldeiel, namely users,
sessions, and individual transfers. In another work, varividzwe et al., 2002
analyzed streaming access logs from commercial servicea3bessed the po-
tential benefit of using distribution infrastructures tplieate streaming media
objects and to improve bandwidth efficiency.

In Section 3, we incorporate many of these characteristitisd models we
use for workload generation {dismo. To the best of our knowledg&ismois
the first streaming workload generator developed and maalkable to public.
Another more recent effort, the MediSyn project by Tang gt24l03 adopted
similar methodology and models.

Evaluation Methodologies.  Inthe absence of a unified model for workload
characteristics, various proposals for streaming meadtopols and architec-
tures have used a variety of assumptions and models. Wesditioeise below,
focusing only on caching Acharya and Smith, 2000, Rejaid.e2800, Sen
etal., 1999, Wang et al., 1998 and patching Carter and Ld#®y,1Hua et al.,
1998, Gao and Towsley, 1999 protocols—protocols we willtrtiasting in a
case study usin@ismo in Section 5.

A commonly used approach to enhance streaming access rparfoe is
caching. The work in Wang et al., 1998 proposes video staigolgniques.
Their performance evaluation used Zipf-like popularitgtdbution, random
request arrivals, and five real videos. Sen et al., 1999 gexpproxy prefix
caching, combined with work-ahead smoothing. Their pentorce evalua-
tion used two MPEG video traces. Access patterns refleciiagied object
popularity and correlated request arrivals were not camsiil Rejaie et al.,
2000 proposed a proxy caching mechanism to increase theedsdiquality of
popular streams. In their simulations, popularity was as=ilito follow Zipf's
law, with requests arriving sequentially. Acharya and 82000 used a large
video server access log in trace-driven simulation to eeltheir cooperative
caching techniques.
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Another technique to enhance streaming access performsnaaching
Carter and Long, 1997, Hua et al., 1998, Gao and Towsley,,128§er et al.,
2001. Patching leverages large client buffer to enablesatdo join an ongoing
multicast for prefetching purposes, while using unicastgwnication to fetch
the missed prefix. Afew patching protocol studies have cred the effect of
Zipf-like popularity distributions on performance Gao drasley, 1999, Hua
etal., 1998. In these studies, the arrival processes faetg were assumed to
follow a Poisson distribution Gao and Towsley, 1999, Hual.etl&98. None
of the studies we are aware of considered other workloadactenstics, such
as stream length or user inter-activity.

3. Workload Characteristicsin GISMO

Accurate workload characterization is essential to theisbbvaluation of
streaming access protocols. In fact, several studies earsing access work-
load characterization Acharya et al., 2000, Almeida eR8I01, Chesire et al.,
2001, Padhye and Kurose, 1998 considered the implicatiooisserved char-
acteristics on the performance of various protocols, iiclg caching, prefetch-
ing, and stream merging techniques.

In order to generate realistic synthetic streaming acceskloads, we need
to adopt an access model. We defirsession as the service initiated by a user’s
request for a transfer and terminated by a user’s abortian oh-going transfer
(orthe end of the transfer). The workload presented to &serthus the product
of thesession arrivalsand theproperties of individual sessions. The first three
distributions in Table 1.1 specify the characteristicsasfston arrivals, whereas
the remaining distributions characterize properties divildual sessions.

Session arrivals could be described through the use of pppte models for:
(1) object popularity, (2) reference locality, and (3) s@ad access character-
istics. InGismo, and given the preponderance of findings concerning the first
two of these models, we use a Zipf-like distribution to mamigject popularity,
implying a tendency for requests to be concentrated on afepular” objects,
and we use a heavy-tailed Pareto distribution to model eafer locality (e,
temporal proximity of requests to the same objects). Givenapplication-
specific nature of seasonal access characteristics, we @léoverall request
arrival rate to vary with time according to an arbitrary usepplied function.

An individual session could be described through the useppfapriate
models for: (1) object size, (2) user inter-activity, and ¢®ject encoding
characteristics. Ifizismo, we model object size (which determines the total
playout time of the streamed object) using a lognormalithistion. We model
user inter-activity times which reflect user interruptigag., VCR stop/fast-
forward/rewind functionalities) using a Pareto distribat Finally, we model
object encoding characteristics by specifying the autoetation of the variable
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VBR Marginal Distn. (tail) Pareto ak®z x> C a, k

Table1.1. Distributions used in the workload generator

bit rate needed to transfer that object in real-time. Mutiilia objects are
known to possess self-similar characteristics. Thuszismo, we model the
VBR auto-correlation of a streaming object using a selfisinprocess. Also,
we use a heavy-tailed marginal distribution to specify thel of burstiness of
the bit-rate.

Modeling Session Arrivals

The first aspect of a workload characterization concerngibdel used for
session arrivals. We define teessioninter-arrival timeto be the time between
two session arrivals. We consider both the inter-arrivaletiof consecutive
sessions (i.e., general inter-arrival time), and the inter-arrival timfesessions
reguesting the same objects, which is a measure of temporal locality of refer-
ence Almeida et al., 1996, Arlitt and Williamson, 1996, Bagset al., 1999.

General inter-arrival times can be generated by distriigLttie requests over
the spanning time of the synthetic workload. If the requesésdistributed
uniformly, then general inter-arrival times roughly folle the exponential dis-
tribution. However, several studies have shown that stig@accesses ex-
hibit diurnal patterns Acharya et al., 2000, Almeida et2001, Chesire et al.,
2001, Harel et al., 1999, Luperello et al., 2001. We call spitbhomenaea-
sonal patterns, i.e., there are, hourly, daily, and weekly patterns. Users aremo
likely to request streaming objects during particular pési making a uniform
distribution of requests over the spanning time of the sgtittworkload unre-
alistic.

For HTTP requests, the distribution of inter-arrival tinferequests to the
same object was found to be the result of two phenomena: ety dis-
tribution of objects and the temporal correlation of reqsids and Bestavros,
2000. The skew in Web object popularity was found to be diyeetated to the
skew in the inter-arrival time distribution Breslau et 4B99, Jin and Bestavros,
2000. This skew was further increased by temporal cormaiatof requests.
For streaming media accesses, we need to model both of thesemena.
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Popularity Distribution. The skewed popularity of streaming media ob-
jects was documented in Acharya et al., 2000, Aggarwal £1986, Almeida
et al., 2001, Chesire et al., 2001, Luperello et al., 2001pdriicular, several
studies observed a Zipf-like distribution of streamingaabpopularity Aimeida
et al., 2001, Chesire et al., 2001, Luperello et al., 200pf-Hke distributions
imply that the access frequency of an object is inverselp@rtional to its pop-
ularity (rank),i.e, P(r) ~r~%,1 < r < N, whereN is the number of objects,
r is the rank, andP is the access frequency of theaanked object. A discrete
form of the probability density function i§(z) = ﬁ z=1,2,...,N,where
Q = 32N, i~®. The parameten is called theshape parameter since it deter-
mines the level of skewness in the popularity profile. ThepeaterV is called
the scale parameter.

Temporal Correlation.  If requests to the same object are independent, then
they are distributed randomly. This was shown not to be atelwenough for
HTTP requests Jin and Bestavros, 2000. Similarly, in a nuofrecent studies,
streaming media accesses were shown to exhibit temporalatons Acharya

et al., 2000, Almeida et al., 2001, Chesire et al., 2001. Karmple, it was
observed that streaming accesses have much higher overiag geak loads.

To reflect this, we assume that a portion of all request dsriaee correlated,
while the remaining request arrivals are independent.

To model correlated inter-arrival times, we use a Paretwibligion. The
Pareto distribution has a density functipf) = ak®z— 2!, wherea, k > 0
andx > k. In Jin and Bestavros, 2000, it was observed that temporal co
relations were stronger when request inter-arrival timesevshorter Jin and
Bestavros, 2000. The Pareto distribution models such aiwondvell. The
Pareto distribution used to characterize temporal cdrosig has two param-
eters. Theshape parameter («) indicates the skewness of inter-arrival time
distribution. Thescale parameter (k) indicates the time scale of observations.
Since we are only interested in a finite period but the randariable with a
Pareto distribution can have arbitrarily large values, eedto cut off the Pareto
distribution at unity (corresponding to the maximum polgsifster-arrival time,
or the spanning time of synthetic request stream). Intriodua cutoff for the
Pareto distribution necessitates that we normalize it. Wealby defining a
truncated Paretodistributionwith a PDFf (z) = a£-z~*~!, wheren, k > 0
andk < z < 1. Inimplementation, we use inverse method to generated?aret
distributed random valuésFigure 1.1 illustrates such a truncated PDF.

Seasonal Access Frequency.  In Gismo, we do not make any assumptions
related to the seasonal patterns of the overall accessefinegu Such patterns
are application-specific, and depend on various aspectscafibn and time.
For example, several studies Acharya et al., 2000, Almdidh,&001, Chesire
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Figure1.1. Truncated Pareto PDF for interarrival time of correlategests. The cutoff point
is unity, the maximum possible inter-arrival time.

etal., 2001, Harel etal., 1999, Luperello et al., 2001 olesetsuch patterns over
significantly different time scales (from hours to monthidence, we assume
that a histogram of access frequency (request arrival aatdifferent times is
provided by users diismo. Namely, given the histogram of the overall request
arrival rate at different times, we can approximate the D), ¢t € (0,1).

For each request generated in the last step, assan{e, 1) is the request time,
then we transform to another request timg 1 (¢).

Modeling Individual Sessions

The second aspect of a workload characterization conceensiddel used
for determining the specifics of each user session.

First, the distribution of object sizes is a main determirmdiaession duration—
the larger the object, the longer the session. HTTP reqaesissually shorter,
while streaming accesses have much longer durations &y few KB for
Web objects but up to hundreds of MB for streaming objectd)e Work of
Acharya and Smith, 1998, Acharya et al., 2000 reached a gsiocl that sizes
can vary significantly, and may increase with time (as sest@age and net-
work capacity increase, and streaming content becomespuoptear). Chesire
et al., 2001 observed that streaming objects are usually},Ssuathat the size
distribution has dong tail, underscoring the existence of very large streaming
objects. Several other studies also observed that theosdesigth has heav-
ier tails than an exponential distribution Almeida et ai02, Luperello et al.,
2001, Padhye and Kurose, 1998.

Second, user activities (including VCR-like stop/fastward/rewind/pause
functionalities) affect session duration. User interi@mt are not unique to
streaming access and were documented for HTTP requegtsiGterrupted”
transfers). Such effects are much more common for streaatogsses. For
example, it has been observed that nearly a half of all videoests are not
completed Acharyaetal., 2000. In addition, jumps beconpelfaw in streaming
media access workloads Almeida et al., 2001, Harel et a@9,1Badhye and
Kurose, 1998.
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Third, the bit-rate of streaming objects exhibits impottaroperties which
may have implications on transfer time. Specifically, sirew media bit
rates exhibit long-range dependence. With long-rangerdipee, the auto-
correlation function decays slowly, meaning that burst#eersists at large time
scales. Notice that long-range dependence does not meahsurariability of
the VBR frame size itself (which is known to be quite high) €Figh variability
in frame sizes (a property of the encoding scheme used) caroteled using
a heavy-tailed distribution. Both long range dependendehagh variability of
VBR have been characterized in Garrett and Willinger, 1994.

Object Size Distribution. In Gismo, we use the Lognormal distribution
to model streaming object sizes. Several studies on watkibaracterization
Almeidaetal., 2001, Luperello etal., 2001, Padhye and Beirh998 found that
the Lognormal distribution fits the distribution of objeiztess well. The Lognor-
mal distribution has two parameters,the mean oin(z), ando, the standard
deviation ofln(z). To generate a random variable that follows the Lognormal
distribution, we first generatefrom an approximation of the standard Normal
distribution, and then returt 7% as the value of the Lognormally-distributed
random variable representing the streaming object size.

Notice thatGismo allows our choice of the Lognormal distribution to be
changed. Specifically, several other distributioag.( Pareto and Gamma)
were found to provide a good fit for streaming object sizessueal empir-
ically Almeida et al., 2001, Padhye and Kurose, 1998. Thisris way in
which Gismo is extensible: Users dkismo can easily replace the module for
generating object sizes for the synthetic workload withrtben module.

User Inter-activity Times. In Gismo, two forms of user interventions
(or activities) are modeled—namely, partial accessesallsap” activity and
jumps due to “fast forward and rewind” activities.

For partial accesses (resulting from a “stop” activitiy)e weed to model
the duration of an aborted session. Unfortunately, thexerary few empirical
studies characterizing partial accesses. The work pregémtAcharya et al.,
2000 implies that the stopping time (time until a sessiontaped) is not
uniformly or exponentially distributed. Instead, stoppismore likely to occur
in the beginning of a stream playout. We model such a behawitbra Pareto
distribution. We make this choice since stopping probgbilecreases as the
session grows longer (indicating interest in the streantedent, and hence
a lower probability of stoppage). A Pareto distribution ratsdthis behaviors
very well 2

Forintra-session jumps (resulting from a “fast forward“r@wind” activity),
we need to model the distribution pfmp distances. In previous work Padhye
and Kurose, 1998, it was found that jump distances tend tmia# but that large



10

jumps are not uncommon. In our current implementatioGsfivo, we model
jump distances using Pareto distributions. In additionhog distances, we also
need to model the duration of continuous plag.{ intra-jump times). In our
current implementation azismo, we assume that the duration of continuous
play follows an exponential distributian M, where) is thefrequency of jumps.

Notice that a random variable with a Pareto distributiontwaarbitrary large,
but for both partial accesses and jumps the random variatipging time or
jump distance) is bounded (it cannot exceed the size of tfeebHence, we
truncate the Pareto distribution and normalize it. Theaffiof the distribution
is unity, representing the maximum possible value.

Two previous studies Almeida et al., 2001, Padhye and Kurb3@8 have
used active period (ON period) and silent period (OFF périndnodeling
user interactivities. The duration of continuous play (Odtipd) tends to be
heavier-tailed, but for small objects exponential distfiin is the most observed
Almeida et al., 2001. The duration of the silent period istliiedy a Pareto
distribution. We are considering to provide such featungbé future.

VBR Sdf-Similarity.  We model the sequence of frame sizes for a stream-
ing object as a self-similar process Garrett and Willinde04. A time series

X is said to beaxactly second-order self-similar if the corresponding “aggre-
gated” processX(m) has the same correlation function &s for all m > 1,
where the proces¥ (™) is obtained by averaging the original over succes-
sive non-overlapping blocks of size. The variance of the aggregated process
behaves for large: like Var(X (™) ~ m8(0?)x, resulting in a single Hurst
parameterH = 1 — /2. A property of self-similar processes is that the
auto-correlation function decays much slower wién> 0.5. This means
that burstiness persists at large time scale, and implestffectiveness of
buffering to smooth out burstiness.

In Gismo, we generate fractional Gaussian noise by, first, gengratirac-
tional Brownion motion (FBM) (which is simply the integrateersion of FGN,
i.e, FGN isthe increments of FBM). We implemented a simple agtHpprox-
imation of FBM called “Random Midpoint Displacement” (RMDjhe RMD
method was proposed in Lau et al., 1995. RMD works in a toprdiashion.

It progressively subdivides an interval over which to gatethe sample path.
At each division, a Gaussian displacement, with appropsealing ¢, where

d is the length of the interval anH is the target Hurst parameter), is used to
determine the value of the midpoint. This recursive procedtiops when it
gets the FBM process of the required length. The time conitgléor RMD

is only O(n), wheren is the length of the FBM process. Note that RMD gen-
erates a somewhat inaccurate self-similar process anthinagsulting Hurst
parameter may be slightly smaller than the target value eQttethods such
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Figure 1.2. A hybrid distribution with Lognormal body/Pareto tail.

as the fast Fourier Transform Paxson, 1997 can be implecheme used to
replace this module iG1smo.

VBR Marginal Distribution. To model the high variability of streaming
media bit rates, we use a heavy-tailed marginal distrilbute characterize
the bit rate. A heavy-tailed distribution is one whose uppérdeclines like
a power law,i.e, P[X > z| ~ 2z~ 2, where0 < a < 2. In Garrett and
Willinger, 1994, it was found that the tail of the VBR mardirhstribution
can be modeled using a Pareto distribution. The CDF of Palistdbution
is F(x) = P[X < z] =1-— (k/x)*, wherek,a > 0 andxz > k. Pareto
distributions yield random variables with high varialyilitif 1 < a < 2, the
random variable with Pareto distribution has finite meaniafidite variance;
if a < 1, it has infinite mean and variance.

To model the marginal distribution, and in addition to maaigkthe “tail” of
the distribution, we also need to model the “body” of theritisttion. Garrett
and Willinger Garrett and Willinger, 1994 found that the Gaadistribution
is a good fit for the body, so they used a hybrid Gamma/Paretbéamarginal
distribution. We use a Lognormal distribution for the bodlyrey with a Pareto
tail.

Finally, to complete our model of VBR marginal distributjome use the
following approach to “connect” the body to the tail. GivdretLognormal
distribution for the body with parametetsando, and the cut point between
the body and the tail, we can derive the scale and shape pterashéhe Pareto
tail by equalizing both the value and the slope of the tworithigtions at the
cut point. Certainly, the resulting hybrid distributionets to be normalized.
Also, one can get different tail distributions by moving the point. Figure 1.2
illustrates the fit of a Lognormal distribution and a Parastribution.

We use a transformation to generate the required margisiitition from
the FGN Gaussian marginal distribution (CI0F, ;). The parameters and
o can be computed from FGN samples. Then we transform it to aichyb
Lognormal/Pareto distribution with CDF}, ;4. To do this, for each sample
valuez in the FGN process, the new value is computed?gﬁ”d(GW(m)).
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Figure 1.3. Comparisons of synthetic VBR sequence with target paraete

To computeG, »(.) andF,;}brid(.), we use approximations since there is no
closed form for Gaussian CDF or Lognormal inverse CDF.

We test the Hurst parameter of the resulting VBR frame sizeseising
variance-time plot. A variance-time plot should show that if the sample is
aggregated by a factor e, then the variance decreases by a factamnof,
wheres = 2 — 2H. Since the RMD algorithm is an approximation, and the
transformation of marginal distribution may not presefve iHurst parameter
very well, we repeat the last two steps if the resultigvalue is not close
enough to the target value.

As an illustration, we generate a VBR series for 100,000 &smmith target
Hurst paramete.8. The given marginal distribution parameters are- 6,

o = 0.4, and cut poin660. We derive other parametesis= 2.05 andk = 335
for the Pareto tail. The hybrid distribution needs to be raliped by a factor
0.876. Figure 1.3(a) shows the resulting marginal distralouof the synthetic
trace (dots). It fits the target hybrid distribution (solighee) well. We also test
the Hurst parameter with larger number of samples. Figué)lshows the
variance-time plot from a sequence of one million frame siz¢ shows that
the resultingd value is smaller than the target value when the aggregagieh |
is low. At intermediate and high aggregation level, theatiéihce between the
target Hurst value and the resulting is less than 0.01.

4, Adapting GISM O to Various Architectures

Gismo was designed as a “toolbox” that allows the evaluation ofetar
of content delivery architectures. A typical architectfoea streaming media
application would involve a set afsers accessing a set of streaminbjects
stored on a set of streamisg versvia anetwork. Figure 1.4 illustrates such an
architecture. The media players are usuallyRhag-ins of the Web browsers
(we show them coupled). When a user is browsing an HTTP patfeliwks
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Figurel.4. Synthetic workload components: (1) Access schedules gagtEby client requests,
and (2) Streaming objects stored on servers.

to streaming objects, a media player is launched. The mddijeepmay be
using different protocols to stream the data from the stregraerver,e.g.,

UDP, TCP, and RTSP. In addition to the entities shown in Fégu#, there
could be other components that may play a role in the delieéstreaming
media €.g., caching proxies inside the network, or replicated serfeenzarallel
downloads).

The workload generated leyismo for the performance evaluation of a given
architecture consists of two parts: (a) the set of phantoeasting objects
available at the server(s) for retrievals, and (b) a scleedfithe request streams
generated by various clientsTo use such a workload, the set of streaming
objects are installed on the servers and schedules spegiflient accesses
are installed on the clients. Once installedzesmo workload can be played
out simply by having clients sending requests to the sesyar{cording to the
schedule of accesses at such a client.

By virtue of its design,Gismo allows the evaluation of any “entity” in
the system (lying between request generating clients antenb providing
servers). To do so requires that such entities be “codedagspan end-to-
end architecture to be evaluated. While a us€rfmo is expected to develop
one or more modules for the entity to be evaluated (a caching or patching
algorithm), he/she is not expected to provide the many ah#ties necessary
to complete the end-to-end architecture. To that end, aradidition to the
above two main components of a workload (the objects on therseand the
schedules at the clientg}ismo provides support for various other ingredients
of a streaming media delivery system. Examples of thesediecinodules to
implement simple transport protocolad., UDP, TCP, RTP) and modules to
interface clients and server to an emulated netweuk, (NistNet)?
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Figure 1.5. Base server bandwidth requirements.

The following are examples of “use cases” fersmo: (1) To evaluate the
capacity of a streaming server, a number of clients are wusgelterate requests
to the server under test. This can be done on a LAN and clientotihave
to be real media players. The interesting aspects of theesperformance
(that aGismo user may want to evaluate using simulations) may include its
scheduling, its memory and CPU behaviors, and caching,(8jdcvaluating
network protocols for streaming data transmission. Fa phirpose, the data
is streamed using the protocol under investigation, butrag use simple
implementation of media players and streaming servers.xamele of using
GisMmo in such a study is our work on stream merging and periodicdrasting
protocols Jin and Bestavros, 2002. (3) Evaluating stregrdata replication
techniques. Forthis purpose, one can study how streamjagtslare replicated
viathe Internetto provide better services to the usersr@piecation techniques
include proxy caching, prefetching, work-ahead smoothargl multicasting
etc. An example of usinGg1smo in such a study is our work on partial caching
Jin et al., 2002 as well as the case study we present in thesaetion.

5. GISMO in Action: Evaluating Caching ver sus Patching

To demonstrate its usefulness, we describe Gaswio was used to generate
realistic workloads, which were used to compare the effentiss of proxy
caching and server patching techniques in reducing bankdweduirements.

We conducted a base experiment to measure the server bahdeddire-
ments for a system using neither caching nor patchi@@gsmo was used to
generate a total of 50,000 requests to 500 streaming olsfecesd on the server.
Requests were over a one-day period, with three hours of petakties. We
useda = 0.7 to describe the popularity skew. Requests were not terrigoral
correlated and the streams were played out without intéoip. We used a
Lognormal distribution withy = 10.5 ando = 0.63 to model the streaming
object sizes (in number of frames), resulting in a mean alsjee of approxi-
mately 43K frames. To model the VBR frame sizes, we used Logabwith
u = 5.8, o = 0.4 to model the body of the distribution and a Pareto with
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a = 1.82 andk = 248 bytes to model its tail, with the cut point between the
body and the tail set to 400 bytes. Under this model, the méarate was
close to100Kbps, assuming 24 frames per second. The sequences of frame
sizes were generated with a target Hurst parantéter 0.8. Figure 1.5 shows
the base bandwidth (bytes per second) needed by the semesmpiond to this
workload.

Next, we conducted a number of experiments to study theteffgess of
proxy caching and server patching techniques. To that eedcomsidered
bandwidth reduction ratio as the metric of interest. This metric is computed
by normalizing the mean bandwidth requirement for a systeimgucaching
or patching with respect to the base bandwidth requirensmntil@r to that
shown in Figure 1.5). In our experiments, we varied varicasameters of
the workload and report the bandwidth reduction ratio (asretion of such
parameters), focusing only on the 3-hour period of peak.load

To study the effectiveness of caching, we considered a rsystith 100
proxies, each with infinite cache size. A proxy can satisfe@uest if it has
a previously-fetched copy of the streaming object in itsheacTo study the
effectiveness of patching, we considered a system in whielsérver patches
its response to requests it receives (to the same objedtimvadtshort period
of time. This was done using the optimal threshold-basedhiiag schemes
proposed in Gao and Towsley, 1999 (assuming that clientehadgh buffer
space).

Figure 1.6 shows the performance of proxy caching and sqrathing
when the total number of requests and the skewness paramet@nge. We
observe that for proxy caching, a largeresults in higher bandwidth reduction
ratio. This means that for proxy caching, the concentratibrequests on
a smaller number of “popular” objects is much more importaan it is for
server patching technigues. Recent studies Acharya @080, Chesire et al.,
2001, Almeidaetal., 2001 of streaming access logs sudugstiich popularity
skew for streaming media access is limitied, « is likely to have small values.
This suggests that it is difficult to achieve high bandwiditiuction ratios using
proxy caches. From Figure 1.6, we also observe that ingrgéise number of
requests in the workload increases the efficiency of bottmigcies. Since we
assume a fixed number (100) of proxies, increasing the nupfbreguests in
effect increases sharing among users.

Figure 1.7 shows the performance of proxy caching and spatehing when
the percentage of temporally correlated requests and thelation skewness
are changed. For proxy caching, the correlation of reqigalsiost irrelevant.
For server patching, increasing the percentage of coectfatjuests or increas-
ing the skewness of correlated inter-arrival times resultsigher reduction
ratios. Nevertheless, when correlation is not strong, ¢dection ratio is only
slightly higher than when no correlation exists. Thus, feasleating server
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patching techniques, Poisson arrivals are adequate inloaut& with weak
correlations.

Figure 1.8 shows the performance of proxy caching and spatehing when
object sizes are scaled and the size skewness parameteinges. Again,
the effectiveness of proxy caching is not affected by siztrithution. For
server patching, the larger the objects, the higher thectemturatio. This is
expected since long streams offer more opportunities farhiag. However,
the skewness parameter has less of an effect, suggestintgslaaequate to use
a mean-size streaming object to study the effectivenesseéspatching. One
implication from this experiment is that a good hybrid st would involve
using caches for smaller objects and patching for longegsis.

Figure 1.9 shows the performance of proxy caching and seratshing,
when the probability of partial accesses and the partisdsgcskewness pa-
rameterx are varied. Increasing the fraction of partially-accessgdcts {.e.,
probability of early stops) hurts the performance of botboxgrcaching and
server patching. While the impact on proxy caching perfarogais marginal,
the impact on server patching is disastrous. This suggesatsdr streaming
access allowing a high degree of user inter-activity, sepadching is not a
promising technique at all.

To summarize, our case study demonstrates the importamoeafistic and
scalable streaming access workload generator by showadghé characteris-
tics of a workload may have great impacts on the effectivenésa streaming
content delivery solution. Changing the workload chandsties does indeed
change the relative performance of various techniques.

6. Summary

GIsMO generates streaming access workloads, which are parareetso
as to match properties of real workloads, including objegiuarity, temporal
correlation of requests, seasonal access patterns, sstorselurations, user
inter-activity, and VBR long-range dependence and malgiistribution. We
demonstrated the value étismo by showing that the relative performance
of proxy caching and server patching techniques is inhBrel@pendent on
properties of the workload used to evaluate them.

Notes

1. To generate a random variate following Pareto distrisufi(x), we first compute the inverse CDF
F~1(z). Arandom variable € (0, 1), i.e., uniformly-distributed- is generated, and the inter-arrival time
is F~1(r).

2. AParetodistribution (with shape parameteand scale parametgy has complementary Cm%)a.

It means, the random variable (the stop time in our case) razmpility (%)"‘ to be larger thae. The

conditional probability for a user to proceéxt further is( T AT )™, which grows larger as gets larger.




Generating Internet Sreaming Media Objects and Workloads 17

Reduction ratio Reduction ratio

(a) Proxy Caching (b) Server Patching

Figure 1.6. Server bandwidth reduction ratios of proxy caching andesgpatching schemes
when popularity parameters change. Largas more important for caching.

Reduction ratio Reduction ratio

(a) Proxy Caching (b) Server Patching

Figure 1.7. Server bandwidth reduction ratios of proxy caching andesgpatching schemes
when correlation parameters change. Strong temporallatior favorites server patching.

Reduction ratio Reduction ratio

(a) Proxy Caching (b) Server Patching

Figure 1.8. Server bandwidth reduction ratios of proxy caching andesgpatching schemes
when size distribution parameters change. Larger sizesifas server patching.
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(a) Proxy Caching (b) Server Patching

Figure1.9. Server bandwidth reduction ratios of proxy caching andesgpatching schemes
when partial access parameters change. Early stops deggade patching performance sig-
nificantly, but only affect caching moderately.

3. While the contents of “phantom” objects generatedGagmo are not comprehensible (not real
audio or video), their characteristics conform to the sfieparameters of desired distributioresgf, VBR
auto-correlation, VBR marginal distributions, sizefs,)

4. A GisMo client is a software entity that mimics a configurable seteaf users, each generating
requests conforming to the various distributions of poptylainter-activitiesetc.

5. Other modules, such as various simple caching modulesnatevelopment and will be added to
the Gismo “tool box”.

6. Request correlation (a.k.a. locality of reference) wobé relevant for finite-size proxy caches
because it impacts the effectiveness of cache replacergemithms.
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