
Chapter 1

GENERATING INTERNET STREAMING MEDIA
OBJECTS AND WORKLOADS

Shudong Jin
Computer Science Department
Case Western Reserve University

jins@cwru.edu

Azer Bestavros
Computer Science Department
Boston University

best@cs.bu.edu

Abstract Gismo is a toolkit for the generation of synthetic streaming mediaobjects and
workloads that capture a number of empirically verified characteristics, includ-
ing object popularity, temporal correlation of request, seasonal access patterns,
user session durations, user inter-activity times, and variable bit-rate (VBR) self-
similarity and marginal distributions. The embodiment of these characteristics inGismo enables the generation of realistic and scalable request streams for use in
benchmarking and comparative evaluation of Internet streaming media delivery
techniques. To demonstrate the usefulness ofGismo, we present a case study
that shows the importance of various workload characteristics in evaluating the
bandwidth requireemnts of proxy caching and server patching techniques.

Keywords: Performance modeling and evaluation; streaming media delivery; Internet char-
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1. Introduction

The use of the Internet as a channel for the delivery of streaming (audio/video)
media is paramount. This makes the characterization and synthetic genera-
tion of streaming access workloads of fundamental importance in the evalu-
ation of Internet and streaming delivery systems. While many studies have
considered the characterization of HTTP workloads Almeidaet al., 1996, Ar-
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litt and Williamson, 1996, Barford et al., 1999, Breslau et al., 1999, Crov-
ella and Bestavros, 1996, Cunha et al., 1995, Gribble and Brewer, 1997, Jin
and Bestavros, 2000, Padmanabhan and Qiu, 2000 and synthesis of HTTP
request streams Barford and Crovella, 1998, The Standard Performance Eval-
uation Corporation, , Trent and Sake, 1995, only very few studies focused on
characterizing streaming media workloads Acharya and Smith, 1998, Acharya
et al., 2000, Almeida et al., 2001, Chesire et al., 2001, Padhye and Kurose,
1998, Cherkasova and Gupta, 2002, Veloso et al., 2002, van der Merwe et al.,
2002, and none has tried to generate representative streaming media work-
loads. Because HTTP requests and streaming accesses are different, HTTP
request generators are not suitable for generating streaming access workloads.
These differences include the duration of the accesses, thesize of the objects,
the timeliness requirements,etc.

In the absence of synthetic workload generators, and in order to evaluate the
performance of streaming access techniques, one has to seekalternatives, such
as using real traces, or using analysis/simulation under simplifying and often
incorrect assumptions (e.g., unsing independent reference model, sequential
access,etc.). Indeed, these alternatives have been used in prior work oncaching
Acharya and Smith, 2000, Hua et al., 1998, Rejaie et al., 2000, Sen et al., 1999,
Wang et al., 1998 and on patching Hua et al., 1998, Gao and Towsley, 1999, for
example. While the use of such alternatives allows analysisand performance
evaluation, the resulting conclusions may not be accurate enough, and certainly
could not be reliable enough to assess performance when conditions under
which the traces were collected (or modeling assumptions made to simplify
analysis) are violated. For example, when a limited trace isused in a trace-
driven simulation, it may not be possible to generalize the conclusions of such
a simulation when the system is subjected to scaled-up demand, or when the
distribution of some elements of the trace (e.g., size and popularity distributions
of objects) are changed. Synthetic workload generators have the advantage of
being able to produce traces with controllable parameters and distributions. The
challenge is in ensuring that such synthetic workload generators reflect (in a
parameterizable fashion) known characteristics of streaming media and their
access patterns.

This chapter overviewsGismo—a tool for synthesizing streaming access
workloads that exhibit various properties observed in access logs and in real
traces. One of the salient features of our work is the independent modeling of
both session arrival processes and individual session characteristics. For ses-
sion arrival processes, we use a Zipf-like distribution Breslau et al., 1999, Zipf,
1929 to model reference correlation due to streaming objectpopularity. For
individual sessions, we use a model that exhibits rich properties, including ses-
sion durations, user interactivity times, VBR self-similarity and heavy-tailed
marginal distributions. These properties have been observed and validated by
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studies on streaming access workload characterization. UsingGismo, we are
able to generate synthetic workloads with parameterizablecharacteristics. To
demonstrate the usefulness ofGismo, we present results from a case study com-
paring the effectiveness of recently proposed proxy caching and server patching
techniques. We show how workload characteristics affect the performance of
these techniques.

2. Related Work

HTTP Workload Characterization. Workload characterization is funda-
mental to the synthesis of realistic workloads. Many studies Almeida et al.,
1996, Arlitt and Williamson, 1996, Barford et al., 1999, Breslau et al., 1999,
Cunha et al., 1995, Gribble and Brewer, 1997, Jin and Bestavros, 2000 fo-
cused on the characterization of HTTP requests. Main findings include the
characterization of Zipf-like document popularity distribution Barford et al.,
1999, Breslau et al., 1999, Cunha et al., 1995, the characterization of object
and request size distributions Barford et al., 1999, Cunha et al., 1995, and the
characterization of reference locality properties Almeida et al., 1996, Arlitt and
Williamson, 1996, Jin and Bestavros, 2000.

Web traffic is self similar, exhibiting burstiness at different time scales Crov-
ella and Bestavros, 1996, Leland et al., 1994. A representative self-similar Web
traffic generator, SURGE Barford and Crovella, 1998 models the overall request
streams as the aggregation of many individual user request streams, which have
heavy-tailed inter-arrival time distribution, and/or heavy-tailed request size dis-
tribution. Request streams generated in such a way have significantly different
characteristics than the ones from the workloads generatedby HTTP benchmark
tools such as SpecWeb96 The Standard Performance Evaluation Corporation,
and WebStone Trent and Sake, 1995.

Streaming Media Workload Characterization. As we mentioned at
the outset, there have been few studies that considered the characteristics of
streamed media on the Web Acharya and Smith, 1998 and the characteristics of
access patterns for streamed media Acharya et al., 2000. These studies revealed
several findings that are also known for non-streamed Web media, including:
high variability in object sizes, skewed object popularity, and temporal locality
of reference. In addition, these studies highlighted the preponderance of par-
tial accesses to streamed media—namely, a large percentageof responses to
user requests are stopped before the streamed object is fetched in its entirety.
Chesire et al., 2001 analyzed a client-based steaming-media workload. They
found that most streaming objects are small, and that a smallpercentage of
requests are responsible for almost half of the total transfers. They also found
that the popularity of objects follows a Zipf-like distribution and that requests
during periods of peak loads exhibit a high degree of temporal locality. Almeida
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et al., 2001 analyzed workloads from two media servers for educational pur-
poses. They studied the request arrival patterns, skewed object popularity,
and user inter-activity times. Examples of characterization efforts targeted at
non-web environments include the work of Padhye and Kurose Padhye and
Kurose, 1998, which studied the patterns of user interactions within a media
server, and the work of Harel et al., 1999, which characterized a workload of
media-enhanced classrooms, and observed user inter-activity such as “jumping
behavior”. More recently, Cherkasova and Gupta, 2002 analyzed enterprise
media server workloads, in particular locality of access and evolution of ac-
cess patterns. They pointed out a number of differences fromtraditional Web
server workloads. Veloso et al., 2002 presented the first study on live streaming
access workload characterization at different granularity level, namely users,
sessions, and individual transfers. In another work, van der Merwe et al., 2002
analyzed streaming access logs from commercial service. The assessed the po-
tential benefit of using distribution infrastructures to replicate streaming media
objects and to improve bandwidth efficiency.

In Section 3, we incorporate many of these characteristics in the models we
use for workload generation inGismo. To the best of our knowledge,Gismois
the first streaming workload generator developed and made available to public.
Another more recent effort, the MediSyn project by Tang et al., 2003 adopted
similar methodology and models.

Evaluation Methodologies. In the absence of a unified model for workload
characteristics, various proposals for streaming media protocols and architec-
tures have used a variety of assumptions and models. We discuss these below,
focusing only on caching Acharya and Smith, 2000, Rejaie et al., 2000, Sen
et al., 1999, Wang et al., 1998 and patching Carter and Long, 1997, Hua et al.,
1998, Gao and Towsley, 1999 protocols—protocols we will be contrasting in a
case study usingGismo in Section 5.

A commonly used approach to enhance streaming access performance is
caching. The work in Wang et al., 1998 proposes video stagingtechniques.
Their performance evaluation used Zipf-like popularity distribution, random
request arrivals, and five real videos. Sen et al., 1999 proposed proxy prefix
caching, combined with work-ahead smoothing. Their performance evalua-
tion used two MPEG video traces. Access patterns reflecting skewed object
popularity and correlated request arrivals were not considered. Rejaie et al.,
2000 proposed a proxy caching mechanism to increase the delivered quality of
popular streams. In their simulations, popularity was assumed to follow Zipf’s
law, with requests arriving sequentially. Acharya and Smith, 2000 used a large
video server access log in trace-driven simulation to evaluate their cooperative
caching techniques.
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Another technique to enhance streaming access performanceis patching
Carter and Long, 1997, Hua et al., 1998, Gao and Towsley, 1999, Eager et al.,
2001. Patching leverages large client buffer to enable a client to join an ongoing
multicast for prefetching purposes, while using unicast communication to fetch
the missed prefix. A few patching protocol studies have considered the effect of
Zipf-like popularity distributions on performance Gao andTowsley, 1999, Hua
et al., 1998. In these studies, the arrival processes for requests were assumed to
follow a Poisson distribution Gao and Towsley, 1999, Hua et al., 1998. None
of the studies we are aware of considered other workload characteristics, such
as stream length or user inter-activity.

3. Workload Characteristics in GISMO

Accurate workload characterization is essential to the robust evaluation of
streaming access protocols. In fact, several studies on streaming access work-
load characterization Acharya et al., 2000, Almeida et al.,2001, Chesire et al.,
2001, Padhye and Kurose, 1998 considered the implications of observed char-
acteristics on the performance of various protocols, including caching, prefetch-
ing, and stream merging techniques.

In order to generate realistic synthetic streaming access workloads, we need
to adopt an access model. We define asession as the service initiated by a user’s
request for a transfer and terminated by a user’s abortion ofan on-going transfer
(or the end of the transfer). The workload presented to a server is thus the product
of thesession arrivals and theproperties of individual sessions. The first three
distributions in Table 1.1 specify the characteristics of session arrivals, whereas
the remaining distributions characterize properties of individual sessions.

Session arrivals could be described through the use of appropriate models for:
(1) object popularity, (2) reference locality, and (3) seasonal access character-
istics. InGismo, and given the preponderance of findings concerning the first
two of these models, we use a Zipf-like distribution to modelobject popularity,
implying a tendency for requests to be concentrated on a few “popular” objects,
and we use a heavy-tailed Pareto distribution to model reference locality (i.e.,
temporal proximity of requests to the same objects). Given the application-
specific nature of seasonal access characteristics, we allow the overall request
arrival rate to vary with time according to an arbitrary user-supplied function.

An individual session could be described through the use of appropriate
models for: (1) object size, (2) user inter-activity, and (3) object encoding
characteristics. InGismo, we model object size (which determines the total
playout time of the streamed object) using a lognormal distribution. We model
user inter-activity times which reflect user interruptions(e.g., VCR stop/fast-
forward/rewind functionalities) using a Pareto distribution. Finally, we model
object encoding characteristics by specifying the auto-correlation of the variable
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Component Model PDF f(x) Params

Popularity Zipf-like 1x� , x = 1; 2; :::;N �, N
Temporal Correlation Pareto �k�1�k� x���1, k < x < 1 �, k

Seasonal Access FrequencyUser-specified

Object Size Lognormal e�(ln x��)2=2�2x�p2� , x > 0 �, �
User Inter-activities Pareto �k�1�k� x���1,k < x < 1, �, k

VBR Auto-correlation Self-similarity H
VBR Marginal Distn. (body) Lognormal e�(ln x��)2=2�2x�p2� , 0 < x < C �, �
VBR Marginal Distn. (tail) Pareto �k�x���1, x � C �, k

Table 1.1. Distributions used in the workload generator

bit rate needed to transfer that object in real-time. Multimedia objects are
known to possess self-similar characteristics. Thus, inGismo, we model the
VBR auto-correlation of a streaming object using a self-similar process. Also,
we use a heavy-tailed marginal distribution to specify the level of burstiness of
the bit-rate.

Modeling Session Arrivals

The first aspect of a workload characterization concerns themodel used for
session arrivals. We define thesession inter-arrival time to be the time between
two session arrivals. We consider both the inter-arrival time of consecutive
sessions (i.e., general inter-arrival time), and the inter-arrival time of sessions
requesting the same objects, which is a measure of temporal locality of refer-
ence Almeida et al., 1996, Arlitt and Williamson, 1996, Breslau et al., 1999.

General inter-arrival times can be generated by distributing the requests over
the spanning time of the synthetic workload. If the requestsare distributed
uniformly, then general inter-arrival times roughly follows the exponential dis-
tribution. However, several studies have shown that streaming accesses ex-
hibit diurnal patterns Acharya et al., 2000, Almeida et al.,2001, Chesire et al.,
2001, Harel et al., 1999, Luperello et al., 2001. We call suchphenomenasea-
sonal patterns, i.e., there are, hourly, daily, and weekly patterns. Users are more
likely to request streaming objects during particular periods, making a uniform
distribution of requests over the spanning time of the synthetic workload unre-
alistic.

For HTTP requests, the distribution of inter-arrival time of requests to the
same object was found to be the result of two phenomena: the popularity dis-
tribution of objects and the temporal correlation of requests Jin and Bestavros,
2000. The skew in Web object popularity was found to be directly related to the
skew in the inter-arrival time distribution Breslau et al.,1999, Jin and Bestavros,
2000. This skew was further increased by temporal correlations of requests.
For streaming media accesses, we need to model both of these phenomena.
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Popularity Distribution. The skewed popularity of streaming media ob-
jects was documented in Acharya et al., 2000, Aggarwal et al., 1996, Almeida
et al., 2001, Chesire et al., 2001, Luperello et al., 2001. Inparticular, several
studies observed a Zipf-like distribution of streaming object popularity Almeida
et al., 2001, Chesire et al., 2001, Luperello et al., 2001. Zipf-like distributions
imply that the access frequency of an object is inversely proportional to its pop-
ularity (rank),i.e.,P (r) � r��, 1 < r � N , whereN is the number of objects,r is the rank, andP is the access frequency of ther-ranked object. A discrete
form of the probability density function isf(x) = 1
x� , x = 1; 2; :::; N , where
 = PNi=1 i��. The parameter� is called theshape parameter since it deter-
mines the level of skewness in the popularity profile. The parameterN is called
thescale parameter.

Temporal Correlation. If requests to the same object are independent, then
they are distributed randomly. This was shown not to be accurate enough for
HTTP requests Jin and Bestavros, 2000. Similarly, in a number of recent studies,
streaming media accesses were shown to exhibit temporal correlations Acharya
et al., 2000, Almeida et al., 2001, Chesire et al., 2001. For example, it was
observed that streaming accesses have much higher overlap during peak loads.
To reflect this, we assume that a portion of all request arrivals are correlated,
while the remaining request arrivals are independent.

To model correlated inter-arrival times, we use a Pareto distribution. The
Pareto distribution has a density functionf(x) = �k�x���1, where�; k > 0
andx > k. In Jin and Bestavros, 2000, it was observed that temporal cor-
relations were stronger when request inter-arrival times were shorter Jin and
Bestavros, 2000. The Pareto distribution models such a condition well. The
Pareto distribution used to characterize temporal correlations has two param-
eters. Theshape parameter (�) indicates the skewness of inter-arrival time
distribution. Thescale parameter (k) indicates the time scale of observations.
Since we are only interested in a finite period but the random variable with a
Pareto distribution can have arbitrarily large values,we need to cut off the Pareto
distribution at unity (corresponding to the maximum possible inter-arrival time,
or the spanning time of synthetic request stream). Introducing a cutoff for the
Pareto distribution necessitates that we normalize it. We do so by defining a
truncated Pareto distribution with a PDFf(x) = � k�1�k�x���1, where�; k > 0
andk < x < 1. In implementation, we use inverse method to generate Pareto-
distributed random values.1 Figure 1.1 illustrates such a truncated PDF.

Seasonal Access Frequency. In Gismo, we do not make any assumptions
related to the seasonal patterns of the overall access frequency. Such patterns
are application-specific, and depend on various aspects of location and time.
For example, several studies Acharya et al., 2000, Almeida et al., 2001, Chesire
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Figure 1.1. Truncated Pareto PDF for interarrival time of correlated requests. The cutoff point
is unity, the maximum possible inter-arrival time.

et al., 2001, Harel et al., 1999, Luperello et al., 2001 observed such patterns over
significantly different time scales (from hours to months).Hence, we assume
that a histogram of access frequency (request arrival rate)at different times is
provided by users ofGismo. Namely, given the histogram of the overall request
arrival rate at different times, we can approximate the CDFF (t), t 2 (0; 1).
For each request generated in the last step, assumet 2 (0; 1) is the request time,
then we transformt to another request timeF�1(t).
Modeling Individual Sessions

The second aspect of a workload characterization concerns the model used
for determining the specifics of each user session.

First, the distributionof object sizes is a maindeterminant of sessionduration—
the larger the object, the longer the session. HTTP requestsare usually shorter,
while streaming accesses have much longer durations (typically a few KB for
Web objects but up to hundreds of MB for streaming objects). The work of
Acharya and Smith, 1998, Acharya et al., 2000 reached a conclusion that sizes
can vary significantly, and may increase with time (as serverstorage and net-
work capacity increase, and streaming content becomes morepopular). Chesire
et al., 2001 observed that streaming objects are usually small, but that the size
distribution has along tail, underscoring the existence of very large streaming
objects. Several other studies also observed that the session length has heav-
ier tails than an exponential distribution Almeida et al., 2001, Luperello et al.,
2001, Padhye and Kurose, 1998.

Second, user activities (including VCR-like stop/fast-forward/rewind/pause
functionalities) affect session duration. User interventions are not unique to
streaming access and were documented for HTTP requests (e.g., “interrupted”
transfers). Such effects are much more common for streamingaccesses. For
example, it has been observed that nearly a half of all video requests are not
completed Acharya et al., 2000. In addition, jumps become popular in streaming
media access workloads Almeida et al., 2001, Harel et al., 1999, Padhye and
Kurose, 1998.
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Third, the bit-rate of streaming objects exhibits important properties which
may have implications on transfer time. Specifically, streaming media bit
rates exhibit long-range dependence. With long-range dependence, the auto-
correlation function decays slowly,meaning that burstiness persists at large time
scales. Notice that long-range dependence does not measurethe variability of
the VBR frame size itself (which is known to be quite high). The high variability
in frame sizes (a property of the encoding scheme used) can bemodeled using
a heavy-tailed distribution. Both long range dependence and high variability of
VBR have been characterized in Garrett and Willinger, 1994.

Object Size Distribution. In Gismo, we use the Lognormal distribution
to model streaming object sizes. Several studies on workload characterization
Almeida et al., 2001, Luperello et al., 2001, Padhye and Kurose, 1998 found that
the Lognormal distribution fits the distribution of object sizes well. The Lognor-
mal distribution has two parameters,�, the mean ofln(x), and�, the standard
deviation ofln(x). To generate a random variable that follows the Lognormal
distribution, we first generatex from an approximation of the standard Normal
distribution, and then returne�+�x as the value of the Lognormally-distributed
random variable representing the streaming object size.

Notice thatGismo allows our choice of the Lognormal distribution to be
changed. Specifically, several other distributions (e.g., Pareto and Gamma)
were found to provide a good fit for streaming object sizes measured empir-
ically Almeida et al., 2001, Padhye and Kurose, 1998. This isone way in
whichGismo is extensible: Users ofGismo can easily replace the module for
generating object sizes for the synthetic workload with their own module.

User Inter-activity Times. In Gismo, two forms of user interventions
(or activities) are modeled—namely, partial accesses due to “stop” activity and
jumps due to “fast forward and rewind” activities.

For partial accesses (resulting from a “stop” activitiy), we need to model
the duration of an aborted session. Unfortunately, there are very few empirical
studies characterizing partial accesses. The work presented in Acharya et al.,
2000 implies that the stopping time (time until a session is stopped) is not
uniformly or exponentially distributed. Instead, stopping is more likely to occur
in the beginning of a stream playout. We model such a behaviorwith a Pareto
distribution. We make this choice since stopping probability decreases as the
session grows longer (indicating interest in the streamed content, and hence
a lower probability of stoppage). A Pareto distribution models this behaviors
very well.2

For intra-session jumps (resulting from a “fast forward” or“rewind” activity),
we need to model the distribution ofjump distances. In previous work Padhye
and Kurose, 1998, it was found that jump distances tend to be small but that large
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jumps are not uncommon. In our current implementation ofGismo, we model
jump distances using Pareto distributions. In addition to jump distances, we also
need to model the duration of continuous play (i.e., intra-jump times). In our
current implementation ofGismo, we assume that the duration of continuous
play follows an exponential distributione��t, where� is thefrequency of jumps.

Notice that a random variable with a Pareto distribution canbe arbitrary large,
but for both partial accesses and jumps the random variable (stopping time or
jump distance) is bounded (it cannot exceed the size of the object). Hence, we
truncate the Pareto distribution and normalize it. The cut-off of the distribution
is unity, representing the maximum possible value.

Two previous studies Almeida et al., 2001, Padhye and Kurose, 1998 have
used active period (ON period) and silent period (OFF period) in modeling
user interactivities. The duration of continuous play (ON period) tends to be
heavier-tailed, but for small objects exponential distribution is the most observed
Almeida et al., 2001. The duration of the silent period is best fit by a Pareto
distribution. We are considering to provide such features in the future.

VBR Self-Similarity. We model the sequence of frame sizes for a stream-
ing object as a self-similar process Garrett and Willinger,1994. A time seriesX is said to beexactly second-order self-similar if the corresponding “aggre-
gated” processX(m) has the same correlation function asX, for all m � 1,
where the processX(m) is obtained by averaging the originalX over succes-
sive non-overlapping blocks of sizem. The variance of the aggregated process
behaves for largem like V ar(X(m)) � m��(�2)X , resulting in a single Hurst
parameterH = 1 � �=2. A property of self-similar processes is that the
auto-correlation function decays much slower whenH > 0:5. This means
that burstiness persists at large time scale, and implies the ineffectiveness of
buffering to smooth out burstiness.

InGismo, we generate fractional Gaussian noise by, first, generating a frac-
tional Brownion motion (FBM) (which is simply the integrated version of FGN,
i.e., FGN is the increments of FBM). We implemented a simple and fast approx-
imation of FBM called “Random Midpoint Displacement” (RMD). The RMD
method was proposed in Lau et al., 1995. RMD works in a top-down fashion.
It progressively subdivides an interval over which to generate the sample path.
At each division, a Gaussian displacement, with appropriate scaling (dH , whered is the length of the interval andH is the target Hurst parameter), is used to
determine the value of the midpoint. This recursive procedure stops when it
gets the FBM process of the required length. The time complexity for RMD
is onlyO(n), wheren is the length of the FBM process. Note that RMD gen-
erates a somewhat inaccurate self-similar process and thatthe resulting Hurst
parameter may be slightly smaller than the target value. Other methods such
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Figure 1.2. A hybrid distribution with Lognormal body/Pareto tail.

as the fast Fourier Transform Paxson, 1997 can be implemented and used to
replace this module inGismo.

VBR Marginal Distribution. To model the high variability of streaming
media bit rates, we use a heavy-tailed marginal distribution to characterize
the bit rate. A heavy-tailed distribution is one whose uppertail declines like
a power law,i.e., P [X > x℄ � x��, where0 < � < 2. In Garrett and
Willinger, 1994, it was found that the tail of the VBR marginal distribution
can be modeled using a Pareto distribution. The CDF of Paretodistribution
is F (x) = P [X � x℄ = 1 � (k=x)�, wherek; � > 0 andx � k. Pareto
distributions yield random variables with high variability. If 1 < � < 2, the
random variable with Pareto distribution has finite mean andinfinite variance;
if � � 1, it has infinite mean and variance.

To model the marginal distribution, and in addition to modeling the “tail” of
the distribution, we also need to model the “body” of the distribution. Garrett
and Willinger Garrett and Willinger, 1994 found that the Gamma distribution
is a good fit for the body, so they used a hybrid Gamma/Pareto for the marginal
distribution. We use a Lognormal distribution for the body along with a Pareto
tail.

Finally, to complete our model of VBR marginal distribution, we use the
following approach to “connect” the body to the tail. Given the Lognormal
distribution for the body with parametersu and�, and the cut point between
the body and the tail, we can derive the scale and shape parameter of the Pareto
tail by equalizing both the value and the slope of the two distributions at the
cut point. Certainly, the resulting hybrid distribution needs to be normalized.
Also, one can get different tail distributions by moving thecut point. Figure 1.2
illustrates the fit of a Lognormal distribution and a Pareto distribution.

We use a transformation to generate the required marginal distribution from
the FGN Gaussian marginal distribution (CDFG�;�). The parameters� and� can be computed from FGN samples. Then we transform it to a hybrid
Lognormal/Pareto distribution with CDFFhybrid. To do this, for each sample
valuex in the FGN process, the new value is computed asF�1hybrid(G�;�(x)).
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Figure 1.3. Comparisons of synthetic VBR sequence with target parameters.

To computeG�;�(:) andF�1hybrid(:), we use approximations since there is no
closed form for Gaussian CDF or Lognormal inverse CDF.

We test the Hurst parameter of the resulting VBR frame size series using
variance-time plot. A variance-time plot should show that if the sample is
aggregated by a factor ofm, then the variance decreases by a factor ofm��,
where� = 2 � 2H. Since the RMD algorithm is an approximation, and the
transformation of marginal distribution may not preserve the Hurst parameter
very well, we repeat the last two steps if the resultingH value is not close
enough to the target value.

As an illustration, we generate a VBR series for 100,000 frames with target
Hurst parameter0:8. The given marginal distribution parameters are� = 6,� = 0:4, and cut point560. We derive other parameters� = 2:05 andk = 335
for the Pareto tail. The hybrid distribution needs to be normalized by a factor
0.876. Figure 1.3(a) shows the resulting marginal distribution of the synthetic
trace (dots). It fits the target hybrid distribution (solid curve) well. We also test
the Hurst parameter with larger number of samples. Figure 1.3(b) shows the
variance-time plot from a sequence of one million frame sizes. It shows that
the resultingH value is smaller than the target value when the aggregation level
is low. At intermediate and high aggregation level, the difference between the
target Hurst value and the resulting is less than 0.01.

4. Adapting GISMO to Various ArchitecturesGismo was designed as a “toolbox” that allows the evaluation of variety
of content delivery architectures. A typical architecturefor a streaming media
application would involve a set ofusers accessing a set of streamingobjects
stored on a set of streamingservers via anetwork. Figure 1.4 illustrates such an
architecture. The media players are usually thePlug-ins of the Web browsers
(we show them coupled). When a user is browsing an HTTP page with links
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Figure 1.4. Synthetic workload components: (1) Access schedules generated by client requests,
and (2) Streaming objects stored on servers.

to streaming objects, a media player is launched. The media player may be
using different protocols to stream the data from the streaming server,e.g.,
UDP, TCP, and RTSP. In addition to the entities shown in Figure 1.4, there
could be other components that may play a role in the deliveryof streaming
media (e.g., caching proxies inside the network, or replicated serversfor parallel
downloads).

The workload generated byGismo for the performance evaluation of a given
architecture consists of two parts: (a) the set of phantom streaming objects3
available at the server(s) for retrievals, and (b) a schedule of the request streams
generated by various clients.4 To use such a workload, the set of streaming
objects are installed on the servers and schedules specifying client accesses
are installed on the clients. Once installed, aGismo workload can be played
out simply by having clients sending requests to the server(s) according to the
schedule of accesses at such a client.

By virtue of its design,Gismo allows the evaluation of any “entity” in
the system (lying between request generating clients and content providing
servers). To do so requires that such entities be “coded” as part of an end-to-
end architecture to be evaluated. While a user ofGismo is expected to develop
one or more modules for the entity to be evaluated (e.g., a caching or patching
algorithm), he/she is not expected to provide the many otherentities necessary
to complete the end-to-end architecture. To that end, and inaddition to the
above two main components of a workload (the objects on the servers and the
schedules at the clients),Gismo provides support for various other ingredients
of a streaming media delivery system. Examples of these include modules to
implement simple transport protocols (e.g., UDP, TCP, RTP) and modules to
interface clients and server to an emulated network (e.g., NistNet).5
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Figure 1.5. Base server bandwidth requirements.

The following are examples of “use cases” forGismo: (1) To evaluate the
capacity of a streaming server, a number of clients are used to generate requests
to the server under test. This can be done on a LAN and clients do not have
to be real media players. The interesting aspects of the server performance
(that aGismo user may want to evaluate using simulations) may include its
scheduling, its memory and CPU behaviors, and caching, etc.(2) Evaluating
network protocols for streaming data transmission. For this purpose, the data
is streamed using the protocol under investigation, but onemay use simple
implementation of media players and streaming servers. An example of usingGismo in such a study is our work on stream merging and periodic broadcasting
protocols Jin and Bestavros, 2002. (3) Evaluating streaming data replication
techniques. For this purpose, one can study how streaming objects are replicated
via the Internet to provide better services to the users. Thereplication techniques
include proxy caching, prefetching, work-ahead smoothing, and multicasting
etc. An example of usingGismo in such a study is our work on partial caching
Jin et al., 2002 as well as the case study we present in the nextsection.

5. GISMO in Action: Evaluating Caching versus Patching

To demonstrate its usefulness, we describe howGismowas used to generate
realistic workloads, which were used to compare the effectiveness of proxy
caching and server patching techniques in reducing bandwidth requirements.

We conducted a base experiment to measure the server bandwidth require-
ments for a system using neither caching nor patching.Gismo was used to
generate a total of 50,000 requests to 500 streaming objectsstored on the server.
Requests were over a one-day period, with three hours of peakactivities. We
used� = 0:7 to describe the popularity skew. Requests were not temporally
correlated and the streams were played out without interruptions. We used a
Lognormal distribution with� = 10:5 and� = 0:63 to model the streaming
object sizes (in number of frames), resulting in a mean object size of approxi-
mately 43K frames. To model the VBR frame sizes, we used Lognormal with� = 5:8, � = 0:4 to model the body of the distribution and a Pareto with



Generating Internet Streaming Media Objects and Workloads 15� = 1:82 andk = 248 bytes to model its tail, with the cut point between the
body and the tail set to 400 bytes. Under this model, the mean bit-rate was
close to100Kbps, assuming 24 frames per second. The sequences of frame
sizes were generated with a target Hurst parameterH = 0:8. Figure 1.5 shows
the base bandwidth (bytes per second) needed by the server torespond to this
workload.

Next, we conducted a number of experiments to study the effectiveness of
proxy caching and server patching techniques. To that end, we considered
bandwidth reduction ratio as the metric of interest. This metric is computed
by normalizing the mean bandwidth requirement for a system using caching
or patching with respect to the base bandwidth requirement (similar to that
shown in Figure 1.5). In our experiments, we varied various parameters of
the workload and report the bandwidth reduction ratio (as a function of such
parameters), focusing only on the 3-hour period of peak load.

To study the effectiveness of caching, we considered a system with 100
proxies, each with infinite cache size. A proxy can satisfy a request if it has
a previously-fetched copy of the streaming object in its cache. To study the
effectiveness of patching, we considered a system in which the server patches
its response to requests it receives (to the same object) within a short period
of time. This was done using the optimal threshold-based patching schemes
proposed in Gao and Towsley, 1999 (assuming that clients hadenough buffer
space).

Figure 1.6 shows the performance of proxy caching and serverpatching
when the total number of requests and the skewness parameter� change. We
observe that for proxy caching, a larger� results in higher bandwidth reduction
ratio. This means that for proxy caching, the concentrationof requests on
a smaller number of “popular” objects is much more importantthan it is for
server patching techniques. Recent studies Acharya et al.,2000, Chesire et al.,
2001, Almeida et al., 2001 of streaming access logs suggest that such popularity
skew for streaming media access is limited,i.e.,� is likely to have small values.
This suggests that it is difficult to achieve high bandwidth reduction ratios using
proxy caches. From Figure 1.6, we also observe that increasing the number of
requests in the workload increases the efficiency of both techniques. Since we
assume a fixed number (100) of proxies, increasing the numberof requests in
effect increases sharing among users.

Figure 1.7 shows the performance of proxy caching and serverpatching when
the percentage of temporally correlated requests and the correlation skewness�
are changed. For proxy caching, the correlation of requestsis almost irrelevant.6
For server patching, increasing the percentage of correlated requests or increas-
ing the skewness of correlated inter-arrival times resultsin higher reduction
ratios. Nevertheless, when correlation is not strong, the reduction ratio is only
slightly higher than when no correlation exists. Thus, for evaluating server
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patching techniques, Poisson arrivals are adequate in workloads with weak
correlations.

Figure 1.8 shows the performance of proxy caching and serverpatching when
object sizes are scaled and the size skewness parameter� changes. Again,
the effectiveness of proxy caching is not affected by size distribution. For
server patching, the larger the objects, the higher the reduction ratio. This is
expected since long streams offer more opportunities for patching. However,
the skewness parameter has less of an effect, suggesting that it is adequate to use
a mean-size streaming object to study the effectiveness of server patching. One
implication from this experiment is that a good hybrid strategy would involve
using caches for smaller objects and patching for longer streams.

Figure 1.9 shows the performance of proxy caching and serverpatching,
when the probability of partial accesses and the partial access skewness pa-
rameter� are varied. Increasing the fraction of partially-accessedobjects (i.e.,
probability of early stops) hurts the performance of both proxy caching and
server patching. While the impact on proxy caching performance is marginal,
the impact on server patching is disastrous. This suggests that for streaming
access allowing a high degree of user inter-activity, server patching is not a
promising technique at all.

To summarize, our case study demonstrates the importance ofa realistic and
scalable streaming access workload generator by showing that the characteris-
tics of a workload may have great impacts on the effectiveness of a streaming
content delivery solution. Changing the workload characteristics does indeed
change the relative performance of various techniques.

6. SummaryGismo generates streaming access workloads, which are parameterized so
as to match properties of real workloads, including object popularity, temporal
correlation of requests, seasonal access patterns, user session durations, user
inter-activity, and VBR long-range dependence and marginal distribution. We
demonstrated the value ofGismo by showing that the relative performance
of proxy caching and server patching techniques is inherently dependent on
properties of the workload used to evaluate them.

Notes
1. To generate a random variate following Pareto distribution f(x), we first compute the inverse CDFF�1(x). A random variabler 2 (0; 1), i.e., uniformly-distributedr is generated, and the inter-arrival time

isF�1(r).
2. A Pareto distribution (with shape parameter�and scale parameterk) has complementary CDF( kx )�.

It means, the random variable (the stop time in our case) has probability ( kx )� to be larger thanx. The
conditional probability for a user to proceed�x further is( xx+�x )�, which grows larger asx gets larger.
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Figure 1.6. Server bandwidth reduction ratios of proxy caching and server patching schemes
when popularity parameters change. Larger� is more important for caching.
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Figure 1.7. Server bandwidth reduction ratios of proxy caching and server patching schemes
when correlation parameters change. Strong temporal correlation favorites server patching.
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Figure 1.9. Server bandwidth reduction ratios of proxy caching and server patching schemes
when partial access parameters change. Early stops degradeserver patching performance sig-
nificantly, but only affect caching moderately.

3. While the contents of “phantom” objects generated byGismo are not comprehensible (not real
audio or video), their characteristics conform to the specific parameters of desired distributions (e.g., VBR
auto-correlation, VBR marginal distributions, sizes,etc.)

4. A Gismo client is a software entity that mimics a configurable set ofreal users, each generating
requests conforming to the various distributions of popularity, inter-activities,etc.

5. Other modules, such as various simple caching modules, are in development and will be added to
theGismo “tool box”.

6. Request correlation (a.k.a. locality of reference) would be relevant for finite-size proxy caches
because it impacts the effectiveness of cache replacement algorithms.
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