
A Trading System for Fairly Scheduling
Fixed-Sized Delay-Tolerant Jobs at a Shared Link

Jorge Londõno Azer Bestavros Nikolaos Laoutaris
jmlon@bu.edu best@bu.edu nikos@tid.es

Computer Science Dept Computer Science Dept Telefonica Research
Boston University, USA Boston University, USA Barcelona, Spain

Abstract—Scheduling of delay-tolerant jobs has been proposed
as a mechanism to alleviate pressure on congested network
resources. However, when multiple competing users share these
resources, they may not be willing to reveal the flexibility of the
schedule for their jobs. This work presents a trading system that
enables the users to trade their finite allowances in a scenario
where they have fixed-size atomic jobs. The trading system
makes it possible for tasks with strict timing requirements to
be completed on time, while rewarding customers who exhibit
flexibility regarding the schedule of their workloads (by reducing
their operating costs or assigning them a larger share of off-peak
capacity). The trading system hereby presented thus provides the
right incentives so that user agents schedule their delay-tolerant
jobs in a way benefitial for the whole system. It is proven to
always converge, and simulations on real traces show significant
reductions on the peak-to-valley ratio on the link utilization.

I. I NTRODUCTION

Traffic patterns follow diurnal patterns with large peak-to-
valley ratios. This large variability poses serious challenges
when provisioning resources, for example the capacity of
the network links. On the one hand, the provider could use
the trends of peak utilization to estimate the future demand
and provision the resources accordingly. In doing so, it will
ensure that the degradation of the Quality of Service (QoS)
observed by end users stays within bounds, although this will
most likely require huge investments in infrastructure. Onthe
other hand, not doing so means the performance will suffer
significant degradation during peak hours and in a competitive
environment where customers may easily switch providers,
customers will do so. Laoutaris and Rodriguez [1] propose
a third alternative, based on the observation that some tasks
are Delay-Tolerant (DT),i.e. they can be scheduled at some
later time as they are not interactive and responsiveness isnot
required. The benefit of shifting DT workloads is twofold: For
the provider, the installed capacity is better utilized over time
and the peak demand is reduced, reducing the pressure for
over-provisioning its infrastructure. For the users, the reduced
demand during peak times translates to better performance for
interactive applications.

J. Londõno is supported in part by the Universidad Pontificia Bolivariana
and COLCIENCIAS–Instituto Colombiano para el Desarrollo dela Ciencia y
la Tecnoloǵıa “Francisco Jośe de Caldas”.

This work is supported in part by NSF awards CCF-0820138, CSR-
0720604, EFRI-0735974, CNS-0524477, CNS-0520166, and CNS-0952145.

In a recent work, Laoutaris et al [2] presented concrete
scheduling policies for the transfer of Delay Tolerant Bulk
traffic over wide area networks. The fundamental assumption
in this construction is that there is a single controlling authority
able to coordinate the execution of transfers according to a
globally optimal schedule. This paper considers a different
scenario where the users of the system compete for the shared
resource and look to optimize their own utility regardless of the
system-wide goals. This behavior is commonly calledselfish
and it is typically the case that selfish behavior leads to a
suboptimal utilization of the system resources. The problem
is exacerbated by the fact that commonly used pricing schemes
do not provide incentives for the users to choose actions bene-
ficial for the system. This is exemplified by the flat-rate and the
proportional-usage pricing models. In the first case, the user
pays a fixed amount (e.g. a monthly fee) independent of the
actual usage. In the second case, the charges are proportional
to the user’s utilization (for example when charged per MB
transferred), but independent of the overall system utilization.
Neither of these schemes provides any incentive to schedule
DT tasks off the peak hours, as the cost for the user is the
same. This is precisely the problem addressed in this paper:
Create a mechanism that in the face of selfish users, incentives
them to schedule their DT tasks as to better load-balance the
utilization of the shared resource over time.

The mechanism presented in this paper also takes into
consideration other practical challenges and requirements: 1)
The users do not have exact valuations of their jobs. Various
micro-economic mechanisms such as auctions and commodity
markets rely on having precise valuations, but in practice they
may not be known, may be subjective and are impractical to
communicate to the system. Instead, our mechanism defines
a variable cost scheme so that the cost of heavily demanded
resources becomes high and gives the users the opportunity
to re-schedule their jobs as to avoid these hot-spots. 2) The
system should provide for some notion of fairness between
the users. This is non-trivial given the lack of valuations
for their jobs and the distinction of classes of jobs. Our
mechanism provides a notion of fairness where the users of
the same resource in the same period pay the same unit cost.
3) The actual trading and allocation of the resources shouldbe
implementable by software agents, in order for the system to
operate autonomically and minimize the need for actual user



intervention.

A. Related work

Laoutaris and Rodriguez [1] identify the lack of mechanisms
for handling DT jobs on the network and proposed two
mechanisms for doing so. The first one is to give the users
higher-than-the-purchasedaccess rate during off-peak hours.
The second one is the introduction of “internet post offices”
for scheduling and performing DT transfers during off-peak
periods. Our mechanism fits in the first category, noting
that our proposal gives a concrete mechanism for providing
incentives in a scenario with selfish/rational users, provides a
notion of fairness, and can be implemented by autonomous
software agents. Other schemes, that rely on computing an
optimal schedule and executing the DT tasks according to
this schedule have been explored by Laoutaris et al [2]. In
this case, the fundamental assumption is that either all the
tasks are under the control of a single authority, or all the
users cooperate by following the globally optimal schedule.
Our scheme on the other hand assumes non-cooperative users
who act as maximizers of their own utility.

Many works have studied the use of micro-economic mech-
anisms such as auctions and commodity markets for resource
management. AuYoung [3] provides a review of two systems,
Bellagio andMirage, that use combinatorial auctions as their
allocation mechanism. In particular several difficulties are
pointed out, among which are: 1) the need of mechanisms
for the user to elicit honest and comparable utility functions,
2) mechanisms such as the Vickrey-Clarke-Grooves (VCG)
auction have the properties of making truthful bidding a
dominant strategy and maximizing the social-value, but this
properties do not hold when using approximate solutions for
the subjacent winner determination problem, or when the
auction is not static, but dynamic. They are also known to be
susceptible to various attacks, for example collusion attacks.
In G-Commerce [4], the authors compare both, auctions and
commodities markets for allocation of grid resources. Our
setting is different in that the auction/market is run per time-
slot to allocate all the available resources to the highest
bidders.

In [5] the authors highlight some of the potential bene-
fits and the challenges when using market mechanisms for
resource allocation. In this context, our mechanism uses as
a social-goal that of load-balancing the utilization of the
resource, which makes sense when the total demand is less
than the capacity of the resource, but the cost of the resource
depends on its utilization. Load-balancing is also beneficial
from the standpoint of improving some QoS metrics, as
for example the response time for interactive applications.
Our mechanism also addresses the difficulty associated with
expressing valuations, replacing the need for the users to elicit
their valuations, by the problem of minimizing cost on behalf
of the user, thus eliminating the need for additional/unpractical
interfaces needed if the users were to communicate their
valuations.

Another related issue is the definition offairness. In the
context of congestion management, definitions such asmax-
min fairnessand proportional-fairnesshave been extensively
considered, but their adequacy has also been questioned [6].
In this regard, our work seeks to offer a mechanism that
implements a form of long-term cost fairness as suggested
by Briscoe [6].

II. T HE MULTI -USERSCHEDULING PROBLEM

A. Definitions

Each user or application1 has a task. LetAi be the task
of user i. For the purposes of the analysis, it is assumed
that time is quantized into intervals of length∆t called time-
slots2 and j is the slot number. Each task is characterized by
the demand on the resource during each time-slot, therefore
the tasks themselves are described by vectors of the form
Ai = (. . . , aij , . . .), where the valuesaij ≥ 0 are positive real
constants, indicating the task’s resource requirement during
time-slotj. For this reason, the tasks are said to befixed-size.
Observe that even though in practice the demand of each task
with a time-slot may be variable, our model may still be used
taking aij to be the maximum demand per slot.

In addition, each task has aslackparameters that captures
its delay-tolerance. So for example, ifs = 0 the task cannot
be scheduled at any other time-slot, ifs = 1 the task can be
shifted one slot back or forward in the schedule and so forth.3

Fig.1 illustrates these definitions.

5 10 15 20 25 30
0

50

100

150

200

250

300

350

400

Timeslot

B
W

 d
em

an
d

 

 
A

1

A
2

−s +s

Fig. 1. Example tasks descriptions for two users

Under the model just described, when a single authority
controls all the tasks, the problem is that of finding an
optimal schedule subject to capacity and slack constraints. The
optimality goal may be application dependent, but for illus-
tration, our analysis assumes that the goal is load-balancing
the utilization of the resource over time. For example, this
minimizes the system’s cost when the 95/5-rule4 is used for
pricing. When many users share the system, the problem
becomes more challenging, as explained next.

1For the purposes of this paper we will use both terms interchangeably
2Time-slots are large compared to packet transmission times.
3Alternatively, a deadline-based description can be shown to be equivalent.
4The cost of the service is determined by the95-percentile of the5-min

traffic aggregates during a pre-defined period



B. Problem statement

When there are many competing users in the system,
their choice of actions (the schedule for their task) usually
follows their own private goals (for example minimizing their
individual cost), but ignoring the overall system goal. Forthis
reason, this kind of actions is usually referred to asselfish.
Selfish behavior is detrimental for the system because it makes
it very difficult and expensive to handle the diurnal patterns
of activity. The typical solutions are either to provision the
resources to the peak utilization at a very large cost for the
provider, or to let the resources saturate sacrificing the QoS
perceived by the users.

It forllows that the problem is to design a mechanism so that
selfish users get the right incentive to schedule their delay-
tolerant task during periods of low utilization. The problem
is challenging for several reasons: Selfish users may not be
truthful, meaning that they many not reveal the true slack
associated with their tasks; the system should provide some
measure offairness, understood as charging the same to users
with the same requirements; the system should be “neutral”,
meaning that the valuation associated with the execution ofa
tasks within its feasible interval is set by its owner, and not set
ad-hoc or “dictated” by some central authority; the valuations
themselves may not be known, as it is commonly the case
in computing systems and it would be impractical having the
actual user communicate them to the system even if known.

III. SYSTEM ARCHITECTURE

A. The Demand-Based Trading System

Fig.2 illustrates the operation of the trading system. Here
the marketplace is run by the owner of the resource, as this
is the party interested in load-balancing its utilization over
time. The owner of the resource has no control over the
preferences or constraints of the users. A per-user agent bids
for allocations within each one of the time-slots. A bid is
a task vectorAi. Once the marketplace has received all the
bids, it reports back a vector of prices-per-slot, and a vector
of total demands per time-slot. The key idea is that the unit-
price is variable and dependent on the total demand on a given
slot, effectively making the slot price oscillate according to
the supply and demand. In response, user agents may submit
new bids, corresponding to vectorsA′

i where some of the
components may be shifted in time. What components get
shifted and by how much is the result of minimizing the
cost of the task, subject to the tasks’ timing constraints.5 The
marketplace recomputes the prices and the system iterates until
it finds a stable solution. Two key issues for the operation of
the system are: 1) how to set the prices, and 2) ensure that the
system converges to a stable, mutually satisfactory solution.
The remainder of this section considers the first one, and the
second is analyzed in§IV.

Regarding the assignment of prices, we adopt an idea
inspired from the concept ofexchange markets: the price is

5A dynamic programming algorithm for solving this problem is presented
in full version of this work [7]

Fig. 2. Interaction with the trading system

variable and driven by the supply and demand of the goods.
However, in a exchange market the utility function is known,
making it possible to establish a market-clearing solution. The
alternative we propose is to make use of a demand-dependent
cost function, such that the unit-cost reflects the demand
on a given resource (time-slot). Highly demanded resources
become more expensive and this gives the right incentive for
delay-tolerant tasks to be re-scheduled during periods of lower
demand. The use of a cost function also eliminates the need
for private valuations, the users’ selfish goal is satisfied by
minimizing their costs. To accomplish this, we define the cost
of a task allocatingaij units of thejth time-slot to be

cij = aij · Uj (1)

whereUj = 1

C

∑

i aij is the total demand due to all the users
on thejth time-slot, andC is a positive constant.6 The total
cost for useri is simply the sum of the costs throughout all the
time-slotsci =

∑

j cij . It is worth observing two properties of
this cost function: 1) Every user pays the same unit-price, for
this reason it is said to be fair; and 2) The users who contribute
the most to the congested time-slots are also the most heavily
penalized.

B. Mechanism and Policy

The trading system just described provides a measure of
cost to be enforced by the service provider. The simplest im-
plementation would just convert this value into real currency.
Currency let’s the users express how much the service is worth
and also gives the service provider the incentive to upgrade
the infrastructure to keep up with the demand. The use of
real currency is not always possible, though. For example,
many services operate under flat-rate pricing models, which
effectively disconnect pricing and utilization. One possible
solution is the use ofvirtual currency. For virtual-currency
to be effective, it must be worth to its users. In fact, this
can be achieved by having a limited supply of it. If it is not
wisely used, the user may run out of virtual currency and be
unable to complete its jobs. On the other hand the mechanism
makes it possible for the agents to exchange flexibility for
volume. Given that highly demanded slots are more expensive,
the same allowance translates into a larger volume if used
in less-demanded slots. If virtual-currency is to be used,
the allocation of virtual currency should be determined by
some external policy. For example, all the users could receive

6WhenC is the capacity of the resource,Uj is the utilization



identical amounts, and what slots they elect to spend their
budgets on is up to them. Another alternative is to have classes,
for example gold/silver/bronze with allowances established per
class. What is important is that policies like these can be easily
implemented and the mechanism empowers the users to trade
their allowances as they better fit their needs.

C. Notes about implementation

The user himself needs not to be directly involved in the
trading process. As a matter of fact, the whole process can be
easily automated to be performed by a software agent doing
the trading on the user’s behalf. All that is needed is for the
agent to have a characterization of the tasks of the users, which
could be performed by a software agent as well, say from
historical trace analysis. This characterization would provide
the sets of tasks and their respective slacks to the trading agent.
Exploring techniques to accomplish this characterizationis left
for future work.

IV. A NALYTICAL RESULTS

The bidding process described in the previous section can
be analyzed as a pure-strategies game, where each bid is the
action of a player in response to the other players actions.
This bidding process is guaranteed to terminate thanks to the
following theorem

Theorem 1:When the per-player cost isci =
∑

j aij · Uj ,
the pure strategies game in which users adopt better/best
responses to allocate atomic units work on each time-slot
converges to a Nash-Equilibrium (NE).
The proof of this theorem is given in the Appendix.7

An interesting observation from the proof is the fact that the
ordering of the task components is not important as long as
each atomic component is scheduled into mutually exclusive
time-slots. This allows generalizing the model for handling
several subtasks per user with different slacks per subtask.

An important concern in game-theory analysis is the Price of
Anarchy (PoA), defined as the ratio between the worst-case NE
social cost and the globally optimal solution. The following
theorem establishes the PoA for the our trading system

Theorem 2:The PoA for the pure-strategies game modeling
the market wheren agents bid for the allocation of the
resources for their tasks, and the tasks are described as finite
ordered sequences of resource demands, isn.8

Although this upper bound is high, it refers to a worst-case
which in practice is very difficult to encounter. In fact, Fig.3-
left illustrates simulation-based results for randomly generated
sets of workloads, where this ratio is always below two. We
observe that as the number of tasks and slots increases this
ratio becomes very close to one, which bodes well for the
target applications of our system.

7The analysis presented here does not consider external constraints, such
as the capacity of the link. We have shown that the system still converges in
these case, for further details see [7]

8Proof omitted due to space constraints. Please refer to [7]

V. EXPERIMENTAL EVALUATION

To further illustrate the benefits obtainable by using the
schedule trading system, we evaluate the system using network
traces as a readily available source of traces. Needless to
say that the system could be used in scheduling other types
of workloads, as for example batch jobs to be executed in
a server. Publicly available WAN traces [8] were used to
conduct the experimental evaluation of the system. These
traces provide packet-level information on a high capacity
WAN link. For all the experiments, the traffic was aggregated
in 5min time-slots, a sample of a24hr period was used, thus
giving 288 time-slots. Some pre-processing steps were done to
identify user sessions (traffic belonging to a single application)
and the sessions were used as subtasks with independent slack,
according to extended model of§IV.

We conducted an experiment using these sessions to eval-
uate the effect on the 95th percentile of the link’s 5-minute
traffic volume (the95% traffic envelop). Figure 3-(center,right)
shows the outcome after the market reaches an equilibrium.
The curve labelledslack = 0 is the original schedule as
present in the traces. For brevity, it is assumed that all users
adopt the sameslackvalue for all their sessions, so the curves
slack=3,6,12 correspond to an slack of15min, 30min, and
1hr respectively. The center is the actual traffic aggregate
on per time slot and shows that as the flexibility of tasks
increases, the peak-to-valley ratios reduce. In fact a verylarge
peak of 139MB at time-slot 235 was reduced to 58MB just
by having aslack of 3. The figure on the right shows the
distribution of the traffic per time-slot. The distributionfor
different values ofslack illustrate the load-balancing effect
of the market: Slots the utilization increases for slots with
low demand and the decreases for highly demanded slots. Of
particular attention is the95% value of these curves, as this is
the basis for pricing when using the 95/5 rule. Table I shows
the values of the95% traffic envelop. These results underscore
that selfishly scheduling subtasks yields an equilibrium with
significant reduction in the95% traffic envelop – up to31%
reduction when slack is1 hour. Even for a small slack of15
minutes, the savings amount to16%.

Slack 95%(MB) Reduction%
0 36.3 0.0
3 30.6 15.6
6 27.4 24.4

12 24.9 31.4

TABLE I
95% UTILIZATION RESULTING FROM BANDWIDTH TRADING .

VI. CONCLUSION

The schedule trading system presented in this work enables
self-interested agents to collectively converge on whatthey
perceive to be an equitable allocation, based on their indi-
vidual, private valuation of system utility. The system incen-
tives otherwise non-cooperative users to schedule their delay-
tolerant tasks, to achieve a smoother aggregate utilization of
the resource. Doing so reduces the cost/improves the utility of



10
0

10
1

10
21

1.2

1.4

1.6

1.8

2

Number of Users (n)

W
or

st
−

C
as

e 
to

 O
pt

im
al

 U
til

iz
at

io
n

0 50 100 150 200 250
0

50

100

150

Time−Slot

T
ra

ffi
c 

(M
B

)

 

 

Slack=0
Slack=3
Slack=6
Slack=12

0 50 100 150
0

0.2

0.4

0.6

0.8

1

Slot Traffic (MB)

P
(t

ra
ffi

c<
X

)

 

 

Slack=0
Slack=3
Slack=6
Slack=12

Fig. 3. Simulation results – Left: worst-case to optimal ratio, center: utilization over time, right: CDF of slots traffic

delay-tolerant tasks and makes it possible for tasks with more
stringent constraints to be completed on time within the finite
constraints of existing resources. It also benefits the provider
by yielding smoother aggregate utilization, which represents
important savings (particularly when their cost are drivenby
peak utilization, as for example when using the 95/5 pricing
rule), or alternatively a better utilization of the otherwise idle
periods of its infrastructure thus reducing the pressure for
infrastructure upgrades.

The trading system presented here acts as a facilitator for
a community of users so that they can share a resource and
reach a globally desirable state, that would be unobtainable if
it were to rely on uncooperative users. In doing so, it is neutral
in the sense of leaving the valuation of tasks to their owners
and not imposing some ad-hoc policies.

In this work we presented the case where jobs are fixed size.
Another interesting question arises when consideringelastic
traffic, i.e. jobs whose allocation per time-slot need not be
fixed. In a related paper [9], we have explored this case as
well as the problem of combining fixed-size and elastic traffic.

REFERENCES

[1] N. Laoutaris and P. Rodriguez, “Good Things Come to Those Who (Can)
Wait or how to handle Delay Tolerant traffic and make peace on the
Internet,” in HotNets’08, 2008.

[2] N. Laoutaris, G. Smaragdakis, P. Rodriguez, and R. Sundaram, “Delay
tolerant bulk data transfers on the internet,” inSIGMETRICS. New York,
NY, USA: ACM, 2009, pp. 229–238.

[3] A. AuYoung, P. Buonadonna, B. N. Chun, C. Ng, D. C. Parkes,J. Shnei-
dman, A. C. Snoeren, and A. Vahdat,Market Oriented Grid and Utility
Computing. Wiley, 2009, ch. Two Auction-Based Resource Allocation
Environments: Design and Experience.

[4] R. Wolski, J. S. Plank, J. Brevik, and T. Bryan, “G-commerce: Market
formulations controlling resource allocation on the computational grid,”
in IPDPS’01, Washington, DC, USA, 2001, p. 46.

[5] J. Shneidman, C. Ng, D. C. Parkes, A. AuYoung, A. C. Snoeren,
A. Vahdat, and B. Chun, “Why markets could (but don’t currently) solve
resource allocation problems in systems,” inHOTOS’05, Berkeley, CA,
USA, 2005.

[6] B. Briscoe, “Flow rate fairness: Dismantling a religion,” ACM SIGCOMM
Computer Communication Review, vol. 37, no. 2, pp. 63–74, April 2007.

[7] J. Londõno, “Embedding Games: Distributed Resource Management with
Selfish Users,” Ph.D Thesis, Boston University, Boston, MA,May 2010.

[8] MAWI Working Group, “Traffic archive,” 2009. [Online]. Available:
http://tracer.csl.sony.co.jp/mawi/

[9] J. Londõno, A. Bestavros, and N. Laoutaris, “Trade & Cap: A Customer-
Managed, Market-Based System for Trading Bandwidth Allowances at a
Shared Link,” inNetEcon’10, Vancouver, Canada, Oct. 2010.

APPENDIX

PROOF OFTHEOREM 1

Proof: Define the following function:

Φ =
n

∑

i=1

T
∑

j=1

cij = C

T
∑

j=1

U2

j

wheren is the number of users andT the number of time-
slots. When a player makes a cost-reducing move,∆ci < 0,

∑

j

(

a′
ijU

′
j − aijUj

)

< 0 (2)

wherea′
ij , U ′

j denote the user allocation and the total utiliza-
tion after the execution of the move. Notice that for any other
playerk 6= i, its utilization of intervalj does not change, but
the change in the total utilization affects its cost as follows

∆ck =
∑

j

akj(U
′
j − Uj)

Adding the changes of the players other thani

∑

k 6=i

∆ck =
∑

k 6=i





∑

j

akj(U
′
j − Uj)





=
∑

j



(U ′
j − Uj)

∑

k 6=i

akj





=
1

C

∑

j



(a′
ij − aij)

∑

k 6=i

akj



 (3)

where the last step uses the fact thatU ′
j −Uj = 1

C
(a′

ij − aij)
because players other thani did not change their allocations.
The atomicity of the components implies that the vector
(a′

ij , . . .) is a permutation of the elements of the vector
(aij , . . .), therefore

∑

j a′2
ij =

∑

j a2

ij . Then expression (2)
can be re-arranged as follows

∑

j

(

a′
ijU

′
j − aijUj

)

=
∑

j



(a′
ij − aij)

∑

k 6=i

akj



 < 0

The last expression and the fact thatC > 0 allows to conclude
that expression (3) is also negative, thus letting us conclude
that ∆Φ < 0, i.e. Φ is a strictly decreasing potential function
for the game.

http://tracer.csl.sony.co.jp/mawi/

	Introduction
	Related work

	The Multi-user Scheduling Problem
	Definitions
	Problem statement

	System architecture
	The Demand-Based Trading System
	Mechanism and Policy
	Notes about implementation

	Analytical Results
	Experimental Evaluation
	Conclusion
	References
	Appendix: Proof of Theorem 1

