
Verifiably-Safe Software-Defined Networks for CPS

Richard Skowyra Andrei Lapets Azer Bestavros Assaf Kfoury
rskowyra@bu.edu lapets@bu.edu best@bu.edu kfoury@bu.edu

Computer Science Department
Boston University

ABSTRACT
Next generation cyber-physical systems (CPS) are expected
to be deployed in domains which require scalability as well
as performance under dynamic conditions. This scale and
dynamicity will require that CPS communication networks
be programmatic (i.e., not requiring manual intervention at
any stage), but still maintain iron-clad safety guarantees.
Software-defined networking standards like OpenFlow pro-
vide a means for scalably building tailor-made network ar-
chitectures, but there is no guarantee that these systems are
safe, correct, or secure.
In this work we propose a methodology and accompanying

tools for specifying and modeling distributed systems such
that existing formal verification techniques can be trans-
parently used to analyze critical requirements and proper-
ties prior to system implementation. We demonstrate this
methodology by iteratively modeling and verifying an Open-
Flow learning switch network with respect to network cor-
rectness, network convergence, and mobility-related proper-
ties.
We posit that a design strategy based on the complemen-

tary pairing of software-defined networking and formal ver-
ification would enable the CPS community to build next-
generation systems without sacrificing the safety and relia-
bility that these systems must deliver.

Categories and Subject Descriptors
C.2.2 [Network Protocols]: Protocol Verification—cyber-
physical systems; C.2.1 [Network Architecture and De-
sign]: software-defined networking

Keywords
Software-Defined Networking, OpenFlow, formal verifica-
tion

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HiCoNS’13, April 9–11, 2013, Philadelphia, Pennsylvania, USA.
Copyright 2013 ACM 978-1-4503-1961-4/13/04 ...$15.00.

1. INTRODUCTION
As the capabilities of modern computer technology con-

tinue to improve, an increasing number of safety-critical
tasks are integrated with or replaced by automatic control
and sensing systems (e.g., self-driving cars, unmanned aerial
vehicles, mobile sensor platforms, smart-grid technologies,
GPS navigation systems, and so on). These systems are fre-
quently distributed and often must be either large-scale or
require elasticity of scale as utilization or population fluc-
tuates. Furthermore, many of these cyber-physical systems
must interoperate over very large collections of interacting
devices (possibly federated and running under multiple au-
thorities), and they must be robust enough to handle churn,
mobility, and other potentially unstable or unpredictable
conditions. In order to operate under these conditions, CPSs
will inevitably need to rely on increasingly more sophisti-
cated data and control networks while maintaining strong
safety and reliability guarantees. These requirements sug-
gest that CPS communication networks be both program-
matic (i.e., not requiring manual intervention at any stage)
[25] and flexible to changing operating conditions.

Let us consider communication networks that must link
multiple mobile end-hosts which communicate intermittently
but reliably. On a small scale these networks can be easily
built using multiplexed wireless communication like 802.11
or 802.15.4 Zigbee routers. As scale increases and it be-
comes possible that end-host mobility may span multiple
routers or access points, however, significant overhead may
be imposed by a naive attempt to maintain an updated, con-
sistent network state that tracks end-host locations. This
complexity may be compounded by the need to maintain
QoS guarantees with respect to delay, loss rate, power con-
sumption, etc. Ideally, any such communication network
for next-generation cyber-physical systems would use exist-
ing physical infrastructure, but leverage domain-specific net-
work designs and protocols to maximize these guarantees.

Recent advances in software-defined networking, specifi-
cally the OpenFlow initiative, allow precisely this flexibility
in both physical infrastructure and software [23]. OpenFlow
networks outsource routing logic to a domain-specific soft-
ware controller written by the network designer, which runs
on a remote machine (ranging from commodity hardware
to custom FPGAs) connected to each switch via a secure
channel. OpenFlow-enabled switches send unknown or un-
handled packets to this controller, which responds by in-
stalling flow-rules (next-hop rules which trigger based on
packet headers) in one or more of switches across the net-

work. Compliant switches then route data-plane packets
based on these flow rules.
OpenFlow routing hardware is supported by a number of

major equipment vendors, often requiring only a firmware
upgrade to existing, deployed routers [2]. OpenFlow has
been used to implement a wide variety of network tools
and protocols, including routing circuit-switch and packet-
switched traffic over the same switch [10], wave-length path
control in optical networks [21], in-network load balancers
[26], wireless sensor networks [22], and wireless mesh net-
works [11].
While OpenFlow provides a powerful means for specify-

ing control-plane logic and protocols, the resulting networks
may not satisfy necessary safety conditions and QoS guar-
antees. In addition, controllers may contain not only im-
plementation errors, but also critical design and logic flaws
arising from insufficient or incorrect domain knowledge on
the part of the designer, unexpected concurrency issues, mis-
placed assumptions about the operating environment, etc.
These flaws could be extremely damaging if not detected
before system deployment, especially in applications like ve-
hicular control networks.
Fortunately, existing formal analysis and verification tools,

applied to a model of the proposed system design, can be
used to determine in a semi-automated manner that dis-
tributed systems built using OpenFlow do enforce their re-
quirements in all cases. However, these tools are often lim-
ited to checking only properties in a small set of formal log-
ics (LTL, relational calculus, process calculi, and so on).
Real-world systems often have requirements spanning many
such logics, all of which must be verified using different for-
malisms.
In this work, we present an infrastructure and associ-

ated tools for specifying and analyzing real-world, formally
disparate properties of distributed systems, without requir-
ing prior knowledge of any formal logics or languages. We
provide an example using an OpenFlow-based network of
learning switches to allow communication between mobile
end-hosts. We investigate safety, stability, and probabilistic
reliability properties, and use the result to iteratively de-
sign the system model until it verifiably satisfies all design
requirements.
The rest of this paper is organized as follows. Section 2

describes the OpenFlow standard in more detail and dis-
cusses how communication systems controlled using Open-
Flow programs may suffer from design or logical errors. Sec-
tion 3 describes how these errors can be detected and fixed
by analyzing formally specified properties of a model of the
communication system prior to implementation. Section 4
describes an infrastructure for modeling distributed systems
and automatically specifying and analyzing their properties.
Section 5 describes related work, and Section 6 concludes.

2. OpenFlow
OpenFlow [23] is an emerging routing standard for soft-

ware-defined networking that enforces a clean separation of
the data and control planes. An OpenFlow switch routes
data plane packets based on flow tables: ordered lists of rules
guarded by a pattern to be matched over a packet header.
These rules are installed by a controller, which is connected
to each switch via a secure, dedicated link. Rules, at a
minimum, can specify a port to route over, packet dropping,
and forwarding of packets to the controller. If an incoming

network packet’s header does not match any flow rule, it is
forwarded to the controller. Rules may also be set to expire
after some time or duration, and be used to gather simple
network statistics.

The OpenFlow controller is a software program running
on a machine connected to each switch by a secure, ded-
icated control plane. The controller handles packets sent
to it by OpenFlow switches and installs flow rules in the
switches’ flow tables. The functionality of the controller is
determined completely by the application that it is being
used to implement, but all controller programs must com-
municate with switches only by installing flow rules. Con-
trollers can be written in a number of languages designed
for the purpose. Popular choices include NOX/POX [16],
Beacon [14], or Maestro [8], in addition to others [1].

An OpenFlow network provides a powerful, scalable in-
frastructure that can be used to tailor networks to specific
tasks. Furthermore, all network design and planning beyond
physical connectivity can be done in software, specifically in
the design of the OpenFlow controller program. This allows
for significantly richer network processing and routing func-
tionality, but also introduces the possibility that (like any
other software program) logical or design errors could lead
to unsafe or incorrect behavior.

While network programming bugs may be tolerated in
best-effort systems or those serving non-critical needs, many
cyber-physical systems need iron-clad guarantees that a net-
work routing mission-critical information will always (or with
very high probability) meet its safety and correctness re-
quirements. OpenFlow does not provide these guarantees,
and so is not in its present form suitable for scalable net-
work design in the cyber-physical realm. We propose that
Verificare, a tool for formally verifiable distributed system
design, can be used to bridge this gap.

3. DESIGN VERIFICATION
Significant prior work has been done on formal verifica-

tion of software implementations [13]. Most of these tech-
niques rely on the existence of a specification which is by as-
sumption correct. The implemented software is then checked
against this specification using formal techniques: the cor-
rect behavior of software is defined to be behavior which
conforms to the software’s specification, and bugs are de-
fined as behaviors diverging from the specification.

However, as specifications (or languages for defining speci-
fications) become more complex, another kind of correctness
should be considered: how can a designer have confidence
that the specification (or collection of specifications in multi-
ple models) he defines is an accurate reflection of his intuitive
and practical expectations regarding the correct behavior of
the software? In particular, we are interested in some con-
firmation, from the perspective of a specification’s designer,
that the specification of a system correctly captures the be-
havior and requirements that the designer believes that it
possesses. This is non-trivial, as there is no a priori correct-
ness criterion against which a specification can be checked.

We address this issue by proposing that a specification
should be constructed from a collection of formally modeled
invariants, scenarios, and environments that are accompa-
nied by familiar descriptions that a designer will recognize
and understand within the context of the system’s domain.
On the back end, each invariant, scenario, or environment
could potentially be represented in a distinct underlying

1. bind source address to source switch and port

2. if destination address is known:

install fowarding rule to egress port for destination

3. if destination address is unknown:

install forwarding rule to flood packets on all ports except
source port

Figure 1: OpenFlow learning switch controller logic.

model or specification language that is appropriate for it.
For example, the specification for a distributed file system
which guarantees some level of availability could be con-
structed from a set of intuitive properties describing high-
level notions of reliability; each intuitive property may map
to multiple underlying specifications governing network be-
havior, data consistency, and data integrity.
We concentrate on the formal verification of distributed

system design in the context of Verificare, a tool which
allows specifications to be modeled and formally verified
against properties chosen by the designer. This process is
fast enough to allow rapid prototyping via formal verifica-
tion, which can, for example, be used to iteratively model a
specification as counter-examples to correctness claims are
found.
Using the Verificare tool, it is possible to leverage Open-

Flow’s scalability without sacrificing confidence in the re-
sulting system’s safety and correctness. As an example ap-
plication, we will model a network of OpenFlow learning
switches, verify its key requirements, and demonstrate how
this process can be used for rapid, iterative development of
the specification. We chose to model a learning switch net-
work because it is a well-known mobility solution that has a
number of practical applications and deployment strategies,
as well as a number of desirable properties which may be
required to hold during its operation.

3.1 A Learning Switch Network
A learning switch is one that forms a routing table by

binding the source address of network packets to the port on
which those packets arrived. A network of these switches can
be used to implement a communications network for mobile
nodes such as autonomous mobile robots, warehouse floor
staff, or mobile sensor platforms. As nodes move between
locations, they connect to the network on different ports
of different switches. These may, for example, be 802.11
wireless access points, 802.15.4 Zigbee routers, etc.
In order to ensure consistent network state, an OpenFlow

controller maintains a network-wide routing table which it
uses to install switch-specific packet forwarding rules. Open-
Flow switches forward packets that don’t match any for-
warding rule to the switch, which records the packet’s ori-
gin and installs a forwarding rule to describe its next hop
(either to a specific switch port, or flooding to all switch
ports but the origin). Specifically, the OpenFlow controller
utilizes the logic in Figure 3.1 whenever it receives a packet
sent to it by a switch.
In a traditional learning switch, every incoming network

packet is sent to the controller, ensuring that the network
state is as up-to-date as the last packet arrival. This min-
imizes the number of forwarding rules in the switch at any
time, but can cause significant latency as all packets are
forwarded to the controller for processing. In our exam-

ple application, more forwarding rules are used to minimize
the number of packets which must be sent to the controller
without impacting the consistency of the logical and physi-
cal network states. Other designs are certainly possible, and
in fact Verificare could be used to explore their tradeoffs in
detail.

Our example network has the topology shown in Figure
2. Every switch has a dedicated channel to the OpenFlow
controller, a bidirectional link to another switch, and four
ports available for nodes to connect on. Nodes are mobile
end-hosts which connect to the network on a switch port for
some time, send and receive messages with other nodes, then
disconnect for some time before reconnecting elsewhere.

While the example network is small compared to most
real-world implementations, significant empirical evidence
suggests that most violations of specified properties can be
detected using a small scale model [3]. This approach of
checking a scoped version of a model is standard in model-
checking and related verification paradigms. By necessity
the approach is not complete, so un-detected counterexam-
ples may exist. The approach is sound, however, guaran-
teeing that any counter-example to a property found by the
system will indeed violate that property.

The requirements that we will verify for this model are as
follows.

1. no-forwarding-loops: Any packet that enters the net-
work will eventually exit the network.

2. no-blackholes: Any packet that is sent will eventually
be received.

3. stable-correct-receiver : If all nodes cease being mobile,
eventually all packets that are received will be received
by the intended recipient.

4. stable-no-floods: If all nodes cease being mobile, even-
tually no more packets will be flooded.

5. bounded-loss-rate: The expected packet loss rate of
mobile nodes is below a specified bound.

The first two properties represent invariant safety and cor-
rectness requirements for the network: packets cannot be
routed in infinite cycles or lost within the network. The
third and fourth properties represent network convergence
properties: once nodes remain stationary, the actual and
perceived (by the controller) locations of each node will cor-
rectly converge. The final property represents a probabilistic
expectation about loss rate in the face of node mobility. Note
that we could also reason about the probability of specific
loss rates (i.e., that the loss rate is below a specified bound
with some probability) using the same formalisms discussed
below.

3.2 Formalizing Requirements
In order to verify the properties expressed above, it is

necessary to represent them as formulas in a formal logic
that makes it possible to automatically and provably solve
them over the domain of possible models. Specifically, in
order to specify correct behavior of systems (or any set of
defined algorithms), it is first necessary to define a collec-
tion of mathematical objects M that corresponds to the set
of possible systems S, as well as a mapping f : S → M
from individual systems s ∈ S to objects m ∈ M. It is

����������

�
	

�

�
�

Figure 2: Learning switch network topology.

then necessary to establish some formal logical system F , or
formalism, that is sufficiently rich to express properties of
objects in S. Together (f,M,F) form one model space of
the set of systems.
Given (f,M,F), it is possible to formally state what it

means for a system to satisfy a property: a system s ∈ S
satisfies some property ϕ iff it can be proven (either analyti-
cally or using a brute-force state space search) in the chosen
formalism F that f(s) ∈ M satisfies a logical formula ϕ
expressed in that formalism:

s satisfies requirement ϕ ⇐⇒ ϕ(f(s)) ∈ F

However, adopting only one set of objects M and one for-
malism governing M that is sufficiently powerful to express
all possible protocol properties is usually impractical. If
some object f(s) ∈ M captured all possible aspects of a sys-
tem s ∈ S, determining whether that object satisfies some
property may be intractable or undecidable.
A more tractable approach is to choose several differ-

ent model spaces (f1,M1,F1), ..., (fk,Mk,Fk) for systems,
such that each model space can capture only some of the
relevant properties of a system, and such that there exists
a tractable or efficient algorithm for checking each property
in its corresponding formalism.
In this work we consider two formalisms for describing

properties of modeled systems: Linear Temporal Logic (LTL)
and Probabilistic Computation Tree Logic (PCTL*) [5].
PCTL* formulas are logical statements governing proba-
bilistic automata like discrete and continuous-time Markov
chains; furthermore, these logical statements can contain
probabilistic quantifiers. Assuming that there exists a map-
ping that can faithfully convert a protocol definition into a
corresponding probabilistic automaton, it is then possible to
construct a logical formula stating that the automaton (and
thus, the protocol) satisfy, e.g., a certain expected packet
loss rate.
LTL is a particular subset of PCTL*; LTL formulas are

capable of expressing temporal properties about the exis-
tence of a state or set of states on the model which are of
interest. For example, if there is a mapping that can faith-
fully convert a protocol definition into a Büchi automaton,
then we can construct a logical formula stating that the au-
tomaton satisfies a property that will eventually (in some
future state) always be true (over all states following it).
The first four properties defined above, no-forwarding-

loops, no-blackholes, stable-correct-receiver, and stable-no-
floods, are expressible as LTL formulas over a predicate
which is true if and only if the corresponding model state
is enabled. The final property, bounded-loss-rate, can be ex-
pressed in PCTL* using probabilistic quantifiers over the

Figure 3: Verificare tool overview.

stationary distribution of the model represented as a
Continuous-Time Markov Chain (CTMC).

We should note that in practice, checking that a given
model of a system satisfies one or more properties usually
amounts to an exhaustive search of a pruned state space.
Individual states represent snapshots of the model in oper-
ation, and transitions represent valid ways in which a state
can progress. Such an approach to checking properties is
employed in other application domains, such as hardware
processor design [6].

4. VERIFICARE
In this section, we describe how the critical requirements

(described in Section 3.1) for a network of learning switches
can be formally verified under multiple calculi using the Ver-
ificare tool. A key design principle of Verificare is rapid
prototyping of a distributed system specification prior to its
implementation. The tool consists of three related compo-
nents, diagrammed in Figure 3.

• Verificare Modeling Language (VML): VML is
a lightweight modeling language designed to permit
rapid, iterative development of specifications. It is dis-
cussed in detail in Section 4.1.

• Formal Requirement Libraries: Verificare includes
libraries of formal requirements which can be auto-
matically bound to user-created VML code. These li-
braries are used to separate model development from
requirement specification, and are described further in
Section 4.3.

• VML Translator: Verificare offloads model verifica-
tion to off-the-shelf verification engines using imple-
mented translators to and from VML and tool-specific
languages. These translators enable properties in a va-
riety of logics to be checked, even if no individual tool
supports all of the logics being used. Translation is
discussed further in Sections 4.3 and 4.4.

In order to analyze a system under development, a de-
signer uses VML to model relevant aspects of that system.
Properties and requirements to be checked are selected from
the formal requirement libraries and optionally augmented
with user-defined requirements. The combined model and
requirement specification is translated automatically to one
or more backend verification engines; the output is then pre-
sented to the user as statements about the VML model.

By way of example, we first model an initial, naive version
of the learning switch network in VML. We then describe
how the properties to be verified are added to the model, and

1 send(
2 int link=0,
3 set<host> dest=self.links[0],
4 msgtype(a,b,...)
5)
6
7 recv(
8 link=all,
9 msgtype(var1, var2,...),
10 mfields=’m’
11)

Figure 4: VML send and receive primitives.

iteratively analyze and update the model until all necessary
properties verifiably hold.

4.1 VML
Before modeling the network of learning switches, it is

necessary to briefly introduce the Verificare Modeling Lan-
guage, VML. VML is a specification modeling language in-
spired by Promela [17], Alloy [18], and Python. It is designed
to capture sketches of specifications of distributed systems,
and to abstract away implementation details in order to an-
alyze architectural and design-specific properties.
VML supports typed sequences, sets, and dictionaries, in

addition to integers and boolean values. In addition to ba-
sic indexing, insertion, and removal from these datastruc-
tures, VML allows simple containment checks, mapping of
VML statements over sequences and sets, and comprehen-
sions over sets. A non-deterministic pick primitive is also
provided for sets, which allows a comprehension whose max-
imum size is bounded by the user. These features allow sim-
ple declarative reasoning about systems abstracted from im-
plementation details, as is seen in the learning switch model.
In order to permit formal analysis of concurrency-related

properties, control structures in VML are based on Dijk-
stra’s Guarded Command Language [12]. VML supports if
and do structures, each of which consists of a sequence of
predicates guarding execution of a sequence of VML state-
ments. If at any point multiple guards are true, the selection
of which code block to execute is made non-deterministically.

4.1.1 The Network Abstraction
In addition to the features described above, VML provides

a configurable network abstraction to simplify the model-
ing of distributed systems. Under this abstraction, a VML
model consists of uniquely identified, independent, concur-
rent hosts communicating over a network. Each host has its
own internal variable scope, state, and control logic.
Each host has a sequence, links, of sets of hosts, which

denotes one or more links to the network over which some
subset of other hosts are reachable. Messages sent over links
are user-defined tuples prefixed with a message type.
Message sending is provided via the built-in send primi-

tive in Figure 4.1.1, which sends a message to a (possibly
empty) set of hosts over a specified link. If a host is not
reachable over the specified link, it will not receive the mes-
sage. The dest parameter may be any expression which
evaluates to a set of hosts, such as a set comprehension.
This allows simple reasoning about unicast (single hosts),
multicast (set comprehensions) and broadcast (all hosts on
the link) communication without needing separate imple-
mentations of each message-passing paradigm. If left empty,

1 host opf_Controller():
2 dict<hid><dict<hid><int>> routes
3 loop true:
4 recv(msg(saddr, daddr, sp)):
5 all {switch | switch in routes.keys()}:
6 if:
7 (switch == m.src): #Bind source addr to source port
8 routes[switch][saddr]=sp
9 (switch != m.src): #Bind source addr to source switch
10 routes[switch][saddr]=routes[switch][m.src]
11 ?(!(daddr in routes[m.src].keys())):
12 routes[m.src][daddr]=-1
13 send(dest=sw_id, forwarding_rule(sp, saddr, daddr,
14 routes[switch][daddr])
15 send(dest=sw_iditch, msg(saddr, daddr))

Figure 5: Learning switch controller (naive model).

send’s link and dest parameters default to a host’s first link
and all hosts reachable via that link, respectively.

Messages are received using the recv primitive in Fig-
ure 4.1.1, which receives messages over one or more links.
If messages are waiting on multiple links, the selection is
made non-deterministically. By default, recv receives mes-
sages over all inks. The message type parameter imposes
a criterion that only a message of type msgtype will be re-
ceived; other messages waiting in the receiver will not trigger
this statement.

The message must have as many tuple elements, with each
of a matching type, as variables specified in the recv state-
ment. After execution, each specified variable will contain
the value of that message tuple field. Variables may be sin-
gletons, sets, or sequences. In the case of sequences, the
length of the receiving sequence must be at least equal to
the length of the sequence sent via the message. The op-
tional mfields parameter provides a string to use as a prefix
when accessing implicit message variables (such as the link
a message arrived over).

4.2 A Learning Switch Network in VML
Recall that an Openflow network consists of three compo-

nents: the controller, network switches which route packets
based on flow tables, and end-hosts which send and receive
packets. Our initial modeling attempt will specify a net-
work of switches with flow tables, mobile end-hosts, and a
controller with a standard learning switch functionality.

The learning switch network relies on bi-directional con-
nections between ports, of which switches have several and
end-hosts have one. This can easily be represented in the
network abstraction by making each element of a host’s
links sequence correspond to a single port, restricting the
size of the corresponding set of hosts per link to one, and
ensuring mutual inclusion in two connected hosts’ links se-
quences. Section 4.2.3, which models mobile end hosts, cov-
ers the process in detail. Similar syntax is used to set up
the static topology shown in Figure 2 as the network’s initial
state.

4.2.1 The Openflow Controller
The naive VMLmodel of an Openflow learning switch con-

troller is presented in Figure 5. The routes datastructure
provides a mapping of (switch id, destination address) 7→
port, and allows the controller to look up the egress port
from a switch to a destination address.

The remaining VML code is the controller’s event han-
dling loop. In lines 6-11, the controller updates its knowl-

1 host opf_Switch():
2 seq<pair<(int, int, int)><int>> flow_table
3 int match=-2
4 int saddr, daddr, p
5 loop true:
6 if:
7 (len(self.links[0]) == 0):
8 if:
9 recv(msg(saddr, daddr)):
10 for rule in flow_table:
11 if:
12 ((m.link, saddr, daddr)==rule.first):
13 match=rule.second
14 break
15 if:
16 (match>-2):
17 if:
18 (match > -1]):
19 send(link=match, msg(saddr, daddr))
20 (match ==-1):
21 all {port | port in self.links
22 && port != 0
23 && len(links[port])}:
24 send(link=port, msg(saddr, daddr))
25 else:
26 send(link=0, msg(saddr, daddr, m.link))
27 else: skip
28 else:
29 recv(link=0, msg(sp, saddr, daddr)):
30 for rule in flow_table:
31 if:
32 ((sp, saddr, daddr)==rule.first):
33 match=rule.second
34 break
35 send(link=match, msg(saddr, daddr))
36 recv(link=0,
37 forwarding_rule(sp, saddr, daddr, dp)
38):
39 flow_table.insert(
40 0, pair((sp, saddr, daddr), dp)
41)

Figure 6: VML model of an Openflow switch.

edge of the origin’s current switch and port. The route is
set to the source port in the case of the originating switch,
or to the originating switch in the case of other switches.
At line 11, the controller checks the message destination

against its network state. If the destination has been seen
before, it instructs the switch to install the appropriate for-
warding rule, which maps a network address to a port. If
the destination has not been seen before, it sets the desti-
nation port to -1, which is interpreted by the switch as a
flood. It then re-sends the packet to the querying switch for
re-transmission.

4.2.2 The Openflow Switch
Openflow switches have no intelligence beyond the ability

to match packet header fields against a table of forwarding
rules and to contact the controller if a packet does not match
any rule. For the purposes of this application, we modeled
these forwarding rules as tuples of the form (source port,
sender address, destination address). This ensures that a
packet will be sent to the controller when the destination
is unknown, or when the sender’s current location (i.e., the
specific binding of switch, source address, and port) is not al-
ready known to the controller. Responses from the controller
are a forwarding rule that either specifies an output port or

1 host end_host():
2 hid switch
3 int port
4 loop true:
5 if:
6 (len(self.links[0])):
7 if:
8 recv(msg(saddr, daddr)): drop
9 true:
10 daddr = pick 1 {n | n in _hosts
11 && n is end_host }
12 send(msg(self.id, daddr))
13 true:
14 open_ports[switch].add(port)
15 _hosts[switch].links[port].remove(self.id)
16 self.links[0].remove(switch)
17 else:
18 switch = pick 1 {s | s in open_ports.keys()
19 && len(open_ports[s])}
20 port = pick 1 {p | p in open_ports[switch]}
21 open_ports[switch].remove[port]
22 _hosts[switch].links[port].add(self.id)
23 self.links[0].add(switch)

Figure 7: VML model of a mobile end-host.

a flood instruction. Figure 6 presents the VML model of an
Openflow switch.

Lines 8-27 model normal packet routing. The Openflow
standards do not, to the authors’ knowledge, explicitly state
that packets arriving from the controller should be dealt
with prior to packets arriving over normal links. We mod-
eled it as such since the alternative allows, for example, in-
definite delays on the installation of forwarding rules. The
flow table is modeled as a sequence of tuples mapping to
switch egress ports. This is an ordered ranking, which uses
the for operator to iterate over the sequence by index or-
der. The first rule which matches the packet’s header tuple
is triggered.

Lines 28-41 handle messages received from the controller.
These are either forwarding rules, or forwarded packets that
are re-sent after the installation of a forwarding rule.

4.2.3 The End-Host
End hosts are modeled as hosts that send and receive mes-

sages while connected to the network. Mobility is formal-
ized by the ability to non-deterministically disconnect and
to later reconnect on any open port. The end host VML
model is presented in Figure 7.

Lines 7-12 handle message reception and sending. Lines
13-23 handle disconnection and re-connection, which con-
sists of out-of-band adjustments to the network abstraction
and a global open_ports dictionary tracking available ports.
The semantics of the send function ensure that adding or
removing an identifier to an element of a host’s links se-
quence enables or disables the ability to send to that host.
During the connection procedure, an end-host adds itself to
the switch’s link in order to receive messages, and adds the
switch to its own link in order to send messages.

4.3 Specifying and Verifying Properties
In Verificare, properties to be formally verified are usu-

ally selected from a domain-specific library and not devel-
oped by the system designer. As distributed systems often
cover multiple domains of expertise, it is unreasonable to as-
sume that all systems designers will be well-versed in both

�
�

�
�

�
�

�
�

����	�

�	

�

� �

Figure 8: Modeled network topology.

Node Controller S0 S1

N0 S1 2 1 2
N1 S0 4 - -

Figure 9: Forwarding loop network routing state.

the subtleties of relevant domains and the formal expression
of those domains’ traits. Furthermore, many critical prop-
erties (such as network connectivity, black-holes, etc.) are
shared over many systems in the same domain. These can
be formalized once and re-used many times.

1 host opf_Controller():
2 dict<hid><set<int>> end_host_ports
3 ...
4 loop true:
5 recv(msg(saddr, daddr, sp)):
6 if:
7 (sp in end_host_ports[m.src]):
8 ...
9 else: skip

Figure 10: Modified OpenFlow controller.

Properties are stored in libraries in two forms: as a high-
level English-language statement, and as low-level formulas
capturing that statement in one or more logics. While logical
formulas are themselves general, the predicates and atoms
used in a formula must be instantiated on a per-model ba-
sis. Network-related properties that consist entirely of state-
ments about the state of the network abstraction and mes-
sages traversing it can be instantiated automatically. Others
must be manually instantiated, with user-defined predicates
to test relevant states and variables to bind as atoms.
The network safety properties no-forwarding-loops and

no-blackholes can both be automatically instantiated, as
they pertain only to the state of the network. The network
convergence properties stable-no-floods and stable-correct-
receiver primarily requires the user to label the relevant
guarded code blocks and define a predicate to check the
node identifier and destination address, respectively.
The network reliability property bounded-loss-rate requires

the user to provide additional information, as explained in
Section 4.4.2.
Once properties are selected and instantiated, the VML

model is translated to one or more back-end verification
engines using standard compiler implementation techniques
[4]. These can range from single algorithms (e.g., non-interfe-
rence checking) to off-the-shelf tools like Spin [17], Alloy [18],
PRISM [20], and ProVerif [7]; the only requirement is that a

1. N0 sends (N0, N1).

2. S0 gets (N0, N1) on port 3, sends it to the controller.

3. The controller binds N0 to port 3 on S0.

4. The controller instructs S0 to flood the message.

5. S0 sends (N0, N1) to port 1.

6. S1 gets (N0,N1) on port 2, sends it to the controller.

7. The controller binds N0 to port 2 on S1.

8. N1 sends (N1, N0).

9. S0 gets (N1, N0) on port 4, sends it to the controller.

10. The controller installs (N0 → 1) on S0.

11. The controller re-sends the packet.

12. S0 gets (N1,N0) from the controller, forwards it to port 1.

13. S1 gets (N1, N0) on port 2 sends it to the controller.

14. The controller installs (N0 → 2) on S1.

15. S0 gets (N1, N0) from port 1,forwards it to port 1.

16. S1 gets (N1, N0) on port 2, forwards it to port 2.

Figure 11: Execution trace for counter-example to
no-forwarding-loops.

VML translator for the tool has been written.1 Only prop-
erties that are checkable under that engine’s formalism will
be compiled along with the model. This may impose con-
straints on the order in which the user-selected properties
can be checked. Packet loss ratios due to mobility, for ex-
ample, should only be checked once it has been established
that packets will not be lost when nodes are stationary.

4.4 Model Analysis
In this section, we analyze the naive model of a learning

switch network with respect to the network safety and relia-
bility properties defined above. The network safety proper-
ties are verified using the Spin model checker, which checks
properties expressible in LTL (or more generally, any ω-
regular property) via state-space search over a Büchi au-
tomaton. The network reliability properties are analyzed
using PRISM, which performs probabilistic analysis of the
system (modeled as a Continuous-Time Markov Chain) us-
ing user-specified transition rates. Note that these tools are
property-specific, and are not a part of Verificare per se.
Rather, the VML translator allows these tools to be treated
as plugins to the system.

4.4.1 Network Safety and Convergence
The no-blackholes, no-forwarding-loops, stable-no-floods

and stable-correct receiver properties were verified by trans-
lating the VML model to Promela, the modeling language
used by the Spin model checker. Spin found a counter-
example to the no-forwarding-loop property based on the
naive controllers’ mechanism for updating its routing table.
In the following example, nodes are denoted using Ni and
switches are denoted using Si. Tuples denote a message sent
from the first address to the second. The initial network
state is as depicted in Figure 8. While the complete verifi-
cation trace shown in Figure 11 is lengthy, relevant steps in
the counter-example trace are as follows.

The final routing state is shown in Figure 9. The con-
troller has bound N0 to port 2 of S1, which has resulted in
flow rules that bind N0 to port 1 on S0 and port 2 on S1.
These rules will bounce a message for N0 back and forth

1Translators for Spin and PRISM are currently under devel-
opment. Others will be implemented in future work.

indefinitely. Note that this is also a violation of the no-
blackholes property, as the message will never be received
by the destination on port 3 of S0. The root of the prob-
lem is in using a naive learning switch controller to man-
age multiple switches. Ports are expected to originate only
traffic directly from nodes, not traffic forwarded from other
switches. We introduced a new datastructure in the con-
troller, end_host_ports, to track this distinction. The rel-
evant portion of the modified controller is shown in Figure
10, in which a containment check within the sending switch’s
set of node ports is used as a guard over the route updating
procedure.
After modifying the model to account for end-host ports,

re-verification finds no counter-examples to network safety
properties. A counter-example to stable-no-floods is found,
however. Since rules never expire in the current model, a
flood rule once installed will never be updated. Adding an
expiration time (modeled as a non-deterministic option to
expire) to flood rules and re-verifying the model now returns
no counter-examples to the checked properties.

4.4.2 Network Reliability
Once network safety and convergence properties are ver-

ified, it is possible to analyze network reliability and per-
formance with respect to average packet loss rates. Ver-
ificare currently uses PRISM to analyze such properties,
as it can perform probabilistic analysis of Markovian pro-
cesses. In this case, the system will be represented as a
continuous-time Markov chain. Since transition rates are
used to probabilistically change state and time, the VML
translator requires guarded code blocks to be labeled with
transition rates by the user. If a guard is not labeled, it
is assumed to have a transition rate of 1. This allows the
user to choose to only label guards that are relevant to the
property under analysis.
For this example we chose to model packet loss rate only

as a factor of mobility (the rate at which nodes join and
leave) and send rate. Other potential factors could also be
considered with minimal changes to the model, such as the
rate at which forwarding rules expire, etc. The user would
only have to assign rates the the respective guarded code
blocks.
Given the structure of the VML model, mobility is mod-

eled as two rates: a leave rate which models the frequency of
disconnections, and a join rate which models the frequency
of re-connections. This can be thought of as the rate at
which nodes pass through service areas of access points and
the amount of time to associate with the next access point,
for example. The chart in Figure 12 uses a static join rate of
2, with leave and send rates as shown in the figure. In this
analysis Verificare utilizes PRISM’s capability to perform
multiple verification runs using different parameter settings
and to track the results.

5. RELATED WORK
We are unaware of any work wholly comparable to Ver-

ificare, but a number research communities intersect with
specific aspects of the tool and its use. In this section, we
compare relevant aspects of our work to work on provably
safe and verifiable OpenFlow controllers, formal verification
systems, and related work in the field of cyber-physical sys-
tems.

Figure 12: Packet Loss Rate

5.1 OpenFlow
In 2008, McKeown et al. proposed the OpenFlow stan-

dard [23]. A significant community in both industry and
academia has since grown around this standard, including a
number of researchers seeking to add provable or verifiable
guarantees to OpenFlow controller programs.

Frenetic [15] is a declarative network programming lan-
guage designed to allow safe programming of OpenFlow con-
trollers. Frenetic provides a query abstraction that allows
provably safe composition of controller functions, as well as
modular controller design.

NICE [9] is a model checker specifically designed for Open-
Flow controllers. It provides a library of common proper-
ties to be checked, and can analyze NOX [16] source code
directly. NICE integrates symbolic execution with model
checking to dramatically reduce the size of the state space to
be searched by identifying equivalences among packet types.

Reitblatt et al. provide several formally verified consistent
network update abstractions [24]. The authors define no-
tions of per-packet and per-flow consistency, both at a high
level and with respect to a mathematical network model
presented in the paper. They define verifiable notions of
trace invariants that allow model-checking of both notions
of consistency.

Flog [19] is a logic-programming language that allows Open-
Flow controller programs to be developed rapidly and in
only a few lines of code. Flog breaks controllers into a flow-
identification phase that specifies flows of interest, an infor-
mation processing phase based on exhaustive triggering of
inference rules, and a policy generation phase that generates
forwarding rules to be installed on one or more switches.

5.2 Formal Verification
A key strength of Verificare is in the integration of off-

the-shelf engines for formal verification of models. These
verification tools each have a modeling language, property
specification language, and formal system allowing auto-
matic checking of properties over the model. Each tool ex-
cels at checking those properties which are capable of being
expressed in its specification language.

The SPIN model checker [17] is designed to analyze con-
current processes communicating over channels. Models are
written in Promela, which is a C-like language supporting
non-determinism and providing a channel abstraction for
modeling of inter-process communication. Properties are
written in Linear Temporal Logic (LTL) or as never-claims,
which are capable of expressing any ω-regular property. Spin
translates the model and properties into Büchi automata,
which are synchronously composed. The composed automa-
ton’s state space is then exhaustively searched for an in-
stance that constitutes a reachable counter-example.

Alloy [18] is a declarative modeling and specification lan-

guage based on first-order logic, relational algebra, and set
theory. Models and properties to be checked are not distinct
in Alloy; properties are constraints over the space of model
instances. Verification is done by translation of a scoped
model to a Boolean formula, which is then passed to a SAT
solver for satisfiability testing.
PRISM [20] is a verification tool that analyzes models

written in a guarded-command language based in part on
earlier languages [12]. Models correspond to probabilistic
automata. Properties to be checked are written in Prob-
abilistic Computation Tree Logic (PCTL*), which includes
probabilistic and temporal quantifiers. PRISM also supports
reward-based property verification, in which states and tran-
sitions can be labeled with rewards that are incremented
whenever that state or transition is reached. PRISM has
both model-checking (for qualitative verification of models)
and numeric computation (for quantitative verification of
models) libraries.
ProVerif [7] is a tool for analyzing cryptographic security

properties of protocols. ProVerif models are represented as
Horn clauses and verified using logical resolution. Check-
able properties include reachability of defined states, obser-
vational equivalence of models, and correspondence.

6. CONCLUSIONS
In this work, we presented Verificare, a design and mod-

eling tool for distributed systems. Verificare allows for real-
world system properties from multiple domains to be verified
against a system model or countered with example execution
traces highlighting a property violation.
We also argued that Verificare can be used to bridge the

gap between software-defined networking and QoS, safety, or
reliability guarantees. This indicates a viable design method-
ology for the construction of scalable, verifiable communica-
tion networks for cyber-physical systems. We provided an
example of this methodology in the form of an OpenFlow
learning switch network. The system was modeled in Verifi-
care, and network safety, convergence, and reliability prop-
erties were analyzed. Counter-examples to these properties
were used to iteratively refine the system’s design until all
requirements were satisfied.

Acknowledgement: NSF CISE CNS Award 1239021
and NSF CISE CNS Award 1012798

7. REFERENCES
[1] Openflow components, 2011.

[2] Open networking foundation members, 2012.

[3] A. Andoni, D. Daniliuc, S. Khurshid, and D. Marinov.
Evaluating the “small scope hypothesis”. Unpublished,
2003.

[4] A. W. Appel. Modern Compiler Implementation in C:
Basic Techniques. Cambridge University Press, New
York, NY, USA, 1997.

[5] C. Baier. On algorithmic verification methods for
probabilistic systems. Habilitation thesis, Fakultät für
Mathematik & Informatik, Universität Mannheim,
1998.

[6] S. Berezin, E. Clarke, A. Biere, and Y. Zhu.
Verification of out-of-order processor designs using
model checking and a light-weight completion

function. Form. Methods Syst. Des., 20(2):159–186,
Mar. 2002.

[7] B. Blanchet. Proverif automatic cryptographic
protocol verifier user manual. CNRS, Departement
dInformatique, Ecole Normale Superieure, Paris, 2005.

[8] Z. Cai, A. Cox, and T. Maestro. A system for scalable
openflow control. Technical report, Technical Report
TR10-08, Rice University, 2010.

[9] M. Canini, D. Venzano, P. Peresini, D. Kostic, and
J. Rexford. A NICE way to test OpenFlow
applications. In NSDI, 2012.

[10] S. Das, G. Parulkar, N. McKeown, P. Singh,
D. Getachew, and L. Ong. Packet and circuit network
convergence with openflow. In Optical Fiber
Communication (OFC), collocated National Fiber
Optic Engineers Conference, 2010 Conference on
(OFC/NFOEC), pages 1–3. IEEE, 2010.

[11] P. Dely, A. Kassler, and N. Bayer. Openflow for
wireless mesh networks. In Computer Communications
and Networks (ICCCN), 2011 Proceedings of 20th
International Conference on, pages 1–6. IEEE, 2011.

[12] E. Dijkstra. Guarded commands, nondeterminacy and
formal derivation of programs. Communications of the
ACM, 18(8):453–457, 1975.

[13] V. D’Silva, D. Kroening, and G. Weissenbacher. A
survey of automated techniques for formal software
verification. Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on,
27(7):1165–1178, 2008.

[14] D. Erickson. Beacon, 2012.

[15] N. Foster, R. Harrison, and M. Freedman. Frenetic: A
network programming language. ACM SIGPLAN
Notices, 46(9):279–291, 2011.

[16] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado,
N. McKeown, and S. Shenker. Nox: towards an
operating system for networks. ACM SIGCOMM
Computer Communication Review, 38(3):105–110,
2008.

[17] G. Holzmann. The SPIN Model Checker: Primer and
Reference Manual. Addison-Wesley, Boston, 2005.

[18] D. Jackson. Alloy: a lightweight object modelling
notation. ACM Transactions on Software Engineering
and Methodology, 11(2):256–290, Apr. 2002.

[19] N. P. Katta, J. Rexford, and D. Walker. Logic
Programming for Software-Defined Networks. In
XLDI, number 1, 2012.

[20] M. Kwiatkowska, G. Norman, and D. Parker. PRISM
4.0: Verification of Probabilistic Real-time Systems. In
23rd International Conference on Computer Aided
Verification, pages 585–591. Springer, 2011.

[21] L. Liu, T. Tsuritani, I. Morita, H. Guo, and J. Wu.
Openflow-based wavelength path control in
transparent optical networks: a proof-of-concept
demonstration. In Optical Communication (ECOC),
2011 37th European Conference and Exhibition on,
pages 1–3. IEEE, 2011.

[22] A. Mahmud and R. Rahmani. Exploitation of openflow
in wireless sensor networks. In Computer Science and
Network Technology (ICCSNT), 2011 International
Conference on, volume 1, pages 594–600. IEEE, 2011.

[23] N. McKeown, T. Anderson, H. Balakrishnan,
G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and
J. Turner. Openflow: enabling innovation in campus
networks. ACM SIGCOMM Computer
Communication Review, 38(2):69–74, 2008.

[24] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger,
and D. Walker. Abstractions for network update.
Proceedings of the ACM SIGCOMM 2012 conference
on Applications, technologies, architectures, and
protocols for computer communication - SIGCOMM
’12, page 323, 2012.

[25] V. K. Sood, D. Fischer, J. M. Eklund, and T. Brown.
Developing a communication infrastructure for the
smart grid. In Electrical Power & Energy Conference
(EPEC), 2009 IEEE, October 2009.

[26] R. Wang, D. Butnariu, and J. Rexford.
Openflow-based server load balancing gone wild. In
Proceedings of the 11th USENIX conference on Hot
topics in management of internet, cloud, and
enterprise networks and services, pages 12–12.
USENIX Association, 2011.

