
Programming Support for an Integrated Multi-Party
Computation and MapReduce Infrastructure

Nikolaj Volgushev, Andrei Lapets, Azer Bestavros
Email: {nikolaj, lapets, best}@bu.edu

CS Dept., Boston University
111 Cummington Mall
Boston, MA USA 02215

Abstract—We describe and present a prototype of
a distributed computational infrastructure and asso-
ciated high-level programming language that allow
multiple parties to leverage their own computational
resources capable of supporting MapReduce [1] oper-
ations in combination with multi-party computation
(MPC). Our architecture allows a programmer to au-
thor and compile a protocol using a uniform collec-
tion of standard constructs, even when that protocol
involves computations that take place locally within
each participant’s MapReduce cluster as well as across
all the participants using an MPC protocol. The high-
level programming language provided to the user is
accompanied by static analysis algorithms that allow
the programmer to reason about the efficiency of the
protocol before compiling and running it. We present
two example applications demonstrating how such an
infrastructure can be employed.

I. Introduction

Cloud computing makes it possible to collocate the vir-
tualized resources and data assets that belong to multiple
institutions, organizations, or agencies. Such collocation
facilitates the development of novel applications and ser-
vices that leverage very large data sets from a variety of
sources. Examples are paramount ranging from smart-city
[2], to genomics [3], to cybersecurity [4] applications.

A major hurdle in truly unleashing the potential of big-
data analytics is the justified concern related to propri-
etary data sets. Thus, while feasible in a collocated setting,
the development of a number of big-data applications of
tremendous benefit to individual organizations and/or to
society at large remain elusive. Two specific examples that
we target in related projects are the use of payroll data
from multiple institutions to shed light on pay inequities
[5], [6] and the use of corporate network data to identify
global advanced persistent threats [7].

To facilitate the development of applications that lever-
age private and possibly highly-sensitive data assets from
multiple organizations or agencies, there is a need to
extend popular, scalable data analytics platforms to allow
for computation to be done without requiring constituent
organizations or agencies to share or release their data
assets. Towards that goal, secure Multi-Party Computa-
tion (MPC) is a promising approach that allows a group
of organizations (or parties) to jointly perform a desir-
able computation without having to release any of the

privately held data assets on which the computation is
to be performed. More specifically, secure MPC allows
a set of parties to compute a function over data they
individually hold (the private inputs) while ensuring that
the only information that can be gleaned is the result of
the function evaluation as opposed to the private inputs
to this function (unless such function leaks these inputs).

Secure MPC has been an active area of cryptography
research for over 30 years [8]. While incredibly powerful
(and elegant), secure MPC has remained mostly a subject
of academic interest, with significant advances made in the
last few years to bridge the theoretical underpinnings of
MPC to its applied aspects (e.g., efficient computation of
specific functions or algorithms) [9]–[13].

We approach this problem from a different perspective–
that of practical software development in a cloud setting.
Rather than focusing on efficient implementations of MPC
primitives or functionalities in isolation from prevalent
software development platforms, we focus on extending one
of the most popular cloud software development platforms
with constructs that integrate MPC into the platform’s
programming paradigm. More specifically, we extend im-
plementations of MapReduce,1 arguably the most pop-
ular cloud-based analytics programming paradigm, with
constructs that allow programmers to leverage MPC for
analytics that require access to data assets (and in general
virtualized cloud resources) that are spread out across (and
under the strict control of) multiple organizations.

Towards that end, in this paper, we propose a dis-
tributed computational infrastructure and associated high-
level programming language that allow multiple parties
to leverage their own computational resources capable of
supporting MapReduce [1] operations in combination with
multi-party computation (MPC).

Our approach to integrating the MPC and the MapRe-
duce platforms recognizes (and supports) an important
fact: Decisions related to constraints on data sharing across
institutional boundaries are orthogonal to the analytics
that needs to be done on that data. Indeed, these con-
straints may not even be known to the developers of these
analytics. Thus, the architecture we present in this paper
allows programmers to add MPC constructs to an existing

1The MapReduce programming paradigm [1] facilitates processing
of large data sets using elastic (virtualized) clusters managed using
Hadoop [14] and Apache Spark [15] systems.

MapReduce code base, which was developed without ex-
plicit specification of what part of the overall computation
will need to take place locally within each participant’s
MapReduce cluster, or across all the participants using an
MPC protocol.

Another differentiating characteristic of our approach
is the creation of a single, uniform language based on
MapReduce constructs that compiles into MPC and/or
MapReduce operations. Having such a language allows us
to use static analysis to infer (and expose to programmers)
important characteristics related to the efficiency and
performance of resulting MPC protocols. This provides
programmers with the ability to compare and contrast dif-
ferent design decisions – e.g., the implications from doing
various Map and Reduce operations in various orders, or
of using different key-value pairs, etc.2

The remainder of the paper is organized as follows.
Section II summarizes related work on MPC platforms.
Section III describes the architecture and implementation
of our integrated backend component. Section IV defines
the high-level programming language and associated static
analysis and compilation methods. Section V provides two
examples illustrating how the overall system can be used,
and Section VI concludes with a summary of our ongoing
and future work.

II. Related Work
In this section, we present a brief summary of re-

cent efforts aiming at making multi-party computation
practical and accessible to programmers.3 Current public
MPC implementations include Viff [10], Sharemind [11],
ObliVM [12], and GraphSC [13]. In contrast to the work we
present in this paper, these frameworks are concerned with
implementing MPC in isolation, i.e., without integration
into a scalable platform that admits non-MPC operations.

Viff [10] implements an asynchronous protocol for
general multi-party computation over arithmetic circuits.
The protocol is based on Shamir and pseudo random
secret sharing and provides runtimes for dishonest mi-
nority as well as active adversaries. The framework is
implemented in Python using the Twisted web framework
for asynchronous participant communication. Sharemind
[11] implements a custom secret sharing scheme and share
computing protocols over arithmetic circuits. Sharemind
is restricted to three participants, a passive adversary and
requires an honest majority. Sharemind provides a cus-
tom, C-like programming language for implementing MPC
tasks and has been deployed to implement production-
level applications for financial data analysis [16]. ObliVM
[12] supports secure two party computation and a domain-
specific language for compiling high-level programming
abstractions such as MapReduce operations to oblivious
representations of these abstractions. ObliVM implements
a garbled circuit backend but allows for the addition of

2While we do not address it in this paper, assisting programmers
with questions related to security and/or correctness of MPC proto-
cols is a separate and important concern that the use of a uniform
language makes possible.

3A comprehensive review of MPC literature and of cloud platforms
that enable scalable analytics is beyond the scope of this paper.

other MPC protocols. GraphSC [13] extends ObliVM with
an API for graph-based algorithms and adds paralleliza-
tion to the evaluation of the resulting oblivious algorithms.

III. Integrating MPC and MapReduce
Our infrastructure targets a scenario in which multiple

parties, each having their own computational infrastruc-
ture capable of performing MapReduce operations, wish
to execute a single protocol that may involve both local
computations using MapReduce and computations across
all the parties using an MPC protocol. While our pro-
totype implementation utilizes specific implementations
of MapReduce and MPC, there is no reason that differ-
ent implementations of each cannot be used in such an
infrastructure (and, in fact, it may be desirable to use
multiple implementations, as each may have its own unique
properties or performance characteristics).

The participating parties (or an external third party)
can implement the desired protocol in our high-level pro-
gramming language. The protocol is compiled into a job
specification consisting of MapReduce tasks to be executed
by each party locally, MPC tasks to be executed across
parties, and a schedule determining the task execution or-
der. Our prototype implementation provides an execution
environment for such job specifications.

We describe our prototype implementation by giving
a brief overview of the design and providing concrete im-
plementation details. We also describe an example deploy-
ment scenario for our prototype and detail how a program
implemented in our high-level language is compiled and
executed on the deployed platform.

A. Overview
Our prototype platform is comprised of two types

of components: controller nodes and worker nodes. Each
party participating in a protocol execution controls a
worker node. A worker node accesses a party’s private
data, acts as a driver for local MapReduce tasks, and
participates in MPC tasks across parties. A controller node
oversees the execution of the job. It distributes the appro-
priate tasks to each worker node, enforces a synchronized
execution of these tasks (which is critical for MPC tasks
that require the simultaneous collaboration of multiple
worker nodes), and provides a storage medium that can
be used to share public data across worker nodes.

B. Implementation Details
The controller and worker node software is imple-

mented using Python (this software is available as an AMI
on AWS). The controller node network interface is a web
server implemented in the Python Twisted Web framework
and serves content over HTTP (we plan to update the
controller to serve HTTPS content in the future).

Each worker node is equipped with a MapReduce
component, an MPC component, an interface to access
private storage, and a network interface for communicating
with the controller node. The network interface is imple-
mented as a simple web client. The MapReduce component

provides an interface for connecting to an Apache Spark
cluster and submitting tasks specified in PySpark (Spark’s
Python API). The MPC component configures a worker
node to participate in the Viff [10] MPC protocol with the
other worker nodes, and provides an interface for running
MPC tasks specified in Viff. The MapReduce and MPC
components act as integration points between our platform
and specific MapReduce and MPC implementations. We
have defined a general API for both components with the
goal of extending support to other MapReduce and MPC
backends in the future.

All communication between controller and worker
nodes is implemented as JSON messages over HTTP
(future versions of the prototype will communicate over
HTTPS). The job specification and all other configuration
objects are JSON encodings of Python class instances.

We now concretize the above details by giving an
example deployment scenario of our platform.

C. Example Deployment
Figure 1 (left) illustrates an example prototype de-

ployment. In this scenario, three parties with existing
Apache Spark infrastructures and available EC2 resources
wish to run a computation consisting of local MapReduce
operations and operations ranging across parties while pre-
serving the privacy of their data. We provide two concrete
examples of such applications in Section V. The three
parties designate a service broker as an impartial party
to administer the overall execution of the computation.

The service broker launches a controller node with
access to an S3 storage instance to serve as shared storage
to all parties. Each participating party launches a worker
node and configures it with access to a private S3 storage
instance, the master node of an Apache Spark cluster, and
the network address of the controller node.4

Upon completing the above preconfiguration steps,
each worker node automatically registers with the con-
troller node and obtains a global MPC configuration spec-
ifying the network and security parameters of all other
participating worker nodes.

D. Program Compilation
Programs specified in the high-level programming lan-

guage described in Section IV can be compiled and exe-
cuted on a configured platform. Given a high-level program
and a specification of the target backend frameworks,
the compiler produces a job specification consisting of a
collection of tasks and a task schedule. The tasks consist
of an encoding of the required MapReduce operations as
well as input and output handlers. The encoding is specific
to the target backend framework.

Figure 1 (right) illustrates an example compilation. In
this scenario the target frameworks of the compilation
are Apache Spark and Viff. The program compiles to two

4Note that these preconfiguration steps can be fully automated
given the participating parties’ AWS credentials, the network ad-
dresses of each Spark cluster, the S3 storage instances, and the
controller node.

tasks that are to execute consecutively, starting with the
MapReduce task. The MapReduce task is encoded as a
Python module implementing the required MapReduce
operations, input operations, and output operations in
Spark’s PySpark API. Similarly the MPC task is encoded
as a Python module implementing the required operations
in Viff.

A job specification produced by the compiler can be
executed on a configured platform such as the one shown in
III-C. We give a concrete example of a high-level program
and the resulting task-level encodings in Section V.

E. Job Execution
Each worker node obtains the job specification from the

controller. Note that all worker nodes receive the same job
specification (i.e., all worker nodes receive the same tasks
and task schedule).

Worker nodes execute tasks in the order specified by
the task schedule. The task schedule can include branch-
ing decisions driven by the results of previous tasks. All
branching decisions are evaluated by worker nodes locally.
In our current implementation, we restrict branching to be
based only on data that is available and identical across
all worker nodes (e.g., the result of an MPC task). Since
each MPC task requires the participation of all worker
nodes, diverging control flow could lead to a deadlock of
the system if different worker nodes attempt to execute
different MPC tasks.

Before evaluating the next local MapReduce or MPC
task, each worker node registers with the controller node
and defers task execution until all other worker nodes
have registered. This synchronization barrier ensures the
availability of all worker nodes for MPC tasks.

The evaluation of a local MapReduce task consists of
reading data from the private and/or shared key-value
store, performing the specified MapReduce operations on
it and updating the key-value stores with the result. These
operations are specified in the native language of the
MapReduce backend (i.e., in Python, using the PySpark
API in the case of Apache Spark).

The evaluation of an MPC task follows the same gen-
eral structure of reading, processing, and writing key-value
store data. Before data can be processed, however, it must
be distributed across all parties in a privacy-preserving
format. Viff (as well as many other MPC frameworks)
achieves this via secret sharing. As part of integrating Viff
with our platform we implemented methods for distribut-
ing key-value stores by broadcasting the keys (we assume
keys to be public) and secret sharing the corresponding
values across the participating parties. The data processing
steps are expressed as Map and Reduce operations. This
requires support for such operations from the MPC back-
end. In the case of Viff, which is implemented in Python
and uses operator overloading to implement arithmetic
operations over secret shared values, we were able to use
Python’s built-in functions directly.

At the end of an MPC task execution, the results
that are in the form of secret shares must be opened and

Broker

Controller

S3 Storage

S3 Storage

Worker

Bob

S3 Storage

Worker

Charlie

S3 Storage

Worker

Alice

VIFF MPC Protocol

Program

Compiler

Target
Framework

Spec.
Apache Spark,

Viff

Job Specification
MR-task
pyspark

MPC-task
Viff

Task schedule

Fig. 1. Prototype deployment scenario in a service brokerage setting (left) and compilation workflow of a high-Level program (right).

revealed to the appropriate parties. This can be specified
within a high-level protocol definition using the gather
construct, defined in Section IV. Each party broadcasts
the keys of the secret shared result values it requires. All
parties holding a share of the value must participate for
the share to be successfully reassembled. This prevents
a single party from acquiring results without all other
parties’ consent.

Once all tasks in the task schedule have finished, the
final result is reported to the target specified in the high-
level protocol definition. This could be the controller node,
the worker nodes, or a specific subset of worker nodes,
depending on the specific application.

IV. High-Level Language
Table I lists the syntax of the high-level program-

ming language. A protocol defined using the language
consists of a sequence of statements (each of which is
either a variable assignment or one of a few very basic
constructs for branching, looping, and named procedures).
The statements could be viewed as stages within the
overall protocol. Expressions represent data (whether local
to a participant or globally available to all participants)
and the computations that are performed at each stage of
the protocol on that data. These expressions are built up
using operators that closely resemble those supported by a
MapReduce infrastructure, as well as a few new operators
that bridge the gap between a MapReduce computation
and an MPC computation. For a more thorough presenta-
tion of the semantics of the language and the static analysis
algorithms defined over it, we refer the reader to a more
extensive technical report [17].

A. Language Semantics
Semantically, every expression in the language can be

considered a key-value store: a collection of tuples of the
form (k, v) where k must be a key (i.e., a value of a
primitive type such as an integer or string) and v can be
any value (including, potentially, another nested tuple).
Integer, string, and boolean constants can thus be viewed
as key-value stores of the form [((), c)]. The logical,

relational, and arithmetic operators such as + and ==
are defined on singleton key-value stores of this form, and
the key is ignored (i.e., [(“a”, 1)] + [(“b”, 2)] evaluates to
[((), 3)]). It is assumed that every participant running the
protocol has a local key-value store corresponding to each
declaration of the form own x := store(τ , τ) (naturally,
different participants may have different keys and values
within each of these). Every assignment statement specifies
whether the data that results from evaluating the assigned
expression is in storage local to the participant (i.e., own)
or in storage available to everyone (i.e., all). Static analysis
algorithms can notify the programmer if these are not
used consistently; how data available to all is actually
distributed and where it is stored is up to the specific
compiler and backend implementation.

Two new constructs are of particular interest: scatter
and gather. For any expression δ that corresponds to
data available only to an individual participant, evaluating
scatter(δ) involves taking the result of evaluating δ and
turning it into an MPC share. Any subsequent operations
applied to this data should be interpreted as operations on
shares within the underlying MPC infrastructure. Assum-
ing that δ represents data that is currently being shared,
evaluating gather(δ) involves reassembling the shares
and returning a result to every participant that evaluates
this expression.

Note that because in our infrastructure keys are never
private, it is possible for individuals to perform filter
operations using sets of keys from their own local key-value
stores (which they can obtain using keys(. . .)).

B. Static Analysis

One benefit of having a single high-level language
for the integrated infrastructure is that it is possible to
define static analysis algorithms over protocols that can
furnish the programmer with valuable information about
the properties of the protocol before it is ever deployed
and executed. This is particularly valuable in a distributed
setting, as simulation or dynamic testing may be expensive
or infeasible.

user type α ∈ Names
type τ ::= int | bool | str | α

integer n ∈ Z
string σ ∈ Strings

constant c ::= true | false | n | σ

variable x ∈ Names
parameters x ::= x , . . . , x

infix op. o ::= + | – | * | or | and
| == | != | < | <=

term t ::= x | c | (t) | (t , t)
| t o t | min(t , t)

keys k ::= () | n | σ | keys(δ)

data δ ::= x
| scatter(δ)
| gather(δ)
| join(δ , δ)
| union(δ , δ)
| filter(k , δ)
| update(δ , δ)
| map(lambda x: t , δ)
| reduce(lambda x: t , δ)

expression e ::= t | δ | store(τ , τ)

statement s ::= type α = τ
| own x := e
| all x := e
| if t: p else: p
| repeat n: p
| proc x: p
| call x
| return e

program p ::= s1 . . . sn

TABLE I. Abstract syntax for the high-level
programming language.

One consequence of employing MPC is that there
is overhead both in terms of the number of operations
that each participant must perform, and in terms of the
quantity of messages that must be passed between partic-
ipants when the protocol is executed. It is possible that
a programmer who wishes to play MPC may have more
flexibility with regard to privacy than with performance,
and would find it useful to compare the costs associated
with a protocol that employs MPC with one that does
not. Using static analysis, it is possible to derive symbolic
representations of cost, as in similar work in other domains
[18].

For example, consider the efficiency of operations if
Sharemind is used as the MPC backend component [19].

Suppose that the high-level protocol description specifies
that an addition operation must be performed on secret
shared integer data. In this case, it is known that this only
requires every participant to perform an addition operation
on their own share of that data. On the other hand, a mul-
tiplication operation may require a collection of additions
and multiplications to be performed by each participant,
as well as the passing of multiple messages between all
the participants. By specifying a set of inference rules
over expression syntax trees for recursively assembling a
symbolic function in terms of the number of participants
running the protocol, it is possible to define an algorithm
for deriving a running time for a given expression. Such
an approach is described in more detail in the extended
report [17].

V. Example Applications
We present two example applications that demonstrate

how our integrated infrastructure can be used to imple-
ment a protocol that employs both MapReduce and MPC
capabilities.

A. Computing Aggregate Compensation Statistics
We consider a scenario in which several firms wish to

compute compensation statistics broken down by category
across all firms without revealing these statistics for the
individual firms. This application exemplifies a real-world
use of multi-party computation [6], [20].

Figure 2 shows the implementation of the protocol
using the syntax defined in Table I. Figures 3 and 4
show partial compilation results for selected sections of
the implementation. The compilation of the high-level
protocol definition produces four tasks. A MapReduce
task implements Lines 3-7, followed by an MPC task
implementing Line 9. The branch is evaluated by all
worker nodes (note that the value d will be the same
across all workers as required by our prototype). Two
MPC tasks implement the two different branches on Lines
11 and 13 respectively. Figure 3 demonstrates a portion
of the first MapReduce task. A segment of the first
MPC task is shown in Figure 4. For brevity, we omit the
definitions of the methods construct_entire_kv_store,
establish_ownership, and open_shares_to_owners,
which rely on the existing Viff framework to facilitate
secret-sharing values, broadcasting the corresponding keys
across all participants, and gathering and opening shares.

B. Computing Hop Counts to Compromised Nodes
Inspired by algorithms for threat propagation [21],

we consider a scenario in which members of a group of
interconnected participants, each with their own private
network, are interested in computing the shortest distance
from each of their local network nodes to a compromised
node within the overall network. Naturally, they are in-
terested in doing so without revealing information about
their own local network.

Each party holds private data describing its local net-
work topology and which nodes within the network are
compromised. The public network, the boundary nodes

1: type gender = str
2: type salary = int
3: own data := store(gender, salary)
4:
5: own m := reduce(lambda x,y: x+y, filter("m", data))
6: own f := reduce(lambda x,y: x+y, filter("f", data))
7: own d := m - f
8:
9: own s := gather(reduce(lambda x,y: x+y, scatter(d)))

10: if s > 0:
11: return gather(reduce(lambda x,y: x+y, scatter(m)))
12: else:
13: return gather(reduce(lambda x,y: x+y, scatter(f)))

Fig. 2. Private computation of aggregate salary by gender.

data = sc.textFile(str(in_handle))\
.map(jsonpickle.decode)

m = data.filter(lambda x: x[0] == ’m’)\
.reduceByKey(lambda x, y: x + y)\
.collect()

f = data.filter(lambda x: x[0] == ’f’)\
.reduceByKey(lambda x, y: x + y)\
.collect()

d = (’d’, m[0][1] - f[0][1])
out_handle.write(d)

Fig. 3. Spark encoding of Lines 3-7 in Figure 2.

entire_kv_store = construct_entire_kv_store(
viff_runtime, private_kv_store, participants)

d = filter(
lambda x: x[0] == ’d’, entire_kv_store)

sum = (’sum’, reduce(lambda x, y: x[1] + y[1], d))
owners = establish_ownership(viff_runtime,

sum, participants)
res = open_shares_to_owners(viff_runtime,

total_diff, participants, owners)
out_handle.write(res)

Fig. 4. Viff encoding of Line 9 in Figure 2.

(i.e., private nodes with edges leaving a party’s private
network), and the compromised public nodes are known to
all participants. Each party computes the hop counts for
its private nodes locally, then employs MPC to compute
the hop counts of its boundary nodes across the entire
graph without revealing its hop counts to the other parties.
Finally, using the boundary node hop counts, each party
updates its private node hop counts locally.

VI. Conclusion

In this paper we presented what we believe to be
the first integration of MPC capabilities into the widely-
popular MapReduce programming paradigm. This integra-
tion allows programmers to employ the same set of con-
structs to specify computation that involves both MapRe-
duce and MPC operations. More importantly, it provides
programmers with a seamless way to compare and contrast
the efficiency of different strategies for structuring their
implementation of analytics on private data sets spread
out across various administrative domains. Our on-going

type node = int
type dist = int

all pub_graph := store(node, node)
all pub_dst := store(node, dist)
all bdr_graph := store(node, node)
all graph := union(pub_graph, bdr_graph)

own cmpny_graph := store(node, node)
own cmpny_dst := store(node, dst)
own bdr_dst := store(node, dst)
own dst := union(cmpny_dst, bdr_dst)

proc local:
repeat 100:

own nbr_dst :=
map(

lambda k,v,u: (v, u+1),
join(map(lambda x,y: (y,x), cmpny_graph), dst))

own dst :=
reduce(lambda x,y: min(x,y), union(dst, nbr_dst))

own cmpny_dst := update(cmpny_dst, dst)
own bdr_dst := update(bdr_dst, dst)

call local
all mpc_dst := scatter(bdr_dist)

repeat 100:
all nbr_dst :=

map(
lambda k,v,u: (v, u+1),
join(map(lambda x,y: (y,x), graph), mpc_dst))

all mpc_dst :=
reduce(

lambda x,y: min(x,y), union(mpc_dst, nbr_dst))

own bdr_dst := gather(filter(keys(bdr_dst), mpc_dst))
own dst := union(cmpny_dst, bdr_dst)
call local

Fig. 5. Private computation of hop-distance from/to compromised
nodes in a multi-institutional network.

work is proceeding along a number of different directions.

First, we view the language and associated architecture
presented in this paper as providing a generic framework
that could support a host of different MapReduce and
MPC implementations. Supporting a diversity of analyt-
ics and infrastructures is necessary since the cloud en-
vironments of multiple institutions are likely to be het-
erogeneous (e.g., using Hadoop versus Spark, or using
different flavors of MapReduce). More importantly, by
supporting multiple MPC implementations (e.g., Viff and
Sharemind versus two-party computation frameworks such
as ObliVM), it is possible to exploit different performance
optimization opportunities, depending on the specifics of
the problem at hand. Therefore, a major thrust of our
work is to extend our coverage of MapReduce and MPC
implementations along these lines.

Second, we are generalizing our architecture by refining
the execution model of MPC tasks. Our current prototype
requires that all parties actively participate in an MPC
task. However, it would be beneficial to allow for configu-
rations in which only a subset of worker nodes actively
perform an MPC task, while the other worker nodes

contribute their data in secret shared form. This extension
will bring performance gains since the communication cost
of many MPC protocols increases with the number of
active participants. It will also make our platform more
flexible and diverse (as discussed above), thus allowing
for the support of frameworks such as Sharemind which
require a fixed number of active MPC participants.

Upon implementing the above extensions, we will eval-
uate the performance implications of employing different
backend MPC protocols and altering the number of active
worker nodes, when applicable. We defer performance
evaluation to this stage since measuring the performance of
our current prototype would only reflect the performance
guarantees of Spark and Viff, which have already been
studied and presented [10], [15]. We also note that, to the
best of our knowledge, there currently exist no frameworks
that can be directly compared to our platform with regard
to performance because existing frameworks focus either
exclusively on a MapReduce implementation or an MPC
implementation, as opposed to an integration of the two
techniques.

Third, we are working on expanding the language we
presented in this paper in a number of ways: (1) by
providing support for many other common programming
constructs, (2) by allowing the compilation of subsets of
existing programming languages to our language, (3) by
developing static analysis techniques to aid programmers
in reasoning about the MPC portions of their protocols
and by developing interfaces that convey analysis results
to the programmer, and (4) by exploiting known algebraic
properties of the basic operations in the language to
optimize the compilation of the high-level program specifi-
cation into the low-level MapReduce and MPC operations.

Finally, we are also working on supporting alternative
assumptions about the privacy constraints imposed on
data, whether such data is an input to the analytics or
whether such data is derived and used to compute the
analytics. For example, our current approach to integrating
MPC into MapReduce assumes that all the keys (i.e.,
the indices used in MapReduce) are public, whereas the
values associated with these keys may be private. Such an
assumption can be relaxed to leverage currently on-going
cryptography research that allows both the keys and the
values to be treated as secrets in a key-value store.

Acknowledgements. This work was supported in part
by NSF Grants: #1430145, #1414119, #1347522, and
#1012798.

References
[1] J. Dean and S. Ghemawat, “Mapreduce: Simplified data pro-

cessing on large clusters.” in OSDI’04: Sixth Symposium on
Operating System Design and Implementation, San Francisco,
CA, December 2004.

[2] “SCOPE: A Smart-city Cloud-based Open Platform and
Ecosystem,” https://www.bu.edu/hic/research/scope/, [Ac-
cessed: August 15, 2015].

[3] “NCI Cancer Genomics Cloud Pilots,” https://cbiit.nci.nih.
gov/ncip/nci- cancer-genomics- cloud-pilots/, [Accessed: Au-
gust 15, 2015].

[4] L. Constantin, “IBM opens up its threat data as part of new
security intelligence sharing platform,” http://www.infoworld.
com/article/2911154/security/ibm-opens-up-its-threat-data-
as- part- of- new- security- intelligence- sharing- platform.html,
[Online; accessed 15-August-2015].

[5] J. Lipman, “Let’s Expose the Gender Pay Gap,” http://www.
nytimes.com/2015/08/13/opinion/lets- expose- the- gender-
pay-gap.html, [Online; accessed 15-August-2015].

[6] R. Barlow, “Computational Thinking Breaks a Logjam,” http:
//www.bu.edu/today/2015/computational-thinking-breaks-a-
logjam/, [Online; accessed 15-August-2015].

[7] “ThreatExchange,” https://threatexchange.fb.com/, [Online;
accessed 15-August-2015].

[8] A. Shamir, “How to share a secret,” Communications of the
ACM, vol. 22, no. 11, pp. 612–613, 1979.

[9] Y. Lindell and B. Pinkas, “Secure multiparty computation
for privacy-preserving data mining,” Journal of Privacy and
Confidentiality, vol. 1, no. 1, p. 5, 2009.

[10] “VIFF, the Virtual Ideal Functionality Framework,” http://
viff.dk/, accessed: 2015-08-14.

[11] D. Bogdanov, S. Laur, and J. Willemson, “Sharemind: A
Framework for Fast Privacy-Preserving Computations,” in Pro-
ceedings of the 13th European Symposium on Research in Com-
puter Security - ESORICS’08, ser. Lecture Notes in Computer
Science, S. Jajodia and J. Lopez, Eds., vol. 5283. Springer
Berlin / Heidelberg, 2008, pp. 192–206.

[12] C. Liu, X. S. Wang, K. Nayak, Y. Huang, and E. Shi, “Oblivm:
A programming framework for secure computation,” in IEEE
S & P, 2015.

[13] K. Nayak, X. S. Wang, S. Ioannidis, U. Weinsberg, N. Taft,
and E. Shi, “Graphsc: Parallel secure computation made
easy,” in 2015 IEEE Symposium on Security and Privacy,
SP 2015, San Jose, CA, USA, May 17-21, 2015. IEEE
Computer Society, 2015, pp. 377–394. [Online]. Available:
http://dx.doi.org/10.1109/SP.2015.30

[14] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The
hadoop distributed file system,” in Mass Storage Systems and
Technologies (MSST), 2010 IEEE 26th Symposium on. IEEE,
2010, pp. 1–10.

[15] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and
I. Stoica, “Spark: cluster computing with working sets,” in
Proceedings of the 2nd USENIX conference on Hot topics in
cloud computing, vol. 10, 2010, p. 10.

[16] D. Bogdanov, M. Jõemets, S. Siim, and M. Vaht, “How the
estonian tax and customs board evaluated a tax fraud detection
system based on secure multi-party computation,” in Financial
Cryptography and Data Security - 19th International Confer-
ence, FC 2015, San Juan, Puerto Rico, January 26-30, 2015,
Revised Selected Papers, ser. LNCS. Springer, 2015, to appear.

[17] N. Volgushev, A. Lapets, and A. Bestavros, “Scather: Pro-
gramming with Multi-party Computation and MapReduce,”
CS Dept., Boston University, Tech. Rep. BUCS-TR-2015-010,
August 2015.

[18] A. Lapets and M. Rötteler, “Abstract Resource Cost Derivation
for Logical Quantum Circuit Descriptions,” in Proceedings of
the 1st Workshop on Functional Programming Concepts in
DSLs (FPCDSL 2013), Boston, MA, USA, September 2013.

[19] D. Bogdanov, “How to securely perform computations on
secret-shared data,” Master’s thesis, Tartu University, 2007.

[20] A. Lapets, E. Dunton, K. Holzinger, F. Janssen, and
A. Bestavros, “Web-based Multi-Party Computation with Ap-
plication to Anonymous Aggregate Compensation Analytics,”
CS Dept., Boston University, Tech. Rep. BUCS-TR-2015-009,
August 2015.

[21] K. M. Carter, N. C. Idika, and W. W. Streilein, “Probabilistic
threat propagation for network security,” IEEE Transactions
on Information Forensics and Security, vol. 9, no. 9, pp.
1394–1405, 2014. [Online]. Available: http://dx.doi.org/10.
1109/TIFS.2014.2334272

https://www.bu.edu/hic/research/scope/
https://cbiit.nci.nih.gov/ncip/nci-cancer-genomics-cloud-pilots/
https://cbiit.nci.nih.gov/ncip/nci-cancer-genomics-cloud-pilots/
http://www.infoworld.com/article/2911154/security/ibm-opens-up-its-threat-data-as-part-of-new-security-intelligence-sharing-platform.html
http://www.infoworld.com/article/2911154/security/ibm-opens-up-its-threat-data-as-part-of-new-security-intelligence-sharing-platform.html
http://www.infoworld.com/article/2911154/security/ibm-opens-up-its-threat-data-as-part-of-new-security-intelligence-sharing-platform.html
http://www.nytimes.com/2015/08/13/opinion/lets-expose-the-gender-pay-gap.html
http://www.nytimes.com/2015/08/13/opinion/lets-expose-the-gender-pay-gap.html
http://www.nytimes.com/2015/08/13/opinion/lets-expose-the-gender-pay-gap.html
http://www.bu.edu/today/2015/computational-thinking-breaks-a-logjam/
http://www.bu.edu/today/2015/computational-thinking-breaks-a-logjam/
http://www.bu.edu/today/2015/computational-thinking-breaks-a-logjam/
https://threatexchange.fb.com/
http://viff.dk/
http://viff.dk/
http://dx.doi.org/10.1109/SP.2015.30
http://dx.doi.org/10.1109/TIFS.2014.2334272
http://dx.doi.org/10.1109/TIFS.2014.2334272

