
Software-Defined IDS for Securing Embedded
Mobile Devices

Richard Skowyra Sanaz Bahargam Azer Bestavros
rskowyra@bu.edu bahargam@bu.edu best@bu.edu

Computer Science Department
Boston University

Abstract—The increasing deployment of networked mobile
embedded devices leads to unique challenges communications
security. This is especially true for embedded biomedical devices
and robotic materials handling, in which subversion or denial of
service could result in loss of human life and other catastrophic
outcomes.

In this paper we present the Learning Intrusion Detection
System (L-IDS), a network security service for protecting embed-
ded mobile devices within institutional boundaries, which can be
deployed alongside existing security systems with no modifications
to the embedded devices. L-IDS utilizes the OpenFlow Software-
Defined Networking architecture, which allows it to both detect
and respond to attacks as they happen.

I. INTRODUCTION

Mobile embedded devices are increasingly deployed in
mission-critical applications ranging from biomonitoring and
control in hospitals to robotic materials handling and transport
in factories. These devices have unique security challenges:
many are custom-built, low-power, resource-constrained de-
vices lacking the capabilities of a full-fledged computer.
Furthermore, successful subversion (or even partial service
disruption) by an adversary can cause severe damage, ranging
from financial loss to property damage and actual loss of life.

Much of the existing work on embedded system security
aims to secure the devices themselves from physical subversion
or reverse engineering, relying on anti-tamper techniques from
cryptography and electrical engineering, among other fields.
Many of these devices, however, communicate wirelessly with
one another and with a larger on-site infrastructure network
hosting command and control functions. These communica-
tions channels present another attack surface, and one which
is difficult to secure using existing cryptographic techniques.
Consider, for example, the unique access challenges associated
with implanted biomedical devices (e.g. insulin pumps, pace-
makers, etc.) in hospitals. These devices often communicate
wirelessly with a wearable external monitoring and control
unit, which must be accessible to an unpredictable set of
emergency responders and medical personnel. This channel
is difficult to secure with any key-based technique due to
the substantial complexities related to key management and
revocation, as well as the extremely limited power and heat-
dissipation requirements of the device itself.

In this paper, we present a network-based intrusion de-
tection system (IDS) for embedded mobile devices which

communicates with an on-site infrastructure network. It can
be deployed alongside any existing on-device security, with no
modifications to the devices themselves. An intrusion detection
system relies on a mathematical or profile-based model of
expected network activity to detect anomalous traffic indicative
of adversarial activity. Traditionally, IDS deployments have
suffered from an inability to cope with end-host mobility, as
well as a limited set of actions (e.g. logging the anomaly or
alerting a system administrator) which can be taken in response
to anomalies being detected. Both of these difficulties have
limited the adoption of IDS outside of traditional enterprise
networking environments.

Our Learning IDS (L-IDS) utilizes the OpenFlow Software-
Defined Networking architecture to address both of these dif-
ficulties: mobility of embedded end-hosts can be transparently
handled by the network, and a variety of rapid responses and
network reconfigurations are available to handle the attack
in realtime (e.g. flow dropping, reauthentication, honeypot
redirection, and system isolation) rather than simply reacting
after the fact.

We consider example cases in the domain of implanted
biomedical devices and robotic transport. Both of these scenar-
ios use a similar threat model: mobile embedded devices move
throughout a building site, and communicate wirelessly with
an infrastructure network. The adversary may be an insider
who has subverted a device on the network (e.g. a webserver
or printer), or may be external to the site but possesses
a sufficiently powerful transmitter to communicate with the
devices and infrastructure access points inside of the facility.
For each case, we consider how a model of expected traffic
patterns can be constructed, how adversarial actions can be
characterized as anomalies in this model, and how the system
can be programmed to react automatically to the detection of
adversarial behavior.

The remainder of the paper is laid our as follows. In Section
II we expand on the example cases of biomedical devices in a
hospital and robotic materials transport on a factory floor and
discuss related work. Section III discusses our threat model
and anomalies, and Section IV presents the Learning IDS.

II. MOTIVATION AND RELATED WORK

Biomedical Devices: Implanted Medical Devices (IMDs) for
hospital patients are becoming increasingly popular, in part



due to the accuracy and rapidity of measurement they make
available to health professionals, as well as the precision con-
trol they offer with respect to automatic dosage and treatment.
These devices range from emergency response systems such
as implantable cardiac defibrillators (ICDs) [2] and bedside
drug delivery systems to health maintenance devices such as
pace makers, insulin pump infusion systems, implanted pulse
generators, and implanted biosensors.

The security and privacy issues associated with IMDs have
been explored from a hardware perspective in [16], [11], [19]
and from a cryptographic perspective in [7], [29], [35]. The
security concerns associated with IMDs are especially chal-
lenging, as incorrect operation due to adversarial interference
can result in patient injury or death.

Consider, for example, hospital patients who suffer from
Type-1 diabetes. Their blood glucose levels must be continu-
ously balanced through controlled insulin injection and moni-
toring. Insulin pumps are often used to automate this process,
via surgical implantation of a subcutaneous cannula connected
to an external, wearable pump and insulin reservoir. This
procedure also offers a much more responsive and fine-grained
control loop for insulin delivery in response to expected or
measured blood glucose levels [25]. Many insulin pumps
also provide health professionals with remote control and
communications functions, which can be used to integrate the
pump with blood-glucose monitors or adjust insulin infusion
schedules as determined by the patient’s doctor.

Recent work has shown that these remote communications
channels are vulnerable to attack by an adversary within
wireless transmission range [4]. Note that this does not nec-
essarily mean that the adversary needs to be physically close
to the reciever: a strong antenna or subversion of a networked
device (and therefore use of the building’s own wireless access
points) would suffice. Attacks that include both forging of
messages from authorized senders and replaying of recorded
messages are possible [4]. Either approach can be used to cause
potentially fatal blood glucose levels. Injection of 100mg of
insulin into a patient with normal blood sugar, for example,
can induce a diabetic coma.

Cryptographic methods are a commonly suggested solution
for securing IMD wireless communications channels. Unfor-
tunately, these techniques are expensive in terms of processor
usage and power consumption. Since the lifetime of IMDs is
bounded by their battery life, cryptographic algorithms can
noticeably reduce the useable lifetime of implanted devices.
Once these batteries are depleted, surgery replacement is
necessary.

Additionally, cryptographic methods introduce substantial
challenges related to key management and dissemination.
Patients may be treated at a variety of hospitals by a variety
of personell, the identities of whom are frequently difficult
to predict in advance. If an emergency room doctor has to
administer an insulin treatment while a patient is travelling,
for example, how can that responder learn keying material fast
enough to not interfere with treatment, but securely enough
that the key is not compromised?

We posit that an alternative, complementary approach
to these techniques is deployment of in-network, off-device
security systems designed to detect and respond to adversarial

communications as they happen. The Learning Intrusion De-
tection System (L-IDS) presented in Section IV is one such
technique.

Robotic Materials Transport: Mobile embedded devices are
also utilized in robotic materials transport for control, sensing,
and communications. These transport systems are deployed
in three primary domains: military logistics [22], [27], [20],
warehouse package picking [33], and robotic trucking through
industrial/agricultural facilities [17], [32], [8].

A common feature of all of these devices is some form
of remote operator control unit or link to a management
system via wireless communication channels. Security of these
channels is critical: subverted military units might be used
for surveillance, destruction of property, and as improvised
weapons. Industrial and agricultural systems are often designed
to haul heavy loads and are consequently large, and could
cause substantial damage to both the site and employees if
diverted from their programmed course. Automated package
pickers, if subverted, could halt warehouse operations or
potentially exfiltrate goods by picking adversarially chosen
packages.

Cryptographic techniques can be used to secure military
communications channels, but may not be available (or fea-
sible) on industrial or commercial systems designed to work
in a trusted environment. An alternative approach, collectively
called location security, relies on physics and computational
geometry to confirm whether a transmission originates in the
trusted zone bounded by the building site, or from outside of
the site (and thus from an adversary) via a strong transmit-
ter. These techniques utilize trilateration [21], signal strength
analysis from multiple receptors [34], the differing speeds of
radio waves and ultrasound in atmosphere [28], onboard radar
[36], and Euclidean geometry of the physical network topology
[12], among other physical indicators.

Unfortunately, location security cannot detect adversarial
transmissions originating from inside of the trusted region,
either from subverted mobile devices or from compromised
network elements outside of the ‘secured’ region (e.g. network
printers, webservers, etc.). Embedded devices also remain
susceptible to jamming of the wireless channel, which could
be damaging in the case of an ongoing sense or control
stream between the mobile device and a human operator or
management system. In any case, location security provides
only a way to detect (and ignore) adversarial transmissions;
there is no mechanism to react to the adversary or to prevent
future transmissions.

The L-IDS system described below is a complementary
technique that can be deployed alongside location security,
and shore up the weaknesses of a purely location-based or
cryptographic approach: adversarial behavior from within the
trusted region (or jamming from outside) can be detected and
the network can be dynamically reconfigured in realtime to
respond to such attacks.



OpenFlow Software-Defined Networks: OpenFlow [23] is a
popular architecture for software-defined networking. Network
traffic is not required to conform to a particular network
stack (e.g. the IP stack) and can be tailored to work with
any protocol suite, including in-house or proprietary protocols.
OpenFlow’s fundamental unit of organization is the network
flow, representing the sequence of packets sent from a source
to a destination. Openflow switches route traffic by matching
flows against an ordered sequence of rules, called a flow
table. Each rule in the table has a pattern to match against
a packet header and an associated set of actions to take on
all packets which trigger a match. The OpenFlow specification
currently defines 15 packet header fields which can be matched
against, 11 of which can be used outside of an IP network
[14]. Rules, at a minimum, can specify a port to route over,
packet dropping, and forwarding of packets to the controller.
Whenever a rule is triggered, the switch updates a set of traffic
counters. These counters are disscussed more in Section IV,
but allow for detailed measurement of network activity. If an
incoming network packet’s header does not match any flow
rule, it is forwarded to the controller. Rules may also be set
to expire after some time or duration, or may be removed by
the controller.

The OpenFlow controller is a software process connected
to each switch via a secure, dedicated link. The controller
handles packets sent to it by OpenFlow switches and installs
flow rules in the switches’ flow tables. The functionality of
the controller is determined completely by the application that
it is being used to implement, but all controller programs
must communicate with switches only by installing flow rules.
Controllers can be written in a number of languages designed
for the purpose. Popular choices include NOX/POX [18],
Beacon [13], or Maestro [5], in addition to others [1].

Intrusion Detection for Embedded Devices: IDS have been
developed for a variety of embedded platforms and applica-
tions. da Silva et al. [9] deploy an IDS on monitoring nodes
in static wireless sensor networks, in order to detect both
network-based attacks (packet replay, drop, etc.) as well as
attacks on the routing structure and physical wireless channel.
Banerjee [3] et al. also focus on WSNs, but distribute the
monitoring task across existing sensors and use novel machine-
learning techniques to compute an aggregate view of the
network. Onat and Miri [26] exploit directional communica-
tion, static physical geometry, and other properties of sensor
networks to detect node-impersonation and resource-depletion
attacks. Mitchell and Chen [24] use behavior rules for tunable
intrusion detection detection probabilities in stationary, wired
medical cyber physical systems. Their threat model focuses
on compromised nodes which can be used to forge, replay,
drop, and modify messages. Darji and Trivedi [10] propose an
IDS for wireless implanted medical devices which runs on a
patient’s smartphone and monitors the local wireless channel
for activity not matching a programmed specification.

III. THREAT MODEL

Setting: We consider security in the confines of a building
site, base, or other location in which a wired networking
infrastructure is deployed. Specifically, we model the facility
as having a physical geometry representable as a map, with
OpenFlow [23] wireless switches deployed at specific points

on this map. They are connected to the larger infrastructure
network, and are the primary point of communications used
by the embedded mobile devices moving around the facility.

The embedded devices themselves transmit and receive
information from the nearest wireless switch. We assume
that the temporal and volumetric components of these trans-
missions, but not necessarily the content, can be modeled
statistically. The embedded devices also move throughout the
facility in (un)predictable patterns or courses. Even if mobility
is unpredictable in terms of destination, we do assume that
a physics model exists capturing simple physical limitations
on speed and navigable geometry. This model can be used to
determine the set of possible next locations of an embedded
device given its current location and a time interval (e.g. it is
probably impossible to move across the entire facility in one
second).

In the context of the above scenario, our adversarial model
considers the following malicious activities (or any combina-
tion thereof):

1) Transmissions may be made from outside the facility
which are strong enough to be received anywhere
within the facility.

2) The wireless channel may be degraded due to jam-
ming.

3) A networked wireless end-host within the facility
(e.g. a printer, desktop, etc.) may be subverted, and
is within range of at least one wireless switch used
by embedded mobile devices.

4) Via transmission from outside the facility, or via
subverted hosts within it, the adversary may forge,
record, and replay network packets.

Anomalies: An anomaly is characterized as a statistically
significant deviation of a measured value (e.g. packets sent,
position, time passed, etc.) from an expected value. We do
not consider a specific anomaly detection algorithm in this
work, as significant prior work has been conducted on these
algorithms [15], [6] and L-IDS is modular enough to allow
most anomaly detectors to be used without modification. All
that we require of an anomaly detector is the ability to consume
a measurement and expectation, and return the probability of
that measurement being an anomaly.

Stateless Flow Anomalies are detectable based on pattern-
matching against the headers of received packets. The L-
IDS controller installs per-switch detection rules based on the
current network configuration and the location of end-hosts.
These rules can be used to, for example, limit the switches
that specific hosts can communicate with or the protocols that
they are allowed to use.

Stateful Flow Anomalies are detected by the controller via
traffic counters collected by each switch. Anomalies of this
form can, for example, correspond to violation of sense-actuate
rules: a flow using a specific control protocol that originates at
control server B and terminates at embedded device A should
only be permitted when preceded within a time interval by a
sensing protocol flow from A to B.

Volumetric Anomalies are also detected via traffic counters,
and correspond to the under- or overflows of traffic. Traffic
volume can be defined over a time interval, over the output of



Fig. 1. L-IDS Controller and Switch Roles

a smoothing function, or any other computable metric. Volu-
metric anomalies can indicate jamming (underflow) or traffic
injection (overflow) via replay attacks and forged packets,
among others.

Physical Anomalies are violations of the physics model gov-
erning possible locations of mobile end-hosts given their prior
location and the time since their last transmission. Anomalies
of this sort can indicate that an adversary is forging trans-
missions (if end-hosts appear to be in multiple locations),
have subverted a mobile embedded device and diverted from
an expected course, or have disrupted or disabled end-host
mobility.

IV. LEARNING IDS

The Learning-IDS (L-IDS) is an intrusion detection system
for networks used to communicate with embedded mobile
devices. Unlike traditional IDS deployments, L-IDS can trans-
parently adapt to changing network state in the presence of
end-host mobility. Furthermore, it can also respond to attacks
(anomalies) as they happen and reconfigure the network to
a heightened state of security. This contrasts sharply with
traditional intrusion detection systems, which are very limited
in both the time scale and flexibility of their response to an
intrusion.

L-IDS relies on the OpenFlow [23] Software-Defined Net-
working architecture. The bulk of the IDS logic resides in
the OpenFlow controller, but part of the anomaly detection
process and all of the traffic measurement process resides in
the network itself, on the OpenFlow switches. This division
of labor is shown schematically in Figure 1. The controller in
L-IDS serves three roles: detection of certain anomalies based
on the evolution of traffic over time, adaptation of routing
state and anomaly rules to end-host mobility, and network
reconfiguration in response to intrusion. OpenFlow switches
control dataplane routing, as well as detect anomalies based
on matching of packet headers.

The L-IDS controller can accommodate any anomaly de-
tection algorithm which can compare a measurement and sta-
tistical model, and return the probability of that measurement
being an outlier given the model. A significant body of work
already exists on creating anomaly detectors [15], [6]; these
may be used with L-IDS or an application-specific detector
can be developed.

1 if pkt.src_addr in device_list:
2 last_position[pkt.src_addr] = (src_sw, src_port)
3 for all switch in network:
4 if switch==src_sw:
5 routes[pkt.src_addr][switch]=src_port
6 else:
7 routes[pkt.scr_addr][switch]=routes[src_sw][switch]
8 if pkt.dst_addr in routes:
9 install_rule(src_sw, OUT, (dst_addr=pkt.dst_addr,

routes[pkt.dst_addr][src_sw]))
10 else:
11 install_rule(src_sw, OUT, (dst_addr=pkt.dst_addr,

OPF_FLOOD))

Fig. 2. Learning Device Positions

Despite using an off-the-shelf anomaly detector, the mo-
bility of end-host devices renders a simple comparison of
measured values to a static model of expected network traffic,
as would be normal in traditional IDS deployments, impossi-
ble. The mobility of end-hosts requires that all per-switch and
per-flow traffic expectations must be adjusted to consider the
current position of all mobile devices. The set of switches a
device is permitted to send from (or the kind of traffic it is
expected to originate), for example, may change as the device
moves into different areas of a facility. Network routes must
also be updated as the positions of end-hosts change.

A. Mobility and Routing

Routing correctness in the face of end-host mobility can
be ensured by using a learning switch network, shown as
pseudocode in Figure 2. We discuss the verification of these
networks in detail in [31], but their basic operation is straight-
forward. Recall that OpenFlow switches forward any packet
which does not match a flow rule to the controller. The
controller then processes the packet using the logic in Figure
2. First, the source address is checked against a list of mobile
devices. If the message originates from one of these, its
position (e.g. the switch it is transmitting to) is updated (line 2)
and routes to that device are changed to reflect its new position
(lines 4-7).

Forwarding rules are then installed between the source and
destination (lines 8-11). If the destination’s last position is
known, a route is installed in the OpenFlow switches on the
path between each device. If the destination is unknown, a
flooding rule is installed.

B. Threat Detection and Response

Intrusion detection in L-IDS is based on inputs from two
sources: OpenFlow switch counters, and data plane packets
forwarded to the controller. Switch counters are maintained
for a variety of useful metrics, including per-flow duration
and bytes transmitted/received, per-port errors, retransmits,
and traffic volume, and per-flow table rule matches. These
measurements are retained on-switch, and may be polled by
the controller using the read-state OpenFlow protocol
message. Data plane packets are forwarded from a switch to
the controller whenever no flow rule at that switch matches the
header of a received packet. Note that flow rules may include
wildcard characters, and may quantify over a variety of header
fields ranging from hardware address of source and destination
to VLAN tags and metadata. A complete list of both counters



available and packet fields able to be matched over can be
found in [14].

If an anomaly is detected, L-IDS can implement a wide
variety of responses. Recall that the OpenFlow controller is
a full-fledged software process running on commodity hard-
ware: not only can the OpenFlow network be reconfigured,
but out-of-band responses such as emailing/paging personnel,
activating a physical alarm system, or interfacing with other
control systems are all viable responses to a network intrusion.

Several off-the-shelf network reconfigurations have already
been developed by the OpenFlow community. The FRESCO
system [30] enables deployment of (among others) honeynets,
in which an attacker is re-directed to a subnet devoted to
distracting and studying the attacker; tarpits, designed to slow
automatic worms by emulation of unused IP address/ports; and
phantom networks which give attacks an incorrect view of
network topology. In addition, simple flow rules can be used
to lockdown or partition comprised network segments or to
send emergency broadcasts. Note that many other responses
are possible, and that all of these can be implemented by the
controller automatically and in realtime.

C. Using L-IDS with IMDs

In this section, we provide an example illustrating how L-
IDS can be used in a hospital setting to secure the communica-
tions between Implanted Medical Devices (IMDs) and doctors
who are permitted to send actuation commands to them.
Specifically, we consider the scenario in which a patient’s
blood glucose sensor sends updates to a doctor via the hospital
network if measurements fall out of a safe boundary area.
Depending on the value of these measurements, the doctor
may send a response indicating an adjustment to the patient’s
basal rate, or specify an additional correction bolus.

Furthermore, we assume that a patient may be moved
between a variety of locations in the hospital. These may be
testing facilities (cardiology labs, medical imaging facilities),
recreation or physical therapy areas, etc. This movement
should not interfere with the communication between the
patient’s IMDs and the doctor monitoring them. There may
also be areas of the hospital in which the patient should never
be present; if IMD signals are sent from these areas, medical
professionals should be alerted.

An adversary in this scenario could induce fatal blood
glucose levels via two techniques: forging/replaying packets
from the doctor, or forging/replaying packets from the patient.
In the former case, the adversary could easily induce fatal
blood glucose imbalances by specifying an extremely large
correction bolus. In the latter case, false sensor data or sensor
data recorded during an anomalous event and then replayed
could be used to trick the doctor into specifying a fatal dose,
given the patient’s actual condition.

The former attack can be addressed using stateful flow
anomaly detection rules, the pseudocode of which is illustrated
in Figure 3. These are installed on the L-IDS controller. The
default behavior of OpenFlow switch, upon receipt of a packet
for which a forwarding rule does not already exist, is to
forward it to the controller. In this case, the controller checks,
on line 1, if the packet originates from a patient IMD and is

1 if (pkt.src_addr in p_dev && pkt.dst_addr in drs):
2 lst_upd[pkt.src_addr][pkt.dst_addr] = time()
3 install_rule(src_sw, OUT, (src_mac=pkt.src_addr,

switch_ports[src_sw][pkt.dst_addr])
4 if (pkt.src_addr in drs && pkt.dst_addr in p_dev &&

((time() -lst_upd[pkt.dst_addr][pkt.src_addr]) > n:
5 install_rule(src_sw, IN, (src_mac=pkt.src_addr,

switch_ports[src_sw][pkt.dst_addr])
6 else:
7 install_rule(src_sw, IN, (dst_mac=pkt.dst_addr,

expires=m, DROP))
8 alert_personnel()

Fig. 3. Paired Flow Rules for IMD Communication

1 if (src_sw in permitted_switches[pkt.src_addr]):
2 if physics_model(src_sw, pos[pkt.src_addr], time()):
3 last_position[pkt.src_addr]=(src_sw, time())
4 install_rule(src_sw, OUT, (src_mac=pkt.src_addr,

switch_ports[src_sw][pkt.dst_addr])
5 else:
6 install_rule(src_sw, OUT, (src_mac=pkt.src_addr, expires=m,

DROP))
7 alert_personnel()

Fig. 4. Anomalous Mobility Rules for IMD Communication

being sent to a doctor’s machine. If so, this transmission is
noted and timestamped (line 2), and a forwarding rule to the
destination machine is installed on the switch (line 3).

If the transmission is instead from a doctor’s machine
to a patient’s IMD (line 4), a forwarding rule is installed
only if an update was sent from the device to that machine
within the time interval n. Otherwise an alert is triggered
which blocks further remote control of the device for a time
period m and contacts medical personnel out-of-band (via,
e.g, triggering a patient’s bedside alarm, paging a doctor,
etc.). Alternative responses could also easily be implemented,
including buffering of the message until authentication by the
doctor, etc.

The above technique is not designed to be foolproof: ad-
versarial transmissions originating in the allowed time interval
may still be processed, and the alert procedure could be
deliberately triggered to create a denial of service situation. L-
IDS should not be seen as a complete security solution, but as
a complementary technique which can be deployed alongside
existing security mechanisms to create a defense in depth.

The latter attack, in which old or forged sensor data is sent
to the doctor, can be addressed by exploiting known patient
mobility using physical anomaly detection rules. Pseudocode
for this is illustrated in Figure 4.

As in the previous example, this pseudocode is evaluated on
packets sent from a switch for which a forwarding rule is not
present. In this case, the controller checks to see if the patient
is transmitting from a switch which is in the permitted region
of the hospital (line 1). If so, the physics model (comprising
a facility map, maximum speed at which the patient may be
moved, etc.) is checked to confirm that the patient’s current
position is within the set of reachable switches given the
current time and time of its last transmission (line 2). If so,
the device’s position is updated (line 3) and a forwarding rule
is installed (line 4).

If the device is transmitting from an un-permitted location,



or from a location not reachable given its last position,
future transmissions from that device are ignored and medical
personnel are alerted.

Using this approach, the adversary would only be able to
inject forged or old sensor data via switches that the patient’s
device could communicate with given its current position and
set of permitted switches. Depending on the physical geometry
of the hospital, this might be a substantial obstacle. Note
that simply increasing transmission power may not work: if
multiple switches register the transmission simultaneously, the
physics model will almost certainly be violated.

D. Using L-IDS with Robotic Transport

In this example, we consider how L-IDS can be applied
to robotic materials transport between locations at a manufac-
turing facility. Specifically, we consider a scenario in which
robotic vehicles follow one of a series of paths through a
facility (e.g. transporting precursor materials from the receiv-
ing depot to the manufacturing floor, from manufacturing to
packaging, or from packaging to shipping). Which course a
vehicle takes is assumed to follow a schedule which may vary
be hour or day, but is known to the L-IDS controller.

While moving, vehicles are assumed to send a stream of
sensor data to a remote operator or controller. For the purposes
of the example we assume this stream is sent at a constant rate
with equally sized packets, but another statistical model (e.g.
exponentially distributed packet inter-arrival times) can also be
used. The only requirement we impose on choice of model is
that an expected traffic volume over time can be computed.
The remote operator sends a stream of control data back to
the vehicle, which also modeled statistically.

The adversary in this scenario is assumed to have subverted
a stationary wireless device within the bounds of the facility
(e.g. a network printer or workstation) which is within trans-
mission range of at least one OpenFlow wireless switch used
by the robotic vehicles. This adversary may attempt to jam
the channel to degrade or disrupt communication, forge/replay
sensor data from the vehicle, or forge/replay control data from
the remote operator. Since the malicious transmitter is within
facility itself, location security techniques which rely on the
existence of a trusted geometric region [21], [34], [28], [12]
cannot be used.

In order to address the possibilities of jamming or sending
a stream of forged sensor data, the L-IDS controller can
use OpenFlow switch-based counters to check for volumetric
anomalies, as shown in Figure 5. The controller polls the
switch regularly using the OpenFlow protocol’s read-state
functionality [14] (line 1).

As L-IDS does not rely on a particular anomaly detector,
we abstract the choice into the a_detector procedure,
which compares a measurement and statistical model, and
returns the probability of that measurement being an outlier
given the model (as in lines 2-4). The example pseudocode
also assumes some information about the anomaly type (e.g.
whether the measurement is anomalously large or small) is
also available. Anomalously small received traffic volumes
correspond to channel degradation and possible jamming,
while anomalously large values indicate traffic injection. Note

1 counters=opf_read_state(switch)
2 anomaly,type=a_detector(counters.switch.bytes_received,

expected_swich_volume[switch])
3 if anomaly > detection_threshold: alert(type)
4 for flow in counters.per_flow:
5 anomaly,type=a_detector(flow.bytes_received,

expected_flow_volume[flow.id])
6 if anomaly > detection_threshold: alert(type)

Fig. 5. Volumetric Detection Rules

that these checks can be augmented with additional counter-
derived measurements for more fine-grained detection, includ-
ing dropped packets, transmit/receive errors, etc.

Attacks based on forged data from the remote operator
can also be detected, as long as the switch is within range of
the transmission from the adversary. Recall that all packets for
which no forwarding rule exists are sent to the controller. If an
adversary forges a message from the remote operator (or from
the network switch, etc.) and transmits it to the mobile device,
the switch will also receive it. OpenFlow switches distinguish
flows based on both address and port pairs: a message arriving
from a known address on an unexpected port (e.g. originating
from the remote operator but arriving on the local wireless
channel) will not match the flow rules already established for
that address. The anomalous message will be forwarded to the
controller, which can then trigger an alert. As this is a simple
conditional check, pseudocode is omitted for brevity.

Finally, the positions of robotic vehicles can also be mon-
itored for anomalous behavior. As long as their schedule and
physical characteristics (speed, size, etc.) are known in ad-
vance, an identical approach to the IMD’s anomalous mobility
example can be taken.

V. CONCLUSION

In this paper, we demonstrated how an OpenFlow-based
Software-Defined Network could be used to build a a Learning
Intrusion Detection System (L-IDS) for embedded mobile
devices within an institutional site. L-IDS can be deployed
alongside existing security systems with no modifications to
the embedded devices. A variety of attacks can be detected
using this approach, and the network can be dynamically
reconfigured in realtime to mitigate the attacks.

We provided example scenarios using implanted medical
devices in a hospital and robotic material transport systems
in a manufacturing facility. In each example, we considered
a variety of possible attacks on the system, showed how
anomaly rules can be created to detect the attack, and provided
mechanisms to mitigate this attack or alert building personnel.

We are currently in the process of simulating the examples
discussed in this paper. We intend to both study the perfor-
mance of L-IDS and to formally verify critical safety properties
of the network during reconfiguration in response to intrusion
detection. We are also attempting to obtain traffic traces for
representative real-world systems, in order to compare the
performance of a variety of anomaly detection algorithms.

Acknowledgment: This work was supported in part by the fol-
lowing NSF grants: CISE/CNS Award #1239021, CISE/CNS
Award #1012798, and ENG/EFRI Award #0735974.



REFERENCES

[1] Openflow components, 2011.
[2] A. H. Association. Implantable cardioverter defibrillator (icd).
[3] S. Banerjee, C. Grosan, and A. Abraham. Ideas: intrusion detection

based on emotional ants for sensors. In Intelligent Systems Design
and Applications, 2005. ISDA ’05. Proceedings. 5th International
Conference on, pages 344–349, 2005.

[4] Blackhat.com. Hack into diabet imd.
[5] Z. Cai, A. Cox, and T. Maestro. A system for scalable openflow control.

Technical report, Technical Report TR10-08, Rice University, 2010.
[6] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey.

ACM Computing Surveys (CSUR), 41(3):15, 2009.
[7] S. Cherukuri, K. K. Venkatasubramanian, S. K. S. Gupta, and E. K. S.

Gupta. Biosec: A biometric based approach for securing communication
in wireless networks of biosensors implanted in the human body. In
in Wireless Networks of Biosensors Implanted in the Human Body,
Workshop on Wireless Security and Privacy (WiSPr), International
Conference on Parallel Processing Workshops, 2003, 2003.

[8] Cisco-Eagle. Seegrid vision-guided, unmanned robotic industrial trucks.
[9] A. P. R. da Silva, M. H. T. Martins, B. P. S. Rocha, A. A. F. Loureiro,

L. B. Ruiz, and H. C. Wong. Decentralized intrusion detection in
wireless sensor networks. In Proceedings of the 1st ACM international
workshop on Quality of service & security in wireless and mobile
networks, Q2SWinet ’05, pages 16–23, New York, NY, USA, 2005.
ACM.

[10] M. Darji and B. Trivedi. Imd-ids a specification based intrusion
detection system for wireless imds. International Journal of Applied
Information Systems, 5(6):19–23, April 2013. Published by Foundation
of Computer Science, New York, USA.

[11] T. Denning, K. Fu, and T. Kohno. Absence makes the heart grow fonder:
new directions for implantable medical device security. In Proceedings
of the 3rd conference on Hot topics in security, HOTSEC’08, pages
5:1–5:7, Berkeley, CA, USA, 2008. USENIX Association.

[12] E. Ekici, S. Vural, J. McNair, and D. Al-Abri. Secure probabilistic
location verification in randomly deployed wireless sensor networks.
Ad Hoc Networks, 6(2):195–209, 2008.

[13] D. Erickson. Beacon, 2012.
[14] O. N. Foundation. Openflow switch specification.
[15] P. Garcia-Teodoro, J. E. Dı́az-Verdejo, G. Maciá-Fernández, and

E. Vázquez. Anomaly-based network intrusion detection: Techniques,
systems and challenges. Computers & Security, 28(1-2):18–28, 2009.

[16] S. Gollakota, H. Hassanieh, B. Ransford, D. Katabi, and K. Fu. They
can hear your heartbeats: non-invasive security for implantable medical
devices. In Proceedings of the ACM SIGCOMM 2011 conference,
SIGCOMM ’11, pages 2–13, New York, NY, USA, 2011. ACM.

[17] T. Gordon. Autonomous haulage system (ahs).
[18] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown,

and S. Shenker. Nox: towards an operating system for networks. ACM
SIGCOMM Computer Communication Review, 38(3):105–110, 2008.

[19] D. Halperin, T. S. Heydt-Benjamin, B. Ransford, S. S. Clark, B. Defend,
W. Morgan, K. Fu, T. Kohno, and W. H. Maisel. Pacemakers and
implantable cardiac defibrillators: Software radio attacks and zero-
power defenses. In IEEE Symposium on Security and Privacy, pages
129–142, 2008.

[20] A. Kerbrat. Autonomous platform demonstrator. Technical report, DTIC
Document, 2010.

[21] S. Kraxberger, G. Lackner, and U. Payer. Wlan location determination
without active client collaboration. In Proceedings of the 6th Inter-
national Wireless Communications and Mobile Computing Conference,
IWCMC ’10, pages 1188–1192, New York, NY, USA, 2010. ACM.

[22] L. Martin. Smss.
[23] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,

J. Rexford, S. Shenker, and J. Turner. Openflow: enabling innovation in
campus networks. ACM SIGCOMM Computer Communication Review,
38(2):69–74, 2008.

[24] R. Mitchell and I. Chen. Behavior rule based intrusion detection for
supporting secure medical cyber physical systems. In 21th IEEE Inter-

national Conference on Computer Communication Networks, Munich,
Germany, 08/2012 2012.

[25] NBCI. A review of the security of insulin pump infusion systems.
[26] I. Onat and A. Miri. An intrusion detection system for wireless sensor

networks. In WiMob (3), pages 253–259, 2005.
[27] M. Raibert, K. Blankespoor, G. Nelson, R. Playter, et al. Bigdog,

the rough-terrain quadruped robot. In Proceedings of the 17th World
Congress of the International Federation of Automatic Control, pages
10823–10825, 2008.

[28] N. Sastry, U. Shankar, and D. Wagner. Secure verification of location
claims. In Proceedings of the 2nd ACM workshop on Wireless security,
pages 1–10. ACM, 2003.

[29] S. Schechter. Security that is meant to be skin deep using ultraviolet
micropigmentation to store emergency-access keys for implantable
medical devices.

[30] S. Shin, P. Porras, V. Yegneswaran, M. Fong, G. Gu, and M. Tyson.
Fresco: Modular composable security services for software-defined
networks. In To appear in the ISOC Network and Distributed System
Security Symposium, 2013.

[31] R. Skowyra, A. Lapets, A. Bestavros, and A. Kfoury. Verifiably-
Safe Software-Defined Networks for CPS. In Proceedings of the 2nd
ACM International Conference on High Confidence Networked Systems
(HiCoNS 2013), Philedelphia, PA, USA, April 2013.

[32] A. T. Stentz, C. Dima, C. Wellington, H. Herman, and D. Stager. A
system for semi-autonomous tractor operations. Autonomous Robots,
13(1):87–103, July 2002.

[33] K. Systems. Automated materials handling systems.
[34] A. Vora and M. Nesterenko. Secure location verification using radio

broadcast. Dependable and Secure Computing, IEEE Transactions on,
3(4):377–385, 2006.

[35] F. Xu, Z. Qin, C. C. Tan, B. Wang, and Q. Li. Imdguard: Securing
implantable medical devices with the external wearable guardian. In
INFOCOM, pages 1862–1870, 2011.

[36] G. Yan, S. Olariu, and M. C. Weigle. Providing vanet security through
active position detection. Computer Communications, 31(12):2883–
2897, 2008.


