NETEMBED: A Network Resource Mapping Service for Distributed Applications’

Jorge Londofiot
jmlon@cs.bu.edu

Azer Bestavros
bestlcs.bu.edu

Computer Science Department
Boston University

Abstract

Emerging configurable infrastructures (large-scale over-
lays, grids, distributed testbeds, and sensor networks
among others) comprise diverse sets of computing re-
sources and network conditions. The distributed applica-
tions to be deployed on these infrastructures exhibit in-
creasingly complex constraints and requirements on the re-
sources they require. Thus, a common problem facing the
efficient deployment of distributed applications on these in-
frastructures is that of mapping application-level require-
ments onto the network in such a manner that the require-
ments of the application are realized. We present two new
techniques to tackle this combinatorially-hard problem that
thanks to a number of heuristics, are able to find feasible so-
lutions or determine the non-existence of a solution in most
cases, where otherwise the problem would be intractable.
These techniques are also false negative free, a common
problem among other heuristics currently in use.

1 Introduction

Motivation: A common problem when deploying a dis-
tributed application is that of selecting the resources to
be used. It is well known that the choice of resources
plays a major role in determining the application’s perfor-
mance. A canonical example are overlay networks of end-
systems, such as those required in grid computing environ-
ments [7, 13, 6, 5, 14].

Challenge: Given the requirements of an application and
the characteristics of the underlying hosting infrastructure,

T This work is supported in part by a number of NSF awards,
including CISE/CSR Award #0720604, ENG/EFRI Award #0735974,
CISE/CNS Award #0524477, CNS/NeTS Award #0520166, CNS/ITR
Award #0205294, and CISE/EIA RI Award #0202067.

¥ Supported in part by the Universidad Pontificia Bolivariana and
COLCIENCIAS-Instituto Colombiano para el Desarrollo de la Ciencia y
la Tecnologia “Francisco José de Caldas”.

978-1-4244-1694-3/08/$25.00 ©2008 IEEE

find (if possible) a mapping between the nodes and links of
the query and those of the hosting underlying infrastructure.
Since the the size of the query for any practical application
is much smaller than that of the hosting infrastructure, the
mapping problem is better viewed as an embedding problem
— that of embedding the a virtual graph (the query) into the
hosting environment.

At its heart, the network embedding problem is a
combinatorial search problem. In practice, however, the
more constrained the virtual topology is, the less the num-
ber of links/nodes that will satisfy the constraints. Such
simple observation allows us to prune significant portions
of the search space, turning what would be otherwise a
computationally-impractical problem into a problem solv-
able for queries of sizes at least as large as what is com-
monly found in practice.

Contribution: We present various heuristics to efficiently
handle this problem. They do so by pruning large portions
of the search space, but contrary to other well known tech-
niques ours do not overlook any valid embeddings: If an
embedding is possible, our approach will find it, if given
enough time. We also present an implementation of our pro-
posed techniques, which we call NETEMBED, together with
extensive performance evaluation experiments using several
combinations of synthetic queries into PlanetLab as hosting
environment. Our results show that NETEMBED is quite
effective in identifying one (or all) possible embeddings for
quite sizable test cases, while offering a much broader scope
than currently available techniques.

2 The netEmbed Service Model

The embedding service would include the components
illustrated in Figure 1:

1. A model of the real infrastructure that characterizes the
resources available. Such model could be maintained

Resource
Reservation
'y
Vs S e
Matching (—
Service Application
-

l\;ap/pings

SRR
Monitoring i = i Ty ¢
0 ye Hosting N
’I { Infrastructure
I
Y

Query

Figure 1. Architecture of the NETEMBED ser-
vice, showing its basic components.

either by a monitoring service, a resource manager, or
a combination of both.

2. The mapping service itself, where applications would
submit their queries and get a list of possible map-
pings. An interactive service would facilitate the ad-
justment (negotiation) of the requirements if the query
cannot be satisfied, or allow it to adjust the mapping
dynamically, as the application needs change.

3. Optionally, if a resource reservation system is in place,
applications would allocate the selected mapping and
the network model would be adjusted accordingly.

In the present work, we are focusing on the problem
of finding feasible mappings. An interesting future exten-
sion of this work would involve the consideration of opti-
mality functions and being able not only to find the optimal
by evaluating the cost of each feasible solution, but to use
the optimality condition to guide/prune the search process
itself.

3 Basic Definitions and Terminology

We use the term Hosting Infrastructure to refer to the
target of an embedding service. A hosting infrastructure is
described as a labelled graph R =< V, E >. Labels for
nodes and edges may include numeric values or ranges and
categorical classes such as “Link (n1,ns) is Myrinet” or
“node n is linux-2.6”, for example.

We use the term Query to refer to the application that
needs to be embedded into the hosting infrastructure. A
query is a labelled graph) =< V, E >, whose labels rep-
resent constraints given by the application.

We use the term Mapping to refer to a one-to-one (in-
jective) function m : (@ — R, such that for all query
nodes ng € Q, ng = m(ng) is the corresponding node
in the hosting infrastructure, such that all node and edge

N\
$ O
—~ 4 -
@ 0L —0O
Root A
o)
N
Y
1* assignment: 2™ assignment: m™ assignment:
n choices n-1 choices n-m+1 choices
per branch per branch

Figure 2. lllustration of the permutation tree
that defines the search space.

constraints are satisfied. To simplify notation, we will use
q — r to indicate that node ¢ maps to node .

We use the term Constraint Expression to refer to a
boolean expression that specifies additional relationships
that must be preserved by the mapping function. For exam-
ple we may be interested in a mapping that restricts the aver-
age delay between nodes within a percentage range, or that
certain particular nodes get bound to physical nodes with
certain attributes, say operating system, processor type,
speed, efc. Such constraints take the form of a boolean
expression relating query network nodes/edges to hosting
infrastructure nodes/edges. NETEMBED defines a simple
constraint expression language, which we describe later in
Section 5.

4 netEmbed Mapping Algorithms

4.1 Exhaustive Search with Constraint
Filtering (ECF)

This algorithm is an improved branch and bound, where the
search space takes the form of a tree. As illustrated in Figure
2, the first level represents all potential mappings r; for the
first query node ¢;. There are at most n such mappings.
Once ¢; has been assigned, there are at most n — 1 choices
for g» and so for. If n = |Ng| and m = |Ng|, the size
of the search space is P],,, which is prohibitively expensive
even for moderate values of n and m. Three strategies help
expedite the search:

1. Pruning: If the mapping up to the current node is in-
feasible, the entire branch derived from this node is
infeasible and it is pruned.

2. Reordering: If we knew that there are n; nodes at level
i, then reordering the tree so that n; < n; for i <

J reduces the total number of nodes in the tree, thus
minimizing the search space.

3. Filtering: By checking individual node and edge con-
straints we can construct a candidates filter F', which
serves two purposes: use topological constraints to
prune infeasible mappings and estimating the number
of candidates per query node.

Thus, in the first stage of the ECF algorithm, it evalu-
ates the constraint expression for every possible pair of vir-
tual and real edges, producing a list of candidate mappings
of the form:

{(lh — 71,42 — T2)a }

Each cell in the candidates matrix F' has coordinates
(v, 7,vs), and contains the set of candidate mappings for v,
when v is mapped into r. Therefore, each matching adds an
element to F:
(q1,71,G2) < 72

Conversely, when there is no match, ECF keeps these results
in a second filter F, constructed in exactly the same way. F'
will then be useful in restricting the set of candidates given
the current partial mapping.

The ECF algorithm then proceeds as follows:

(1) Pick the first virtual node vs as the one with the least
number of candidates. Being the first, it can be chosen from:

U Flv,r,vs] €))

allveENg,reENRg

(2) For subsequent nodes, say node v;, choose the mappings
from the intersection of candidates for all previous nodes v;
that have an edge with v; and that do not violate any of
the constraints. Real nodes that have been already assigned
cannot be considered. Expression (2) gives the set of can-
didate nodes. This process guarantees that each additional
node mapping is consistent with the topology and the estab-
lished constraints.

F[Uj, T, 1},‘]
all j<i|(vj,v;)EEQA(vi,vj)EEQ

U Fluj,rj,vi

all j<i|(vj,v;)EEQA(vi,vj)EEQ
{7‘17"'77‘7;—1} (2)

Once Ng mappings have been found using the above pro-
cess, then this is a valid mapping for the whole query. The
complete algorithm incorporating these filters is given in
Figure 3.

Due to space limitations, we refer the reader interested
in a more formal analysis to [8].

function beginSearch()
root «— createRoot
F «— createCandidateFilter
Candidates « set of real nodes defined by (1)
call search(root, Candidates)

function search(node, Candidates)
if node is at depth Ng
report mapping defined by branch from node to root
return
for each c in Candidates
add c as a child of node
NextCandidates < set from filter (2)
if NextCandidates is empty return
call search(c, NextCandidates)
remove child ¢ from node

Figure 3. The Exhaustive Search with Con-
straint Filtering (ECF) Algorithm.

Covered External

Boundary edges

Figure 4. Covered, Neighbor and External
sets used by Lazy Neighborhood Search al-
gorithm

4.2 Lazy Neighborhood Search (LNS)

Worst case space requirements for ECF are O(n*) This
turns out in practice to be prohibitive for under-constrained
queries, i.e., cases where the constraints do not significantly
reduce the number of candidates. This motivates the de-
velopment of a second algorithm which seeks to minimize
the amount of state information kept during the search. The
main idea behind this algorithm is illustrated in Figure 4.

At any point in time there are three sets: Covered,
which contains the set of query nodes already matched,
Netighbors, which contains the set of nodes connected to
at least one covered node, and External, which contains
the set of query nodes with no connections to the covered
set. At each stage, the algorithm picks one of the neigh-
bor vertices, and checks if there is a mapping that would al-
low it to satisfy topological and query constraints against all

covered nodes, and if so, it adds that vertex to the covered
set. This guarantees that all the covered vertices constitute
a valid partial match. Clearly, when all query vertices are
in the covered set we have a complete matching. Figure 5
shows the pseudocode of this algorithm.

Our implementation of this algorithm uses two heuris-
tics to help prune invalid options as soon as possible: (1)
In step 3, we always pick the largest degree query vertex,
so that the C'overed set grows quickly to a set of highly
connected nodes. This would ensure that neighbors will
be more likely to having many links to the C'overed set
and therefore less chances of having many valid mappings.
(2) In step 5, while picking any neighbor would be correct,
choosing the one with more links to the C'overed set forces
the largest possible conjunction of constraints that must be
satisfied, which helps prune invalid paths as soon as possi-
ble. Due to its focus on exploring neighboring nodes and its
preference for nodes that would result in less mappings to
check for feasibility, we refer to this algorithm as the Lazy
Neighborhood Search (LNS) algorithm.

function LazyNeighborhoodSearch()
Covered, Neighbors «— ¢
External sets < set of all vertexes
Pick one vertex, move it to the Covered set
Vertexes connected to this move to the Neighbor set
current <« neighbor vertex
ConnectingEdges «— edges connecting current to covered vertexes
For all possible mappings for Connecting Edges
If this mapping satisfies all constraints
Add current to Covered
Update Neighbors
If there are no more neighbors
This is a good mapping
Return to try alternative mappings
Otherwise
Go recursively to step 5
Otherwise try another mapping for ConnetingEdges
and if none passes, then return there is no mapping

PR P00 d0 0 WwN
W R O = — = — — — — — —

e
o U

Figure 5. The Lazy Neighborhood Search
(LNS) Algorithm.

Due to space limitations, we refer those interested in a
more in depth analysis to [8].

5 Constraint Representation in netEmbed

To provide a general framework for specifying con-
straints between the query and the hosting infrastructure
NETEMBED implementation includes a constraint expres-
sion language, that basically follows the rules of Java for
creating boolean expressions. The language provides the
standard boolean operators (&&, ||, !), relational operators

(==,!=, >, <, >=, <=), a basic set of arithmetic opera-
tors (4+,—,%*,/) and a few functions (abs, sqrt).

The constraint expression is evaluated when compar-
ing every edge of the virtual network with every edge of the
hosting network. If such an evaluation returns a true value,
the mapping between these edges is feasible. The attributes
of the links and nodes for both, query and hosting network,
are available in the standard dot notation as illustrated in the
example below.

We also found to be a very common need to be able
to bind an attribute of a query object to an attribute of the
hosting object, but only for some objects. For that purpose
the language also provides the function i sBoundTo.

As a concrete example, the fragment below specifies
that a match is acceptable as long as the specified query link
delay is within the minimum and maximum overlay net-
work link delays, and requested bandwidth is less or equal
to the available bandwidth. It also requires that if the vir-
tual node has an attribute osType, then the matching node
must have the same attribute value.

vEdge.avgDelay>=rEdge.minDelay &&
vEdge.avgDelay<=rEdge.maxDelay &&
vEdge.availBw<=rEdge.availBw &&
isBoundTo (vSource.osType, rSource.osType)

Our NETEMBED implementation uses the well known
tools JFlex[2] and CUP[1] to implement the lexer and parser
of the constraint expression language.

6 Performance Evaluation

6.1 Experimental Setting

For each one of our experiments we must provide two
graphs to NETEMBED: the hosting infrastructure and the
query. As ainfrastructure for the deployment of our queries,
we chose PlanetLab [11] as it provides a very representa-
tive sample of the connectivity between research centers
throughout the Internet.

The generation of the queries is a bit trickier. In the
presentation that follows we have adopted one of three ap-
proaches in generating the query networks. The first one
is to pick a subgraph of the hosting infrastructure as the
query. One advantage of using this approach is that, since
the query is “sampled” from the hosting network, we know
in advance that an embedding exists. This provides us with
good test cases for true positives. By randomly modify-
ing a few nodes/edges on the query, giving infeasible val-
ues to some of their attributes, we obtain our second set of

Exhaustive search + Contraint Filtering
Planetlab Topology N=296 E=28996

Time (sec)
®

20 40 60 80 100 120 140 160 180 200 220
Virtual network size (Nodes)

(a) ECF

Lazy Neighborhood Search
Planetlab Topology N=296 E=28996
T T T T

140

120 |

100

80

Time (sec)

L i L L L L L
80 100 120 140 160 180 200 220
Virtual network size (Nodes)

(b) LNS

Figure 6. Query Time using the ECF and LNS
algorithms.

queries that provides true negatives. Finally, by using syn-
thetically generated graphs with a regular structure, such as
trees, rings, stars, cliques, efc., we obtain queries typical for
cases such as the parse trees of a large composition of func-
tions, or applications that exhibit a regular communication
structure, as are many P2P or DHT applications.

The main performance metric we consider in our ex-
periments is the time it takes NETEMBED to answer a query.
The times reported for all experiments presented in this sec-
tion were obtained by running NETEMBED on an Dual Intel
Xeon 2Ghz system with 1GB of main memory (enough for
NETEMBED to avoid any noticeable paging).

6.2 Evaluation using random graphs

In these experiments we used the PlanetLab all-pairs ping
trace [16] as model of the hosting network. This dataset
provides maximum, minimum and average delay between
PlanetLab sites. Notice that there are 296 sites in the trace,
each site hosting a few machines. The trace contains sites
that were non-responding, so the actual number of active
sites is a little lower and the underlying graph is not a clique.

In any case, the network has 28,996 edges, providing a rich
and large enough environment for our tests.

The queries were generated as random connected sub-
graphs from the hosting infrastructure. As we alluded be-
fore, setting the query to be a subgraph from the hosting
network guarantees that there is always at least one match.
For every query of size N, multiple queries were produced
varying the number of edges (E). For each (N,E)-pair we
constructed 5 different queries, so the results were not bi-
ased by a particular network configuration. The network
embedding algorithms were run for each different query us-
ing the same constraint expression in all cases, namely that
the real link delay range is within the specified query-link
delay range.

Figure 6 (a) shows the performance results for the ECF
algorithm. For each data point, the average and the 90%
confidence interval are shown. A second line indicates the
time to find the first match, which is an interesting perfor-
mance measure for applications that require just a single
feasible embedding. Given the fixed size of the hosting net-
work, we limit the queries to be up to 200 nodes, and for
the largest cases we had running times around 14 seconds
on our 2Ghz Xeon system. It is worth noticing that, hav-
ing a fixed-size hosting network, the search times seem to
grow linearly with the size of the query, indicating that our
filtering heuristic has been quite effective in avoiding the
complexity associated with the full exploration of the search
space.

An interesting observation from Figure 6 (a) is that the
difference between the time to retrieve all matches and the
time to find the first match is very small, indicating that
most of the time was spent computing the candidates fil-
ter and then exploring the unmatched region of the search
space. Once solutions are found, many similar solutions are
found by varying just a few nodes (close to the leaves of the
tree).

The results for the LNS algorithm are shown in Figure
6 (b). Interestingly, LNS does not have a regular trend. We
tracked the cause of the high variability to the amount of
backtracking, which is dependent on the particular case and
the starting condition. In general, LNS was significantly
slower to explore all the feasible mappings, but if we com-
pare the times to find the first mapping, the results are not
too far away from those of the ECF algorithm.

To evaluate the case where an embedding of a random
graph is not feasible we performed two sets of experiments.
The first set used queries that were known to be feasible (as
above) and the second set used queries that were known to
be infeasible. The infeasible queries were generated from
the feasible queries by changing the delay of some edges

Time to find the First Clique Match
Planetlab Topology N=296 E=28996

60 . .
ECF ——
LNS -

50 g

40 -

30

Time (sec)

x

Xemen e Ko R -
L L

e o, S
2 4 6 8 10 12 14 16 18 20
Virtual network size (Nodes)

Figure 7. Finding Matchings for a Clique in
Planetlab

to infeasible values. Notice that doing so does not change
the topology of the query network, only the constraints im-
posed on what would constitute a feasible embedding. In
general, the performance for ECF is very similar in both
cases, indicating that after filtering, the portion of the search
space explored is essentially the same. LNS is noticeably
slower. However, it determines the non-existence of feasi-
ble matches (no-match results) in less time.

6.3 Evaluation Using Queries with Regu-
lar Topologies

The two characteristics that make an embedding difficult
to find are: (1) under-constrained queries, and (2) queries
with regular topologies. Under-constrained queries do not
provide enough conditions to significantly prune the search
space. In the limit, the only constraint is that of the query
topology and the problem is reduced to a subgraph isomor-
phism problem. With regular topologies (such as cliques,
rings, stars with equal or no constraints on all edges), any
permutation of a partial match is also a partial match. Thus,
if this partial match leads to a dead end, the embedding al-
gorithms will end up performing the same amount of (use-
less) work on every permutation it tries, a phenomenon
called trashing.

To evaluate the performance of our algorithms under
these worst-case scenarios, we used as queries a series of
cliques of increasing size, whose only constraint was to
have a end-to-end delay between 10 and 100ms. We then try
to find matches on PlanetLab for each one of these cliques.
The query is under-constrained as there are about 6,700
edges that fall in these delay range and the query topology
is regular.

Figure 7 compares the two algorithms using the time to
find the first match. In this case, the LNS algorithm greatly

Time to find first match
Irregular Composite Topologies in Planetlab N=296 E=28996

Time (sec)

o =4 N W A OO N ® ©

5 10 15 20 25 30 35 40
Virtual network size (Nodes)

Figure 8. Finding matchings for composites
of regular topologies

outperforms ECF. When it finds a solution it finds it quickly
as the heuristic to grow the matching with the vertex with
more constraints helps prune non-matching cases rapidly as
this forces each new vertex to match all the already selected
vertexes.

The last set of experiments consider composite
queries. A composite query is a two-level hierarchical
topology, where both levels have regular structures. So for
example the root level could be a ring, a star, or a clique,
and each vertex of the root level is also a regular structure.
Many practical applications follow these kinds of structures,
including multicast trees, distributed hash tables, P2P appli-
cations, to name a few. The delay constraints for the query
are randomly assigned from the 25-175ms range, which
contains about 70% of the links in PlanetLab. Given that
there usually thousands of mappings for these queries, the
interesting measure here is the average time to find the first
match. Figure 8 shows the results of this experiment.

The interesting observation is that (as with the first
match in the case of cliques) LNS finds the first solution
in almost constant time and by far outperforms the ECF
algorithms. This reinforces the previously mentioned ob-
servation that in under-constrained queries and high-density
graphs LNS is better suited to find the first solution.

6.4 Quality of Returned Results

Using any one of our embedding algorithms, NETEMBED
may return one of three types of results: (1) The complete
set of all feasible embeddings, (2) A subset of all feasible
embeddings, and (3) An inconclusive response.

The complete set of all feasible embeddings (including
none, if the query network is impossible to embed) is re-
turned when the algorithm terminates before its preset time-
out has expired. A partial set (subset) of all feasible embed-

W Unknown
W Partial
Ful

403-enbyd
SNT-enbid
403-o1g
SN1-awg

403-2ys0dwod
SNT-ausodwo)
4D 3-2usodwoDu)
SNT-ewsodwoDu|
403-qepsueld]
SNT-GEpaueld

Experiment

Figure 9. Probability distribution of the differ-
ent types of results.

dings is returned when the algorithm times out after finding
some (but not necessarily all) feasible embeddings. Finally,
the algorithm is said to have an inconclusive response, if
it fails to produce any feasible embedding by the timeout.
In the latter case, it is inconclusive whether or not a single
feasible embedding exists.

Figure 9 shows the probability of each one of these
results for all the experiments presented earlier. The proba-
bility of finding matches was over 70% for all cases. Even
more impressive, for some types of queries, ECF and LNS
were able to find all feasible matches with a probability of
75% to 82%. Looking at the probability of finding any em-
bedding (as opposed to all embeddings) for ECF and LNS,
we observe that for queries with regular topologies (clique
and composite), LNS has a better chance of success. This,
combined with the much better performance in terms of re-
sponse time, makes LNS ideal for these kinds of queries.
On the other hand, for very constrained queries, where fil-
tering results in much more effective pruning, ECF outper-
forms LNS in both chances of success and response time.

7 Related Work

The resource mapping problem has been extensively
considered in the literature. As a representative of ear-
lier works matchmaking [12] considered the problem in the
simple scenario of finding a machine that matches the re-
quirements of a job, a task that can be easily solved in lin-
ear time. The most recent evolution of this work, called
gangmatching[13] considers the problem of coallocating a
set of resources and jobs, subject to inter-dependencies that
must be satisfied for a solution to be valid. This is closer to
our embedding problem, but it does not include the network
topology as a constraint. It could be argued that network

topology could be expressed as additional classads con-
straints, but by doing so, the size of the problem increases
significantly making it much harder. Our algorithms were
designed specifically to use the network as an additional
constraint, helping reduce even more the solution space. It
is worth noticing that our ECF algorithm pretty much re-
sembles the basic idea of the gangmatching algorithm ex-
tended with our candidate filtering technique.

Another closely related work is Redline[6]. Redline
redefines the classads language of matchmaking and poses
the problem as a constraint satisfaction problem. Its algo-
rithm is based on standard constraint satisfaction techniques
using two phases: The first for node-constraint satisfaction
and the second for arc-consistency propagation. However,
this design assumes again that computing resources are in-
dividual objects that can be combined in any arbitrary way
and, similarly to gangmatching, trying to incorporate net-
work connectivity constraints would create and extra bur-
den for this technique. Our LNS algorithm is constructed
along the ideas of doing node and arc-consistency propa-
gation, but using the underlying topology as an additional
constraint to guide the propagation phase.

In [5] the authors define a new description language
vgDL to describe sets of resources as compositions of ag-
gregates with qualitative connectivity constraints. They also
developed a search algorithm to find the mapping of the
requested resources by the introducing several simplifica-
tion rules to reduce the search space. Our work goes one
step further by taking into account quantitative constraints
and offering search algorithms that are free of false nega-
tives. The importance of matching bandwidth requirements
to meet a target QoS goal in MPI applications has been an-
alyzed in [14].

A problem similar to ours that has been previously
considered (for example in [4, 15, 9]) is the problem of opti-
mizing the schedule of grid workflows in order to minimize
the makespan of the application. Notice that our problem is
complementary in the sense that the mapping solution pro-
vided by our techniques could be used as a candidate set
for any of these schedule optimization techniques, there-
fore helping reduce the search space for the optimization
problem.

Finally, it is worth noticing that many heuristics exists
for constraint satisfaction problems, see for example [3, 10].
Our algorithms extend/adapt some of those techniques for
the specific problem presented.

8 Conclusion

The work presented in this paper is one component of
a framework for allocating resources in a distributed net-
work subject to both qualitative and quantitative constraints.
The mapping of the needed resources may not exist, may
be unique, or there may be possibly many satisfactory map-
pings. NETEMBED is a service that lets applications identify
those feasible embeddings as part of their resource selection
process.

In its current state NETEMBED assumes OS-level iso-
lation of the system’s resources. As a future line of work
NETEMBED will be aware of the load-dependence relation-
ship between applications sharing the same resources and
to take it into consideration to find feasible mappings. This
case is of particular importance as in many real-life appli-
cations there are no mechanisms to guarantee this isolation.
Take for example Planetlab slices running on the same ma-
chine, or internet links shared with many other applications.

9 Project Web Site

Additional information as well as a run-
ning demo of NETEMBED is available at:
http://csr.bu.edu/netembed

References

[1] Cup. http://www2.cs.tum.edu/projects/cup/.

[2] Jflex. http://www.jflex.de/.

[3] S.Beale. Hunter-Gatherer: Applying Constraint
Satisfaction, Branch-and-Bound and Solution Synthesis to
Computational Semantics. PhD thesis, Scholl of Computer
Science, Carnegie Mellon University, Pittsburgh, PA, May
1997.

[4] Y. Gong, M. E. Pierce, and G. C. Fox. Matchmaking
scientific workflows in grid environments. In Proceedings
of IASTED International Conference on Parallel and
Distributed Computing and Systems (PDCS 2007), pages
19-21, Cambridge, USA, November 2007.

[5] Y.-S. Kee, D. Logothetis, R. Huang, H. Casanova, and
A. A. Chien. Efficient resource description and high quality
selection for virtual grids. In CCGRID ’05: Proceedings of
the Fifth IEEE International Symposium on Cluster
Computing and the Grid (CCGrid’05) - Volume 1, pages
598-606, Washington, DC, USA, 2005. IEEE Computer
Society.

[6] C.Liu and I. Foster. A constraint language approach to
matchmaking. /4th International Workshop on Research
Issues on Data Engineering: Web Services for E-Commerce
and E-Government Applications (RIDE’04), 00:7-14, 2004.

(7]

8]

(9]

[10]

(1]

[12]

(13]

(14]

[15]

(16]

V. Lo, D. Zappala, D. Zhou, Y. Liu, and S. Zhao. Cluster
computing on the fly: P2P scheduling of idle cycles in the
Internet. In Proceedings of the 3rd International Workshop
on Peer-to-Peer Systems (IPTPS '04), San Digeo, CA,
February 2004.

J. Londofio and A. Bestavros. NETEMBED: A network
resource mapping service for distributed applications.
Technical Report 2006-32, Boston University, December
2006.

A. Mandal, K. Kennedy, C. Koelbel, G. Marin, B. Liu,

L. Johnsson, and J. Mellor-Crummey. Scheduling strategies
for mapping application workflows onto the grid. In 14th
IEEE Symposium on High Performance Distributed
Computing (HPDC 2005). IEEE Computer Society Press,
2005.

K. Marriot and P. Stuckey. Programming with Constraints:
An Introduction. The MIT Press, Cambridge,
Massachusetts, 1998.

L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A
blueprint for introducing disruptive technology into the
internet. SIGCOMM Comput. Commun. Rev., 33(1):59-64,
2003.

R. Raman, M. Livny, and M. Solomon. Matchmaking:
Distributed resource management for high throughput
computing. In IEEE International Symposium on High
Performance Distributed Computing (HPDC98), pages
140-147, July 1998.

R. Raman, M. Livny, and M. Solomon. Policy driven
heterogeneous resource co-allocation with gangmatching.
In International Symposium on High Performance
Distributed Computing (HPDCO03), pages 80-89, June
2003.

A. Roy, L. Foster, W. Gropp, N. Karonis, V. Sander, and
B. Toonen. MPICH-GQ: Quality-of-service for message
passing programs. In Proc. SC00 (SC2000), Dallas, TX,
November 2000.

R. Sakellariou and H. Zhao. A hybrid heuristic for dag
scheduling on heterogeneous systems. In Proceedings of
the 13th Heterogeneous Computing Workshop (HCW),
Santa Fe, USA, 2004.

C. Yoshikawa. All-sites-pings for planetlab.
http://ping.ececs.uc.edu/ping/.

