

978-1-4244-1694-3/08/$25.00 ©2008 IEEE

NETEMBED: A Network Resource Mapping Service for Distributed Applications†

Jorge Londoño‡ Azer Bestavros

jmlon@cs.bu.edu best@cs.bu.edu

Computer Science Department

Boston University

Abstract

Emerging configurable infrastructures (large-scale over-

lays, grids, distributed testbeds, and sensor networks

among others) comprise diverse sets of computing re-

sources and network conditions. The distributed applica-

tions to be deployed on these infrastructures exhibit in-

creasingly complex constraints and requirements on the re-

sources they require. Thus, a common problem facing the

efficient deployment of distributed applications on these in-

frastructures is that of mapping application-level require-

ments onto the network in such a manner that the require-

ments of the application are realized. We present two new

techniques to tackle this combinatorially-hard problem that

thanks to a number of heuristics, are able to find feasible so-

lutions or determine the non-existence of a solution in most

cases, where otherwise the problem would be intractable.

These techniques are also false negative free, a common

problem among other heuristics currently in use.

1 Introduction

Motivation: A common problem when deploying a dis-

tributed application is that of selecting the resources to

be used. It is well known that the choice of resources

plays a major role in determining the application’s perfor-

mance. A canonical example are overlay networks of end-

systems, such as those required in grid computing environ-

ments [7, 13, 6, 5, 14].

Challenge: Given the requirements of an application and

the characteristics of the underlying hosting infrastructure,

† This work is supported in part by a number of NSF awards,

including CISE/CSR Award #0720604, ENG/EFRI Award #0735974,

CISE/CNS Award #0524477, CNS/NeTS Award #0520166, CNS/ITR

Award #0205294, and CISE/EIA RI Award #0202067.
‡ Supported in part by the Universidad Pontificia Bolivariana and

COLCIENCIAS–Instituto Colombiano para el Desarrollo de la Ciencia y

la Tecnologı́a “Francisco José de Caldas”.

find (if possible) a mapping between the nodes and links of

the query and those of the hosting underlying infrastructure.

Since the the size of the query for any practical application

is much smaller than that of the hosting infrastructure, the

mapping problem is better viewed as an embedding problem

– that of embedding the a virtual graph (the query) into the

hosting environment.

At its heart, the network embedding problem is a

combinatorial search problem. In practice, however, the

more constrained the virtual topology is, the less the num-

ber of links/nodes that will satisfy the constraints. Such

simple observation allows us to prune significant portions

of the search space, turning what would be otherwise a

computationally-impractical problem into a problem solv-

able for queries of sizes at least as large as what is com-

monly found in practice.

Contribution: We present various heuristics to efficiently

handle this problem. They do so by pruning large portions

of the search space, but contrary to other well known tech-

niques ours do not overlook any valid embeddings: If an

embedding is possible, our approach will find it, if given

enough time. We also present an implementation of our pro-

posed techniques, which we call NETEMBED, together with

extensive performance evaluation experiments using several

combinations of synthetic queries into PlanetLab as hosting

environment. Our results show that NETEMBED is quite

effective in identifying one (or all) possible embeddings for

quite sizable test cases, while offering a much broader scope

than currently available techniques.

2 The netEmbed Service Model

The embedding service would include the components

illustrated in Figure 1:

1. Amodel of the real infrastructure that characterizes the

resources available. Such model could be maintained

1

Figure 1. Architecture of the NETEMBED ser-

vice, showing its basic components.

either by a monitoring service, a resource manager, or

a combination of both.

2. The mapping service itself, where applications would

submit their queries and get a list of possible map-

pings. An interactive service would facilitate the ad-

justment (negotiation) of the requirements if the query

cannot be satisfied, or allow it to adjust the mapping

dynamically, as the application needs change.

3. Optionally, if a resource reservation system is in place,

applications would allocate the selected mapping and

the network model would be adjusted accordingly.

In the present work, we are focusing on the problem

of finding feasible mappings. An interesting future exten-

sion of this work would involve the consideration of opti-

mality functions and being able not only to find the optimal

by evaluating the cost of each feasible solution, but to use

the optimality condition to guide/prune the search process

itself.

3 Basic Definitions and Terminology

We use the term Hosting Infrastructure to refer to the

target of an embedding service. A hosting infrastructure is

described as a labelled graph R =< V,E >. Labels for
nodes and edges may include numeric values or ranges and

categorical classes such as “Link (n1, n2) is Myrinet” or
“node n1 is linux-2.6”, for example.

We use the term Query to refer to the application that

needs to be embedded into the hosting infrastructure. A

query is a labelled graph Q =< V,E >, whose labels rep-
resent constraints given by the application.

We use the term Mapping to refer to a one-to-one (in-

jective) function m : Q → R, such that for all query
nodes nQ ∈ Q, nR = m(nQ) is the corresponding node
in the hosting infrastructure, such that all node and edge

Figure 2. Illustration of the permutation tree

that defines the search space.

constraints are satisfied. To simplify notation, we will use

q → r to indicate that node q maps to node r.

We use the term Constraint Expression to refer to a

boolean expression that specifies additional relationships

that must be preserved by the mapping function. For exam-

ple we may be interested in a mapping that restricts the aver-

age delay between nodes within a percentage range, or that

certain particular nodes get bound to physical nodes with

certain attributes, say operating system, processor type,

speed, etc. Such constraints take the form of a boolean

expression relating query network nodes/edges to hosting

infrastructure nodes/edges. NETEMBED defines a simple

constraint expression language, which we describe later in

Section 5.

4 netEmbed Mapping Algorithms

4.1 Exhaustive Search with Constraint
Filtering (ECF)

This algorithm is an improved branch and bound, where the

search space takes the form of a tree. As illustrated in Figure

2, the first level represents all potential mappings ri for the

first query node q1. There are at most n such mappings.
Once q1 has been assigned, there are at most n− 1 choices
for q2 and so for. If n = |NR| and m = |NQ|, the size
of the search space is Pn

m, which is prohibitively expensive

even for moderate values of n andm. Three strategies help
expedite the search:

1. Pruning: If the mapping up to the current node is in-

feasible, the entire branch derived from this node is

infeasible and it is pruned.

2. Reordering: If we knew that there are ni nodes at level

i, then reordering the tree so that ni < nj for i <

2

j reduces the total number of nodes in the tree, thus
minimizing the search space.

3. Filtering: By checking individual node and edge con-

straints we can construct a candidates filter F , which
serves two purposes: use topological constraints to

prune infeasible mappings and estimating the number

of candidates per query node.

Thus, in the first stage of the ECF algorithm, it evalu-

ates the constraint expression for every possible pair of vir-

tual and real edges, producing a list of candidate mappings

of the form:

{(q1 → r1, q2 → r2), ...}

Each cell in the candidates matrix F has coordinates

(v, r, vs), and contains the set of candidate mappings for vs,

when v is mapped into r. Therefore, each matching adds an
element to F:

(q1, r1, q2)← r2

Conversely, when there is no match, ECF keeps these results

in a second filter F , constructed in exactly the same way. F
will then be useful in restricting the set of candidates given

the current partial mapping.

The ECF algorithm then proceeds as follows:

(1) Pick the first virtual node vs as the one with the least

number of candidates. Being the first, it can be chosen from:
⋃

all v∈NQ,r∈NR

F [v, r, vs] (1)

(2) For subsequent nodes, say node vi, choose the mappings

from the intersection of candidates for all previous nodes vj

that have an edge with vi and that do not violate any of

the constraints. Real nodes that have been already assigned

cannot be considered. Expression (2) gives the set of can-

didate nodes. This process guarantees that each additional

node mapping is consistent with the topology and the estab-

lished constraints.

⋂

all j<i|(vj ,vi)∈EQ∧(vi,vj)∈EQ

F [vj , rj , vi]

−

⋃

all j<i|(vj ,vi)∈EQ∧(vi,vj)∈EQ

F [vj , rj , vi]

−

{r1, ..., ri−1} (2)

Once NQ mappings have been found using the above pro-

cess, then this is a valid mapping for the whole query. The

complete algorithm incorporating these filters is given in

Figure 3.

Due to space limitations, we refer the reader interested

in a more formal analysis to [8].

function beginSearch()

root← createRoot

F ← createCandidateFilter

Candidates← set of real nodes defined by (1)
call search(root, Candidates)

function search(node, Candidates)

if node is at depthNQ

report mapping defined by branch from node to root

return

for each c in Candidates

add c as a child of node

NextCandidates← set from filter (2)
ifNextCandidates is empty return

call search(c,NextCandidates)

remove child c from node

Figure 3. The Exhaustive Search with Con-

straint Filtering (ECF) Algorithm.

Figure 4. Covered, Neighbor and External

sets used by Lazy Neighborhood Search al-

gorithm

4.2 Lazy Neighborhood Search (LNS)

Worst case space requirements for ECF are O(n4) This
turns out in practice to be prohibitive for under-constrained

queries, i.e., cases where the constraints do not significantly

reduce the number of candidates. This motivates the de-

velopment of a second algorithm which seeks to minimize

the amount of state information kept during the search. The

main idea behind this algorithm is illustrated in Figure 4.

At any point in time there are three sets: Covered,
which contains the set of query nodes already matched,

Neighbors, which contains the set of nodes connected to
at least one covered node, and External, which contains
the set of query nodes with no connections to the covered

set. At each stage, the algorithm picks one of the neigh-

bor vertices, and checks if there is a mapping that would al-

low it to satisfy topological and query constraints against all

3

covered nodes, and if so, it adds that vertex to the covered

set. This guarantees that all the covered vertices constitute

a valid partial match. Clearly, when all query vertices are

in the covered set we have a complete matching. Figure 5

shows the pseudocode of this algorithm.

Our implementation of this algorithm uses two heuris-

tics to help prune invalid options as soon as possible: (1)

In step 3, we always pick the largest degree query vertex,

so that the Covered set grows quickly to a set of highly
connected nodes. This would ensure that neighbors will

be more likely to having many links to the Covered set
and therefore less chances of having many valid mappings.

(2) In step 5, while picking any neighbor would be correct,

choosing the one with more links to the Covered set forces
the largest possible conjunction of constraints that must be

satisfied, which helps prune invalid paths as soon as possi-

ble. Due to its focus on exploring neighboring nodes and its

preference for nodes that would result in less mappings to

check for feasibility, we refer to this algorithm as the Lazy

Neighborhood Search (LNS) algorithm.

function LazyNeighborhoodSearch()

1) Covered,Neighbors ← φ

2) External sets← set of all vertexes
3) Pick one vertex, move it to the Covered set

4) Vertexes connected to this move to theNeighbor set

5) current← neighbor vertex
6) ConnectingEdges← edges connecting current to covered vertexes
7) For all possible mappings for ConnectingEdges

8) If this mapping satisfies all constraints

9) Add current to Covered

10) UpdateNeighbors

11) If there are no more neighbors

12) This is a good mapping

13) Return to try alternative mappings

14) Otherwise

15) Go recursively to step 5

16) Otherwise try another mapping for ConnetingEdges

and if none passes, then return there is no mapping

Figure 5. The Lazy Neighborhood Search

(LNS) Algorithm.

Due to space limitations, we refer those interested in a

more in depth analysis to [8].

5 Constraint Representation in netEmbed

To provide a general framework for specifying con-

straints between the query and the hosting infrastructure

NETEMBED implementation includes a constraint expres-

sion language, that basically follows the rules of Java for

creating boolean expressions. The language provides the

standard boolean operators (&&, ||, !), relational operators

(==, ! =, >, <, >=, <=), a basic set of arithmetic opera-
tors (+,−,∗,/) and a few functions (abs, sqrt).

The constraint expression is evaluated when compar-

ing every edge of the virtual network with every edge of the

hosting network. If such an evaluation returns a true value,

the mapping between these edges is feasible. The attributes

of the links and nodes for both, query and hosting network,

are available in the standard dot notation as illustrated in the

example below.

We also found to be a very common need to be able

to bind an attribute of a query object to an attribute of the

hosting object, but only for some objects. For that purpose

the language also provides the function isBoundTo.

As a concrete example, the fragment below specifies

that a match is acceptable as long as the specified query link

delay is within the minimum and maximum overlay net-

work link delays, and requested bandwidth is less or equal

to the available bandwidth. It also requires that if the vir-

tual node has an attribute osType, then the matching node

must have the same attribute value.

vEdge.avgDelay>=rEdge.minDelay &&

vEdge.avgDelay<=rEdge.maxDelay &&

vEdge.availBw<=rEdge.availBw &&

isBoundTo(vSource.osType, rSource.osType)

Our NETEMBED implementation uses the well known

tools JFlex[2] and CUP[1] to implement the lexer and parser

of the constraint expression language.

6 Performance Evaluation

6.1 Experimental Setting

For each one of our experiments we must provide two

graphs to NETEMBED: the hosting infrastructure and the

query. As a infrastructure for the deployment of our queries,

we chose PlanetLab [11] as it provides a very representa-

tive sample of the connectivity between research centers

throughout the Internet.

The generation of the queries is a bit trickier. In the

presentation that follows we have adopted one of three ap-

proaches in generating the query networks. The first one

is to pick a subgraph of the hosting infrastructure as the

query. One advantage of using this approach is that, since

the query is “sampled” from the hosting network, we know

in advance that an embedding exists. This provides us with

good test cases for true positives. By randomly modify-

ing a few nodes/edges on the query, giving infeasible val-

ues to some of their attributes, we obtain our second set of

4

 0

 2

 4

 6

 8

 10

 12

 14

 16

 20 40 60 80 100 120 140 160 180 200 220

T
im

e
 (

s
e

c
)

Virtual network size (Nodes)

Exhaustive search + Contraint Filtering
Planetlab Topology N=296 E=28996

ECF
First

(a) ECF

 0

 20

 40

 60

 80

 100

 120

 140

 20 40 60 80 100 120 140 160 180 200 220

T
im

e
 (

s
e

c
)

Virtual network size (Nodes)

Lazy Neighborhood Search
Planetlab Topology N=296 E=28996

LNS
First

(b) LNS

Figure 6. Query Time using the ECF and LNS

algorithms.

queries that provides true negatives. Finally, by using syn-

thetically generated graphs with a regular structure, such as

trees, rings, stars, cliques, etc., we obtain queries typical for

cases such as the parse trees of a large composition of func-

tions, or applications that exhibit a regular communication

structure, as are many P2P or DHT applications.

The main performance metric we consider in our ex-

periments is the time it takes NETEMBED to answer a query.

The times reported for all experiments presented in this sec-

tion were obtained by running NETEMBED on an Dual Intel

Xeon 2Ghz system with 1GB of main memory (enough for

NETEMBED to avoid any noticeable paging).

6.2 Evaluation using random graphs

In these experiments we used the PlanetLab all-pairs ping

trace [16] as model of the hosting network. This dataset

provides maximum, minimum and average delay between

PlanetLab sites. Notice that there are 296 sites in the trace,

each site hosting a few machines. The trace contains sites

that were non-responding, so the actual number of active

sites is a little lower and the underlying graph is not a clique.

In any case, the network has 28,996 edges, providing a rich

and large enough environment for our tests.

The queries were generated as random connected sub-

graphs from the hosting infrastructure. As we alluded be-

fore, setting the query to be a subgraph from the hosting

network guarantees that there is always at least one match.

For every query of size N , multiple queries were produced
varying the number of edges (E). For each (N,E)-pair we

constructed 5 different queries, so the results were not bi-

ased by a particular network configuration. The network

embedding algorithms were run for each different query us-

ing the same constraint expression in all cases, namely that

the real link delay range is within the specified query-link

delay range.

Figure 6 (a) shows the performance results for the ECF

algorithm. For each data point, the average and the 90%

confidence interval are shown. A second line indicates the

time to find the first match, which is an interesting perfor-

mance measure for applications that require just a single

feasible embedding. Given the fixed size of the hosting net-

work, we limit the queries to be up to 200 nodes, and for

the largest cases we had running times around 14 seconds

on our 2Ghz Xeon system. It is worth noticing that, hav-

ing a fixed-size hosting network, the search times seem to

grow linearly with the size of the query, indicating that our

filtering heuristic has been quite effective in avoiding the

complexity associated with the full exploration of the search

space.

An interesting observation from Figure 6 (a) is that the

difference between the time to retrieve all matches and the

time to find the first match is very small, indicating that

most of the time was spent computing the candidates fil-

ter and then exploring the unmatched region of the search

space. Once solutions are found, many similar solutions are

found by varying just a few nodes (close to the leaves of the

tree).

The results for the LNS algorithm are shown in Figure

6 (b). Interestingly, LNS does not have a regular trend. We

tracked the cause of the high variability to the amount of

backtracking, which is dependent on the particular case and

the starting condition. In general, LNS was significantly

slower to explore all the feasible mappings, but if we com-

pare the times to find the first mapping, the results are not

too far away from those of the ECF algorithm.

To evaluate the case where an embedding of a random

graph is not feasible we performed two sets of experiments.

The first set used queries that were known to be feasible (as

above) and the second set used queries that were known to

be infeasible. The infeasible queries were generated from

the feasible queries by changing the delay of some edges

5

 0

 10

 20

 30

 40

 50

 60

 2 4 6 8 10 12 14 16 18 20

T
im

e
 (

s
e

c
)

Virtual network size (Nodes)

Time to find the First Clique Match
Planetlab Topology N=296 E=28996

ECF
LNS

Figure 7. Finding Matchings for a Clique in

Planetlab

to infeasible values. Notice that doing so does not change

the topology of the query network, only the constraints im-

posed on what would constitute a feasible embedding. In

general, the performance for ECF is very similar in both

cases, indicating that after filtering, the portion of the search

space explored is essentially the same. LNS is noticeably

slower. However, it determines the non-existence of feasi-

ble matches (no-match results) in less time.

6.3 Evaluation Using Queries with Regu-
lar Topologies

The two characteristics that make an embedding difficult

to find are: (1) under-constrained queries, and (2) queries

with regular topologies. Under-constrained queries do not

provide enough conditions to significantly prune the search

space. In the limit, the only constraint is that of the query

topology and the problem is reduced to a subgraph isomor-

phism problem. With regular topologies (such as cliques,

rings, stars with equal or no constraints on all edges), any

permutation of a partial match is also a partial match. Thus,

if this partial match leads to a dead end, the embedding al-

gorithms will end up performing the same amount of (use-

less) work on every permutation it tries, a phenomenon

called trashing.

To evaluate the performance of our algorithms under

these worst-case scenarios, we used as queries a series of

cliques of increasing size, whose only constraint was to

have a end-to-end delay between 10 and 100ms. We then try

to find matches on PlanetLab for each one of these cliques.

The query is under-constrained as there are about 6,700

edges that fall in these delay range and the query topology

is regular.

Figure 7 compares the two algorithms using the time to

find the first match. In this case, the LNS algorithm greatly

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 5 10 15 20 25 30 35 40

T
im

e
 (

s
e

c
)

Virtual network size (Nodes)

Time to find first match
Irregular Composite Topologies in Planetlab N=296 E=28996

ECF
LNS

Figure 8. Finding matchings for composites

of regular topologies

outperforms ECF. When it finds a solution it finds it quickly

as the heuristic to grow the matching with the vertex with

more constraints helps prune non-matching cases rapidly as

this forces each new vertex to match all the already selected

vertexes.

The last set of experiments consider composite

queries. A composite query is a two-level hierarchical

topology, where both levels have regular structures. So for

example the root level could be a ring, a star, or a clique,

and each vertex of the root level is also a regular structure.

Many practical applications follow these kinds of structures,

including multicast trees, distributed hash tables, P2P appli-

cations, to name a few. The delay constraints for the query

are randomly assigned from the 25-175ms range, which

contains about 70% of the links in PlanetLab. Given that

there usually thousands of mappings for these queries, the

interesting measure here is the average time to find the first

match. Figure 8 shows the results of this experiment.

The interesting observation is that (as with the first

match in the case of cliques) LNS finds the first solution

in almost constant time and by far outperforms the ECF

algorithms. This reinforces the previously mentioned ob-

servation that in under-constrained queries and high-density

graphs LNS is better suited to find the first solution.

6.4 Quality of Returned Results

Using any one of our embedding algorithms, NETEMBED

may return one of three types of results: (1) The complete

set of all feasible embeddings, (2) A subset of all feasible

embeddings, and (3) An inconclusive response.

The complete set of all feasible embeddings (including

none, if the query network is impossible to embed) is re-

turned when the algorithm terminates before its preset time-

out has expired. A partial set (subset) of all feasible embed-

6

Figure 9. Probability distribution of the differ-

ent types of results.

dings is returned when the algorithm times out after finding

some (but not necessarily all) feasible embeddings. Finally,

the algorithm is said to have an inconclusive response, if

it fails to produce any feasible embedding by the timeout.

In the latter case, it is inconclusive whether or not a single

feasible embedding exists.

Figure 9 shows the probability of each one of these

results for all the experiments presented earlier. The proba-

bility of finding matches was over 70% for all cases. Even

more impressive, for some types of queries, ECF and LNS

were able to find all feasible matches with a probability of

75% to 82%. Looking at the probability of finding any em-

bedding (as opposed to all embeddings) for ECF and LNS,

we observe that for queries with regular topologies (clique

and composite), LNS has a better chance of success. This,

combined with the much better performance in terms of re-

sponse time, makes LNS ideal for these kinds of queries.

On the other hand, for very constrained queries, where fil-

tering results in much more effective pruning, ECF outper-

forms LNS in both chances of success and response time.

7 Related Work

The resource mapping problem has been extensively

considered in the literature. As a representative of ear-

lier works matchmaking [12] considered the problem in the

simple scenario of finding a machine that matches the re-

quirements of a job, a task that can be easily solved in lin-

ear time. The most recent evolution of this work, called

gangmatching[13] considers the problem of coallocating a

set of resources and jobs, subject to inter-dependencies that

must be satisfied for a solution to be valid. This is closer to

our embedding problem, but it does not include the network

topology as a constraint. It could be argued that network

topology could be expressed as additional classads con-

straints, but by doing so, the size of the problem increases

significantly making it much harder. Our algorithms were

designed specifically to use the network as an additional

constraint, helping reduce even more the solution space. It

is worth noticing that our ECF algorithm pretty much re-

sembles the basic idea of the gangmatching algorithm ex-

tended with our candidate filtering technique.

Another closely related work is Redline[6]. Redline

redefines the classads language of matchmaking and poses

the problem as a constraint satisfaction problem. Its algo-

rithm is based on standard constraint satisfaction techniques

using two phases: The first for node-constraint satisfaction

and the second for arc-consistency propagation. However,

this design assumes again that computing resources are in-

dividual objects that can be combined in any arbitrary way

and, similarly to gangmatching, trying to incorporate net-

work connectivity constraints would create and extra bur-

den for this technique. Our LNS algorithm is constructed

along the ideas of doing node and arc-consistency propa-

gation, but using the underlying topology as an additional

constraint to guide the propagation phase.

In [5] the authors define a new description language

vgDL to describe sets of resources as compositions of ag-

gregates with qualitative connectivity constraints. They also

developed a search algorithm to find the mapping of the

requested resources by the introducing several simplifica-

tion rules to reduce the search space. Our work goes one

step further by taking into account quantitative constraints

and offering search algorithms that are free of false nega-

tives. The importance of matching bandwidth requirements

to meet a target QoS goal in MPI applications has been an-

alyzed in [14].

A problem similar to ours that has been previously

considered (for example in [4, 15, 9]) is the problem of opti-

mizing the schedule of grid workflows in order to minimize

the makespan of the application. Notice that our problem is

complementary in the sense that the mapping solution pro-

vided by our techniques could be used as a candidate set

for any of these schedule optimization techniques, there-

fore helping reduce the search space for the optimization

problem.

Finally, it is worth noticing that many heuristics exists

for constraint satisfaction problems, see for example [3, 10].

Our algorithms extend/adapt some of those techniques for

the specific problem presented.

7

8 Conclusion

The work presented in this paper is one component of

a framework for allocating resources in a distributed net-

work subject to both qualitative and quantitative constraints.

The mapping of the needed resources may not exist, may

be unique, or there may be possibly many satisfactory map-

pings. NETEMBED is a service that lets applications identify

those feasible embeddings as part of their resource selection

process.

In its current state NETEMBED assumes OS-level iso-

lation of the system’s resources. As a future line of work

NETEMBED will be aware of the load-dependence relation-

ship between applications sharing the same resources and

to take it into consideration to find feasible mappings. This

case is of particular importance as in many real-life appli-

cations there are no mechanisms to guarantee this isolation.

Take for example Planetlab slices running on the same ma-

chine, or internet links shared with many other applications.

9 Project Web Site

Additional information as well as a run-

ning demo of NETEMBED is available at:

http://csr.bu.edu/netembed

References

[1] Cup. http://www2.cs.tum.edu/projects/cup/.

[2] Jflex. http://www.jflex.de/.

[3] S. Beale. Hunter-Gatherer: Applying Constraint

Satisfaction, Branch-and-Bound and Solution Synthesis to

Computational Semantics. PhD thesis, Scholl of Computer

Science, Carnegie Mellon University, Pittsburgh, PA, May

1997.

[4] Y. Gong, M. E. Pierce, and G. C. Fox. Matchmaking

scientific workflows in grid environments. In Proceedings

of IASTED International Conference on Parallel and

Distributed Computing and Systems (PDCS 2007), pages

19–21, Cambridge, USA, November 2007.

[5] Y.-S. Kee, D. Logothetis, R. Huang, H. Casanova, and

A. A. Chien. Efficient resource description and high quality

selection for virtual grids. In CCGRID ’05: Proceedings of

the Fifth IEEE International Symposium on Cluster

Computing and the Grid (CCGrid’05) - Volume 1, pages

598–606, Washington, DC, USA, 2005. IEEE Computer

Society.

[6] C. Liu and I. Foster. A constraint language approach to

matchmaking. 14th International Workshop on Research

Issues on Data Engineering: Web Services for E-Commerce

and E-Government Applications (RIDE’04), 00:7–14, 2004.

[7] V. Lo, D. Zappala, D. Zhou, Y. Liu, and S. Zhao. Cluster

computing on the fly: P2P scheduling of idle cycles in the

Internet. In Proceedings of the 3rd International Workshop

on Peer-to-Peer Systems (IPTPS ’04), San Digeo, CA,

February 2004.

[8] J. Londoño and A. Bestavros. NETEMBED: A network

resource mapping service for distributed applications.

Technical Report 2006-32, Boston University, December

2006.

[9] A. Mandal, K. Kennedy, C. Koelbel, G. Marin, B. Liu,

L. Johnsson, and J. Mellor-Crummey. Scheduling strategies

for mapping application workflows onto the grid. In 14th

IEEE Symposium on High Performance Distributed

Computing (HPDC 2005). IEEE Computer Society Press,

2005.

[10] K. Marriot and P. Stuckey. Programming with Constraints:

An Introduction. The MIT Press, Cambridge,

Massachusetts, 1998.

[11] L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A

blueprint for introducing disruptive technology into the

internet. SIGCOMM Comput. Commun. Rev., 33(1):59–64,

2003.

[12] R. Raman, M. Livny, and M. Solomon. Matchmaking:

Distributed resource management for high throughput

computing. In IEEE International Symposium on High

Performance Distributed Computing (HPDC98), pages

140–147, July 1998.

[13] R. Raman, M. Livny, and M. Solomon. Policy driven

heterogeneous resource co-allocation with gangmatching.

In International Symposium on High Performance

Distributed Computing (HPDC03), pages 80–89, June

2003.

[14] A. Roy, I. Foster, W. Gropp, N. Karonis, V. Sander, and

B. Toonen. MPICH-GQ: Quality-of-service for message

passing programs. In Proc. SC00 (SC2000), Dallas, TX,

November 2000.

[15] R. Sakellariou and H. Zhao. A hybrid heuristic for dag

scheduling on heterogeneous systems. In Proceedings of

the 13th Heterogeneous Computing Workshop (HCW),

Santa Fe, USA, 2004.

[16] C. Yoshikawa. All-sites-pings for planetlab.

http://ping.ececs.uc.edu/ping/.

8

