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ABSTRACT
NetSketch is a tool for the specification of constrained-flow
applications and the certification of desirable safety proper-
ties imposed thereon. NetSketch assists system integrators
in two types of activities: modeling and design. As a mod-
eling tool, it enables the abstraction of an existing system
while retaining sufficient information about it to carry out
future analysis of safety properties. As a design tool, NetS-
ketch enables the exploration of alternative safe designs as
well as the identification of minimal requirements for out-
sourced subsystems. NetSketch embodies a lightweight for-
mal verification philosophy, whereby the power (but not the
heavy machinery) of a rigorous formalism is made accessible
to users via a friendly interface. NetSketch does so by ex-
posing tradeoffs between exactness of analysis and scalabil-
ity, and by combining traditional whole-system analysis with
a more flexible compositional analysis. The compositional
analysis is based on a strongly-typed Domain-Specific Lan-
guage (DSL) for describing and reasoning about constrained-
flow networks at various levels of sketchiness along with in-
variants that need to be enforced thereupon. In this pa-
per, we define the formal system underlying the operation of
NetSketch, in particular the DSL behind NetSketch’s user-
interface when used in “sketch mode”, and prove its sound-
ness relative to appropriately-defined notions of validity. In
a companion paper [7], we overview NetSketch, highlight its
salient features, and illustrate how it could be used in ap-
plications that include: the management/shaping of traffic
flows in a vehicular network (as a proxy for cyber-physical
systems (CPS) applications) and a streaming media network
(as a proxy for Internet applications).
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General Terms
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1. INTRODUCTION
Constrained-Flow Networks: Many large-scale, safety-
critical systems can be viewed as interconnections of subsys-
tems, or modules, each of which is a producer, consumer, or
regulator of flows. These flows are characterized by a set of
variables and a set of constraints thereof, reflecting inherent
or assumed properties or rules governing how the modules
operate (and what constitutes safe operation). Our notion
of flow encompasses streams of physical entities (e.g., vehi-
cles on a road, fluid in a pipe), data objects (e.g., sensor
network packets or video frames), or consumable resources
(e.g., electric energy or compute cycles).

Traditionally, the design and implementation of such
constrained-flow networks follow a bottom-up approach, en-
abling system designers and builders to certify (assert and
assess) desirable safety invariants of the system as a whole.
While justifiable in some instances, this vertical approach
does not lend itself well to current practices in the assembly
of complex, large-scale systems – namely, the integration of
various subsystems into a whole by“system integrators”who
may not possess the requisite expertise or knowledge of the
internals of the subsystems on which they rely. This can
be viewed as an alternative horizontal approach, and it has
significant merits with respect to scalability and modularity.
However, it also poses significant challenges with respect to
aspects of trustworthiness – namely, certifying that the sys-
tem as a whole will satisfy specific safety invariants.

The NetSketch Tool: In recognition of this challenge,
we have developed NetSketch – a tool that assists system
integrators in two types of activities: modeling and design.

As a modeling tool, NetSketch enables the abstraction
of an existing (flow network) system while retaining suffi-



cient information about it to carry out future analysis of
safety properties. The level of abstraction, or sketchiness
(and hence the amount of information to be retained) is
the result of two different processes that NetSketch offers to
users. The first process is the identification of boundaries
of the subsystems to be sketched. At the extreme of finest
granurality, these boundaries are precisely those of the in-
terconnected modules that make up the system – i.e., the
constituent subsystems are the modules. At the other ex-
treme, these boundaries would enclose the entire system.
The second process is the control of the level of precision
of information retained for the specification of a given sub-
system, which are expressed as constraints defined over flow
variables at the boundaries of that subsystem. By making
conservative assumptions (e.g., restricting the set of permis-
sible inputs to a subsystem or extending the set of possible
outputs from a subsystem), it is possible to reduce the com-
plexity of these constraints.

As a design tool, NetSketch enables the exploration of
alternative safe designs as well as the identification of mini-
mal requirements for missing subsystems in partial designs.
Alternative designs are the result of having multiple possible
subsystem designs. NetSketch allows users to check whether
any (or which) one of their alternative designs is safe (thus
allowing the exploration of “what if” scenarios and trade-
offs), or whether every one of a set of possible deployments
would be safe (thus establishing the safety of a system design
subject to uncertainties regarding various settings in which
the system may be deployed). Partial designs are the result
of missing (e.g., outsourced, or yet-to-be acquired) subsys-
tems. These missing subsystems constitute “holes” in the
system design. NetSketch enables users to infer the minimal
requirements to be expected of (or imposed on) such holes.
This enables the design of a system to proceed based only
on promised functionality of missing parts thereof.

Formal analysis is at the heart of both of the above
modeling and design activities. For example, in conjunction
with a modeling activity in which the user identifies the
boundaries of an interconnected set of modules that need to
be encapsulated into a single subsystem, NetSketch must in-
fer (through analysis) an appropriate set of constraints (i.e.,
a typing) of that encapsulated subsystem. Similarly, in con-
junction with a design activity in which the user specifies a
subsystem as a set of alternative designs (or else as a hole),
NetSketch must perform type checking (or type inference)
to establish the safety of the design (or the minimal require-
ments expected of a subsystem that would fill the hole).

In a companion paper [7], we presented NetSketch from
an operational perspective in support of modeling and design
activities, by overviewing the processes it entails and illus-
trating its use in two applications: the management/shaping
of traffic flows in a vehicular network (as a proxy for CPS
applications) and in a streaming media network (as a proxy
for Internet applications). In this paper, we focus on the
more fundamental aspects of NetSketch – namely the for-
mal system underlying its operation.

The NetSketch Formalism: Support for safety analy-
sis in design and/or development tools such as NetSketch
must be based on sound formalisms that are not specific
to (and do not require expertise in) particular domains.1

1While acceptable and perhaps expected for vertically-
designed and smaller-scale (sub-)systems, deep domain ex-
pertise cannot be assumed for designers of horizontally-

Not only should such formalisms be domain-agnostic, but
also they must act as a unifying glue across multiple the-
ories and calculi, allowing system integrators to combine
(compose) exact results obtained through esoteric domain-
specific techniques (e.g., using network calculus to obtain
worst-case delay envelopes, using scheduling theory to de-
rive upper bounds on resource utilizations, or using control
theory to infer convergence-preserving settings). This sort
of approach lowers the bar for the expertise required to take
full advantage of such domain-specific results at the small
(sub-system) scale, while at the same time enabling scala-
bility of safety analysis at the large (system) scale.

As we alluded before, NetSketch enables the composi-
tion of exact analyses of small subsystems by adopting a
constrained-flow network formalism that exposes the trade-
offs between exactness of analysis and scalability of analysis.
This is done using a strongly-typed Domain-Specific Lan-
guage (DSL) for describing and reasoning about constrained-
flow networks at various levels of“sketchiness”along with in-
variants that need to be enforced thereupon. In this paper,
we formally define NetSketch’s DSL and prove its soundness
relative to appropriately-defined notions of validity.

A Motivating Example: Before delving into precise defi-
nitions and formal arguments, we outline the essential con-
cepts that constitute our formalism for compositional anal-
ysis of problems involving constrainted-flow networks. We
do so by considering (at a very high level) an example flow
network systems problem in which compositional analysis
of properties plays a role. Our goal is to identify essential
aspects of these systems that we will later model precisely,
and motivate their inclusion within the formalism. This ex-
ample is considered in more precise detail in Section 7, and
is also examined more extensively in a companion paper [7].

A software engineer in charge of developing a CPS ve-
hicular traffic control application for a large metropolitan
authority is faced with the following problem. Her city lies
on a river bank across from the suburbs, and every morning
hundreds of thousands of motorists drive across only a few
bridges to get to work in the city center. Each bridge has a
fixed number of lanes, but they are all reversible, enabling
the application to determine how many lanes are available
to inbound and outbound traffic during different times of
the day. During morning rush hour, the goal of the system
is to maximize the amount of traffic that can get into the
city, subject to an overriding safety consideration – that no
backups occur in the city center.

Modules and Networks: The city street grid is a net-
work of a large number of only a few distinct kinds of traffic
junctions (e.g., forks, merges, and crossing junctions). Be-
cause the network is composed of many instances of a few
modular components, if any analysis of the network is de-
sired, it may be possible to take advantage of this modularity
by analyzing the components individually in a more precise
manner, and then composing the results to analyze the en-
tire network. To this end, as detailed in Sections 2 and 3,
our formalism provides means for defining modules (small
network components) and assembling them into larger net-
works (graphs).

Constraints: Within our framework, analyses are repre-
sented using a language of constraints. If the engineer views

integrated, large-scale systems.



traffic as a flow across a network of modules, the relevant
parameters describing this flow (e.g., the number of open
lanes, the density of traffic in the morning) can be mathe-
matically constrained for each instance of a module. These
constraints can model both the limitations of modules as
well as the problem the engineer must solve. For example,
a module corresponding to a merge junction may have two
incoming lanes 1, 2 and one outgoing lane 3, and the density
of traffic travelling across the outgoing lane must be equal to
the total traffic density travelling across the incoming lanes

d1 + d2 = d3.

Likewise, constraints can model the problem to be solved.
The engineer can find appropriate constraints for each of
the three junction types that will ensure that no backups
occur locally within that junction. For example, it may be
the case for a junction that if the total density of entering
traffic exceeds a “jam density” that makes the two entering
traffics block each other, there will be backups. Thus, the
engineer may choose to introduce a constraint such as

d1 + d2 6 10.

More complicated situations requiring the enforcement of
additional desirable properties may introduce non-linear con-
straints. Once the local requirements are specified, a com-
positional analysis can answer interesting questions about
the entire network, such as whether a configuration of lanes
ensuring no backups is possible, or what the range of viable
configurations may be.

Semantics and Soundness: So far, we have motivated
the need for two intertwined languages: a language for de-
scribing networks composed of modules, and a language for
describing constraints governing flows across the network
components. But what precisely do the expressions in these
languages mean, and how can we provide useful functional-
ities to the engineer, such as the ability to verify that con-
straints can be satisfied, to find solution ranges for these
constraints, and to compose these analyses on modules to
support analyses of entire networks? In order to ensure that
our system works correctly “under the hood”, it is neces-
sary to define a precise semantics for these languages, along
with a rigorous notion of what it means for an analysis of
a network to be “correct”. Only once these are defined is
it possible to provide a guarantee that the system is indeed
safe to use. To this end, we define a precise semantics for
constraint sets and relationships between them, as well as
network flows. In Section 8 we briefly sketch the proof of
soundness for our formalism and refer readers to a complete
proof of correctness in the full version of this paper [6].

2. MODULES: UNTYPED AND TYPED
We introduce several preliminary notions formally.

Definition 1. (Syntax of Constraints) We denote by N the
set of natural numbers. The countably infinite set of param-
eters is X = {x0, x1, x2, . . .}. The set of constraints over N
and X can be defined in extended BNF style, where we use
metavariables n and x to range over N and X , respectively:

e ∈ Exp ::= n | x | e1 ∗ e2 | e1 + e2 | e1 − e2 | . . .
c ∈ Const ::= e1 = e2 | e1 < e2 | e1 6 e2 | . . .

We include in Const at least equalities and orderings of ex-
pressions. Our examination can be extended to more general

constraints, indicated by the ellipses “. . .”, but the preceding
give us enough to consider and to present our main ideas
on compositional analysis. Possible extensions of Const
include conditional constraints, negated constraints, time-
dependent constraints, and others.

A special case of the constraints are the linear con-
straints, obtained by restricting the rule for Exp and Const:

e ∈ LinExp ::= n | x | n ∗ x | e1 + e2

c ∈ LinConst ::= e1 = e2 | e1 < e2 | e1 6 e2

In what follows, constraints in Const are part of a given
flow network abstraction and may be arbitrarily complex;
constraints in LinConst are to be inferred and/or checked
against the given constraints. Constraints in LinConst are
hopefully simple enough so that their manipulation does not
incur a prohibitive cost, but expressive enough so that their
satisfaction guarantee desirable properties of the flow net-
work under exmination.

Depending on the application, the set X of parameters
may be n-sorted for some finite n > 1. For example, in
relation to vehicular traffic networks, we may choose X to
be 2-sorted, one sort for velocity parameters and one sort for
density parameters.

When there are several sorts, dimensionality restric-
tions must be heeded. For traffic networks with two sorts,
the velocity dimension is unit distance/unit time, e.g., kilo-
meter/hour, and the density dimension is unit mass/unit
distance, e.g., ton/kilometer. Thus, multiplying a velocity
v by a density d produces a quantity v ∗ d, namely a flow,
which is measured in unit mass/unit time, e.g., ton/hour. If
we add two expressions e1 and e2, or subtract them, or com-
pare them, then e1 and e2 must have the same dimension,
otherwise the resulting expression is meaningless.

In the abstract setting of our examination below we do
not need to worry about such restrictions on expressions:
they will be implicitly satisfied by our constraints if they
correctly model the behavior of whatever networks are under
consideration.

Definition 2. (Untyped Modules) We specify an untyped
module A by a four-tuple: (A, In,Out,Con) where:

A = name of the module

In = finite set of input parameters

Out = finite set of output parameters

Con = finite set of constraints over N and X

where In∩Out = ∅ and In∪Out ⊆ parameters(Con), where
parameters(Con) is the set of parameters occurring in Con.

We are careful in adding the name of the module, A, to
its specification; in the formal setup of Section 3, we want
to be able to refer to the module by its name without the
overhead of the rest of its specification. By a slight abuse of
notation, we may write informally: A = (A, In,Out,Con).
Thus, “A” may refer to the full specification of the module
or may be just its name.

We use upper-case calligraphic letters to refer to mod-
ules and networks – from the early alphabet (A and B) for
modules and from the middle alphabet (M,N and P) for
networks.

Definition 3. (Typed Modules) Consider a module A as
specified in Definition 2. A typing judgment, or a typed spec-
ification, or just a typing, for A is an expression of the form



(A : Con∗), where Con∗ is a finite set of linear constraints
over In ∪ Out. As it stands, a typing judgment (A : Con∗)
may or may not be valid. The validity of judgments pre-
sumes a formal definition of the semantics of modules, which
we introduce in Section 4.

To distinguish between a constraint in Con, which is ar-
bitrarily complex, and a constraint in Con∗, which is always
linear, we refer to the former as “given” or “internal” and to
the latter as a “type”.

3. NETWORK SKETCHES: UNTYPED
We define a specification language to assemble modules to-
gether, also allowing for the presence of network holes. This
is a strongly-typed domain-specific language (DSL), which
can be used in two modes, with and without the types in-
serted. Our presentation is in two parts, the first without
types and the second with types. In this section, we present
the first part, when our DSL is used to construct networks
without types inserted. In Section 6, we re-define our DSL
with types inserted. This two-part presentation allows us
to precisely define the difference between “untyped specifi-
cation” and “typed specification” of a flow network.

“Network holes”are place-holders. We later attach some
attributes to network holes (they are not totally unspeci-
fied), in Definitions 6 and 13. We use X,Y, and Z, possibly
decorated, to denote network holes.

An untyped network sketch is written as (M, I, O, C),
where I and O are the sets of input and output parameters,
and C is a finite set of finite constraint sets.2 M is not a
name but an expression built up from: (1) module names,
(2) hole names, and (3) the constructors conn, loop and
let-in.3 Nevertheless, we may refer to such a sketch by just
writing the expression M, and by a slight abuse of notation
we may also write M = (M, I, O, C). For such an untyped
network M, we define In(M) as I (the set of input param-
eters) and Out(M) as O (the set of output parameters).

Definition 4. (Syntax of Untyped Network Sketches) In
extended BNF style:

A,B, C ∈ ModuleNames

X, Y, Z ∈ HoleNames

M,N ,P ∈ RawSketches ::=

A
| X

| conn(θ,M,N ) θ ⊆1-1 Out(M)× In(N )

| loop(θ,M) θ ⊆1-1 Out(M)× In(M)

| let X∈ {M1, . . . ,Mn} in N X occurs once in N

We write θ ⊆1-1 Out(M)× In(N ) to denote a partial one-
one map from Out(M) to In(N ). (If the set of parameters is
sorted with more than one sort – for example, velocity and

2Note C is a set of constraint sets, not a single constraint
set. This allows for placing different network sketches into
the same hole. Each constraint set in C corresponds to one
way of filling all the holes in M.
3We may customize or add other constructors according to
need. There are also alternative constructors. For example,
instead of conn, we may introduce par (for parallel compo-
sition of two network sketches), and then “de-sugar” conn
as a combination of a single par followed by a single loop.
Conversely, par can be expressed using conn, the former is
a special case of the latter when θ = ∅. Our choice of con-
structors here is for didactic and expository reasons.

density – then θ must respect sorts, i.e., if (x, y) ∈ θ then
x and y are either both velocity parameters or both density
parameters.)

The formal expressions written according to the preced-
ing BNF are said to be “raw” because they do not specify
how the internal constraints of a network sketch are assem-
bled together from those of its subcomponents. This is what
the rules in Figure 1 do precisely.

In an expression“let X∈ {M1, . . . ,Mn} in N ”, we call
“X ∈ {M1, . . . ,Mn}” a binding for the hole X and “N” the
scope of this binding. Informally, the idea is that all of the
network sketches in {M1, . . . ,Mn} can be interchangeably
placed in the hole X, depending on changing conditions of
operation in the network as a whole. If a hole X occurs in a
network sketch M outside the scope of any let-binding, we
say X is free in M. If there are no free occurrences of holes
in M, we say that M is closed.

Note carefully that M,N and P are metavariables,
ranging over expressions in RawSketches; they do not ap-
pear as formal symbols in such expressions written in full.
By contrast, A,B and C are names of modules and can oc-
cur as formal symbols in expressions of RawSketches. A,B
and C are like names of “prim ops” in well-formed phrases of
a programming language.

In the examination to follow, we want each occurrence
of the same module or the same hole in a specification to
have its own private set of names, which we achieve using
isomorphic renaming.

Definition 5. (Fresh Isomorphic Renaming) Let A be an
object defined over parameters. Typically, A is a module or
a network sketch. Suppose the parameters in A are called
{x1, x2, . . .}. We write ′A to denote the same objectA, whose
name is also ′A and with all parameter names freshly re-
named to {′x1,

′x2, . . .}. We want these new names to be
fresh, i.e., nowhere else used and private to ′A. Thus, A and
′A are isomorphic but distinct objects.

Sometimes we need two or more isomorphic copies of
A in the same context. We may therefore consider ′A and
′ ′A. If there are more than two copies, it is more convenient
to write 1A, 2A, 3A, etc.

We also need to stipulate that, given any of the isomor-
phic copies of object A, say nA, we can retrieve the original
A, along with all of its original names, from nA.

There are other useful constructs in the DSL of Defi-
nition 4. But these will be either special cases of the basic
three constructs – conn, loop, and let-in – or macros which
can be“de-sugared” into expressions only involving the basic
three. One important macro is the let-in construct where the
hole occurs several times in the scope, instead of just once:

let∗ X∈ {M1, . . . ,Mn} in N X occurs q > 1 times in N

To analyze the preceding expression, using the typing rules
in this section, we de-sugar in a particular way:

let 1X ∈ {1M1, . . . , 1Mn} in

let 2X ∈ {2M1, . . . , 2Mn} in

· · ·

let qX ∈ {qM1, . . . , qMn} in N [X(1) := 1X, . . . , X(q) := qX]

where X(1), . . . , X(q) denote the q occurrences of X in N
(the superscripts are not part of the syntax, just bookkeep-
ing notation for this explanation), 1X, . . . , qX are fresh dis-
tinct hole names, and {pM1, . . . ,

pMn} is a fresh isomorphic
copy of {M1, . . . ,Mn} for every 1 6 p 6 q.



Hole
(X, In,Out) ∈ Γ

Γ ` (X, In,Out, { })

Module
(A, In,Out,Con) is an untyped module

Γ ` (B, I, O, {C}) (B, I, O,C) = ′(A, In,Out,Con)

Connect
Γ ` (M, I1, O1, C1) Γ ` (N , I2, O2, C2)

Γ ` (conn(θ,M,N ), I, O, C) θ ⊆1-1 O1× I2, I = I1 ∪ (I2−ran(θ)), O = (O1−dom(θ)) ∪O2,

C = {C1 ∪ C2 ∪ { p = q | (p, q) ∈ θ } |C1 ∈ C1, C2 ∈ C2}

Loop
Γ ` (M, I1, O1, C1)

Γ ` (loop(θ,M), I, O, C) θ ⊆1-1 O1× I1, I = I1−ran(θ), O = O1−dom(θ),

C = {C1 ∪ { p = q | (p, q) ∈ θ } |C1 ∈ C1}

Let
Γ ` (Mk, Ik, Ok, Ck) for 1 6 k 6 n Γ ∪ {(X, In,Out)} ` (N , I, O, C)

Γ `
`

let X∈ {M1, . . . ,Mn} in N , I, O, C′
´

C′ =
n
C ∪ Ĉ ∪ { p = ϕ(p) | p ∈ Ik } ∪ { p = ψ(p) | p ∈ Ok }

˛̨̨
1 6 k 6 n, C ∈ C, Ĉ ∈ Ck, ϕ : Ik → In, ψ : Ok → Out

o
(where ϕ and ψ are isomorphisms, different for different values of k)

Figure 1: Rules for Untyped Network Sketches.

Definition 6. (Untyped Network Holes) An untyped net-
work hole is a triple: (X, In,Out) where X is the name of
the hole, In is a finite set of input parameters, and Out is
a finite set of output parameters. As usual, for the sake of
brevity we sometimes write: X = (X, In,Out)

There are 5 inference rules: Module, Hole, Connect,
Loop, and Let, one for each of the 5 cases in the BNF in
Definition 4. These are shown in Figure 1.

The renaming in rule Module is to insure that each
occurrence of the same module has its own private names
of paramaters. In rule Hole we do not need to rename,
because there will be exactly one occurrence of each hole,
whether bound or free, each with its own private set of
names.

Rule Connect takes two network sketches, M and N ,
and returns a network sketch conn(θ,M,N ) where some of
the output parameters in M are unified with some of the
input parameters in N , according to what θ prescribes.

Rule Loop takes one network sketch, M, and returns
a new network sketch loop(θ,M) where some of the out-
put parameters in M are identified with some of the input
parameters in M according to θ.

Rule Let is a little more involved than the preceding
rules. The complication is in the way we define the collection
C′ of constraint sets in the conclusion of the rule. Suppose
Ck = {Ck,1, Ck,2, . . . , Ck,s(k)}, i.e., the flow through Mk can
be regulated according to s(k) different constraint sets, for
every 1 6 k 6 n. The definition of the new collection C′
of constraint sets should be read as follows: For every Mk,
for every possible way to regulate the flow throughMk (i.e.,
for every possible r ∈ {1, . . . , s(k)}), for every way of placing
network Mk in hole X (i.e., every isomorphism (ϕ,ψ) from
(Ik, Ok) to (In,Out)), add the corresponding constraint set
to the collection C′.

In the side-condition of rule Let, the maps ϕ and ψ are
isomorphisms. If parameters are multi-sorted, then ϕ and ψ
must respect sorts, i.e., if ϕ(x) = y then both x and y must
be of the same sort, e.g., both velocity parameters, or both
density parameters, etc., and similarly for ψ.

In particular applications, we may want the placing of
Mk in hole X to be uniquely defined for every 1 6 k 6 n,
rather than multiply-defined in as many ways as there are

isomorphism pairs from (Ik, Ok) to (In,Out). For this, we
may introduce structured parameters, i.e., finite sequences
of parameters, and also restrict the network hole X to have
one (structured) input parameter and one (structured) out-
put parameter. This requires the introduction of selectors,
which allow the retrieval of individual parameters from a
sequence of parameters.4

4. SEMANTICS OF NETWORK TYPINGS
A network typing, as later defined in Section 6, is speci-
fied by an expression of the form (M, I, O, C) : C∗ where
(M, I, O, C) is an untyped network and C∗ is a finite set of
linear constraints such that parameters(C∗) ⊆ I ∪O.5

Definition 7. (Satisfaction of Constraints) Let Y ⊆ X , a
subset of parameters. Let val be a valuation for Y, i.e., val
is a map from Y to N. We use “|=” to denote the satisfac-
tion relation. Let C be a finite set of constraints such that
parameters(C) ⊆ Y. Satisfaction of C by val is defined in
the usual way and written val |= C.

Definition 8. (Closure of Constraint Sets) Let Y ⊆ X .
Let C and C′ be constraint sets over N and Y. We say that
C implies C′ iff, for every valuation val : Y → N,

val |= C implies val |= C′.

If C implies C′, we write C ⇒ C′. For a finite constraint
set C, its closure is the set of all constraints implied by C,
namely, closure(C) = {c ∈ Const |C ⇒ {c}}.

In general, closure(C) is an infinite set. We only con-
sider infinite constraint sets that are the closures of finite
sets of linear constraints. Following standard terminology,

4This variation of rule Let, where there is a unique way of
inserting every Mk with 1 6 k 6 n in the hole X, corre-
sponds also to the situation when the system designer can
control the “wiring” of every Mk in X and wants it to be
uniquely determined.
5Note that parameters(C∗) ⊆ I ∪O ⊆ parameters(C), i.e., all
the parameters in the boundary constraints C∗ (aka types)
are in I ∪ O, and I ∪ O is a subset of all the parameters in
the internal constraints C.



such an infinite constraint set is said to have a finite basis.6

In actual applications, we are interested in “minimal” finite
bases that do not contain “redundant” constraints. It is rea-
sonable to define a “minimal finite basis” for a constraint set
if it is smallest in size. The problem is that minimal bases in
this sense are not uniquely defined. How to compute mini-
mal finite bases, and how to uniquely select a canonical one
among them, are issues addressed by an implementation.

Let C be a constraint set and A a set of parameters.
We define two restrictions of C relative to A:

C � A = { c ∈ C | parameters(c) ⊆ A },
C � A = { c ∈ C | parameters(c) ∩A 6= ∅ }.

That is, (C � A) is the set of constraints in C where only pa-
rameters from A occur, and (C � A) is the set of constraints
in C with at least one occurrence of a parameter from A.

We introduce two different semantics, corresponding to
what we call “weak satisfaction” and “strong satisfaction”
of typing judgements. Both semantics are meaningful, cor-
responding to whether or not network nodes act as “au-
tonomous systems”, i.e., whether or not each node coor-
dinates its action with its neighbors or according to instruc-
tions from a network administrator.

Definition 9. (Weak and Strong Satisfaction) Let M =
(M, I, O, C) be an untyped network sketch and (M : C∗)
a typing for M. Recall that parameters(C∗) ⊆ I ∪ O. We
partition closure(C∗) into two subsets as follows:

pre(C∗) = closure(C∗) � I

post(C∗) = closure(C∗)− pre(C∗) = closure(C∗) � O

The “pre( )” is for “pre-conditions” and the “post( )” is for
“post-conditions”. While the parameters of pre(C∗) are all
in I, the parameters of post(C∗) are not necessarily all in
O, because some constraints in C∗ may contain both input
and output parameters.7

The definitions of “weak satisfaction” and “strong sat-
isfaction” below are very similar except that the first in-
volves an existential quantification and the second a univer-
sal quantification. We use “|=w” and “|=s” to denote weak
and strong satisfaction. For the rest of this definition, let
val be a fixed valuation of the input parameters of M,
val : I → N.

We say that val weakly satisfies (M : C∗) and write
val |=w (M : C∗) to mean that if

• val |= pre(C∗)

then for every C ∈ C there is a valuation val′ ⊇ val such
that both of the following conditions are true:

• val′ |= C

• val′ |= post(C∗)

6If we set up a logical system of inference for our linear
constraints, using some kind of equational reasoning, then
an infinite constraint set has a “finite basis” iff it is “finitely
axiomatizable”.
7Both pre(C∗) and post(C∗) are infinite sets. In the abstract
setting of this report, this is not a problem. In an actual
implementation, we need an efficient method for computing
“minimal finite bases” for pre(C∗) and post(C∗), or devise
an efficient algorithm to decide whether a constraint is in
one of these sets.

Informally, val weakly satisfies (M : C∗) when: if val
satisfies pre(C∗), then there is an extension val′ of val
satisfying the internal constraints of M and post(C∗).

We say that val strongly satisfies (M : C∗) and write
val |=s (M : C∗) to mean that if

• val |= pre(C∗)

then for every C ∈ C and every valuation val′ ⊇ val, if

• val′ |= C

then the following condition is true:

• val′ |= post(C∗)

Informally, val strongly satisfies (M : C∗) when: if val
satisfies pre(C∗) and val′ is an extension of val satisfying
the internal constraints of M, then val′ satisfies post(C∗).

Definition 10. (Weak and Strong Validity of Typings) Let
(M : C∗) be a typing for network M = (M, I, O, C). We
say that (M : C∗) is weakly valid – resp. strongly valid
– iff for every valuation val : parameters(pre(C∗)) → N, it
holds that val |=w (M : C∗) – resp. val |=s (M : C∗). If
(M : C∗) is weakly valid, we write val |=w (M : C∗), and
if strongly valid, we write val |=s (M : C∗).

Informally, (M : C∗) is weakly valid under the condi-
tion that, for every network flow satisfying pre(C∗), there is
a way of channelling the flow through M, consistent with
its internal constraints, so that post(C∗) is satisfied. And
(M : C∗) is strongly valid under the condition that, for ev-
ery network flow satisfying pre(C∗) and for every way of
channelling the flow through M, consistent with its internal
constraints, post(C∗) is satisfied.

5. ORDERING OF NETWORK TYPINGS
We define a precise way of deciding that a typing is“stronger”
(or “more informative”) or “weaker” (or “less informative”)
than another typing.

Definition 11. (Comparing Typings) LetM = (M, I, O, C)
be a untyped network sketch and let (M : C∗) a typing for
M. We use again the notions of “preconditions” and “post-
conditions”from Definition 9, but to make explicit that these
relate to M, we write pre(M : C∗) instead of pre(C∗) and
post(M : C∗) instead of post(C∗), resp.

Let (M : C∗
1 ) and (M : C∗

2 ) be two typings for the
same network sketch M. We say (M : C∗

1 ) implies – or is
more precise than – (M : C∗

2 ) and we write: (M : C∗
1 ) ⇒

(M : C∗
2 ) just in case the two following conditions hold:

1. pre(M : C∗
1 ) ⇐ pre(M : C∗

2 ), i.e., the precondition of
(M : C∗

1 ) is weaker than that of (M : C∗
2 ).

2. post(M : C∗
1 ) ⇒ post(M : C∗

2 ), i.e., the postcondition
of (M : C∗

1 ) is stronger than that of (M : C∗
2 ).

We say (M : C∗
1 ) and (M : C∗

2 ) are equivalent, and write:
(M : C∗

1 ) ⇔ (M : C∗
2 ) in case (M : C∗

1 ) ⇒ (M : C∗
2 ) and

(M : C∗
1 ) ⇐ (M : C∗

2 ). If (M : C∗
1 ) ⇔ (M : C∗

2 ), it does
not necessarily follow that C∗

1 = C∗
2 , because constraints

implying each other are not necessarily identical.

Normally we are interested in deriving “optimal” net-
work typings, which are the most informative about the
flows that the network can safely handle. We can also call
them “minimal” rather than “optimal” because we think of



Hole
(X, In,Out) : Con∗ ∈ Γ

Γ ` (X, In,Out, { }) : Con∗

Module
(A, In,Out,Con) : Con∗ is a typed module

Γ ` (B, I, O, {C}) : C∗ ((B, I, O,C) : C∗) = ′((A, In,Out,Con) : Con∗)

Connect
Γ ` (M, I1, O1, C1) : C∗

1 Γ ` (N , I2, O2, C2) : C∗
2

Γ ` (conn(θ,M,N ), I, O, C) : C∗

θ⊆1-1 O1× I2, I = I1∪ (I2−ran(θ)), O = (O1−dom(θ))∪O2, C
∗ = (C∗

1 ∪ C∗
2 ) � (I ∪O),

(Ct) post(M : C∗
1 ) ⇒ {x = y|(x, y) ∈ θ} ∪ (pre(N : C∗

2 ) � ran(θ))

Loop
Γ ` (M, I1, O1, C1) : C∗

1

Γ ` (loop(θ,M), I, O, C) : C∗

θ ⊆1-1 O1× I1, I = I1−ran(θ), O = O1−dom(θ), C∗ = C∗
1 � (I ∪O),

(Lp) post(M : C∗
1 ) ⇒ {x = y | (x, y) ∈ θ}∪ (pre(M : C∗

1 ) � ran(θ))

Let
Γ ` (Mk, Ik, Ok, Ck) : C∗

k for 1 6 k 6 n Γ ∪ {(X, In,Out) : Con∗} ` (N , I, O, C) : C∗

Γ `
`

let X∈ {M1, . . . ,Mn} in N , I, O, C′
´

: C∗

for all 1 6 k 6 n and pairs of bijections (ϕ,ψ) : (Ik, Ok) → (In,Out):

(Lt) C∗
k ⇔

`
Con∗ ∪ {x = ϕ(x) |x ∈ Ik } ∪ {x = ψ(x) |x ∈ Ok }

´
Weaken

Γ ` (M, I, O, C) : C∗
1

Γ ` (M, I, O, C) : C∗ (Wn) pre(M : C∗
1 ) ⇐ pre(M : C∗) and post(M : C∗

1 ) ⇒ post(M : C∗)

Figure 2: Rules for Typed Network Sketches.

them as being “at the bottom” of a partial ordering on typ-
ings. This is analogous to the principal (or most general)
type of a function in a strongly-typed functional program-
ming language; the principal type is the bottom element
in the lattice of valid types for the function. This analogy
shouldn’t be pushed too far, however; a principal type is
usually unique, whereas optimal typings are usually multi-
ple.

Definition 12. (Optimal Typings) Let (M : C∗
1 ) be a typ-

ing for a network sketch M. We say (M : C∗
1 ) is an optimal

weakly-valid typing just in case:

• (M : C∗
1 ) is a weakly-valid typing.

• For every weakly-valid typing (M : C∗
2 ),

if (M : C∗
2 ) ⇒ (M : C∗

1 ) then (M : C∗
2 ) ⇔ (M : C∗

1 ).

Define optimal strongly-valid typing similarly, with“strongly”
substituted for “weakly” in the two preceding bullet points.

6. NETWORK SKETCHES: TYPED
We define typed specifications by the same inference rules we
already used to derive untyped specifications in Section 3,
but now augmented with type information.

Definition 13. (Typed Network Holes) This continues Def-
inition 6. The network hole (X, In,Out) is typed if it is sup-
plied with a finite set of linear constraints Con∗ – i.e., a type
– written over In∪Out. A fully specified typed network hole
is written as “(X, In,Out) : Con∗”.

For simplicity, we may refer to (X, In,Out) by its name
X and write (X : Con∗) instead of (X, In,Out) : Con∗

with the understanding that the omitted attributes can be
uniquely retrieved by reference to the name X of the hole.

We repeat the rules Module, Hole, Connect, Loop,
and Let, with the type information inserted. As they elabo-
rate the previous rules, we omit some of the side conditions;
we mention only the parts that are necessary for inserting
the typing. The rules are shown in Figure 2.

In each of the rules, we highlight the crucial side-condi-
tion by placing it in a framed box; this condition expresses
a relationship that must be satisfied by the “derived types”
(linear constraints) in the premises of the rule. For later
reference, we call this side-condition (Ct) in Connect, (Lp)
in Loop, and (Lt) in Let.

There are different versions of rule Let depending on
the side condition (Lt) – the weaker the side condition, the
more powerful the rule, i.e., the more network sketches for
which it can derive a typing. The simplest way of formu-
lating Let, as shown in Figure 2, makes the side condition
most restrictive.

However, if we introduce the rule Weaken, the last
shown in Figure 2, the side condition (Lt) is far less restric-
tive than it appears; it allows to adjust the derived types
and constraints of the networks in {M1, . . . ,Mn} in order
to satisfy (Lt), if possible by weakening them. (The rule
Weaken plays the same role as a subtyping rule in the type
system of an object-oriented programming language.)

7. EXAMPLE
This example is a follow-up to one of the use cases (vehic-
ular traffic) in our companion report [7], and falls within
the context of the vehicular traffic problem we discussed
at a high level in the introduction. We consider a module
A whose untyped specification is defined by a set Con of
internal constraints over input parameters {d1, d2, d3} and
output parameters {d4, d5, d6}. In this particular module A,
there are no purely internal parameters, i.e., all are either



input or output parameters. Con consists of:

(a) 2 6 d1, d4, d5, d6 6 8 bounds on d1, d4, d5 and d6

(b) 0 6 d2, d3 6 6 bounds on d2 and d3

(c) d1 = d4 + d5 constraint at node A

(d) d2 + d3 + d4 6 10 constraint at node B

(e) d2 + d3 + d5 6 10 constraint at node C

(f) d2 + d3 = d6 constraint at node C

In this simple example, all the constraints in Con are linear.
Nevertheless, many of the issues and complications we need
to handle with non-linear internal constraints already arise
here. In the complete version of this report [6], we discuss
the following issues for this particular example, illustrating
what an implementation has to deal in full generality:

• Alternative methods of inferring weak and strong typ-
ings for A, and how to make these methods more effi-
cient computationally.

• Efficiently deciding whether a typing for A, weak or
strong, is optimal.

• Inferring typings for A relative to objective functions
such as: maximizing the sum of the three input flows
(at parameters d1, d2, d3), maximizing and equalizing
all three input flows, equalizing the flow at a particular
input (e.g., at d1) with that at a particular output (e.g.,
at d6), etc.

• How to handle and choose between several weakest pre-
conditions for the same post-condition for A, or be-
tween several strongest post-conditions for the same pre-
condition for A.8

• Some of the limitations when we switch from base mode
(or whole-system analysis of modules) to sketch mode
(or compositional analysis of network sketches, using
the rules of Sections 3 and 6).

Briefly here, we consider a simple network sketch N assem-
bled from module A and network hole X. Suppose X is as-
signed two input {i1, i2} and two output parameters {o1, o2}.
The untyped version of N is:

let X ∈
n
loop({(d6, d1)},A)

o
in conn

“
{(o1, ′d3), (o2, ′d2)}, X, ′A

”
Graphic representations ofA, (from [7]),“loop({(d6, d1)},A)”
and“conn({(o1, ′d3), (o2,

′d2)}, X, ′A)”– but notN – are shown
in Figure 3. ′A is an isomorphic copy of A with its own fresh
set of parameters {′d1,

′d2,
′d3,

′d4,
′d5,

′d6}.
Note that for N there are four possible ways of placing

“loop({(d6, d1)},A)” in the hole X, because there are two
possible isomorphisms between the input parameters and
two possible isomorphisms between the output parameters,
for a total of 4 possible isomorphism pairs

(ϕ,ψ) : ({d2, d3}, {d4, d5}) → ({i1, i2}, {o1, o2})

See the side condition of rule Let in Figures 1 and 2.

8Contrary to the situation with, say, Hoare logic for imper-
ative programs, we can have several mutually incomparable
weakest pre-conditions for the same post-condition, as well
as several mutually incomparable strongest post-conditions
for the same pre-condition, for a given module or network
sketch.

In the full version of this report [6], relative to the ob-
jective function d1 = d6, we infer the following strong typ-
ing/linear constraints Con∗ for A, where we write “x : [4, 6]”
instead of “4 6 x 6 6” to save space:

Con∗ = { d1 : [4, 6], d2 : [2, 3], d3 : [2, 3],

d4 : [2, 3], d5 : [2, 3], d6 : [4, 6],

d1 = d2 + d3, d1 = d6, d2 + d3 = d4 + d5 }

For this typing (A : Con∗), we have:

pre(A : Con∗) ⊇ {d1:[4, 6], d2:[2, 3], d3:[2, 3], d1 = d2 + d3}
post(A : Con∗) = closure(Con∗)− pre(A : Con∗)

pre(A : Con∗) includes other constraints besides those listed,
obtained by taking their closure.

Switching to sketch mode, starting from the preceding
typing (A : Con∗), we can check that side condition (Lp) of
rule Loop in Figure 2 is satisfied (verification omitted here).
This allows to derive the strong typing:

Con∗
1 =

{d2 : [2, 3], d3 : [2, 3], d4 : [2, 3], d5 : [2, 3], d2 + d3 = d4 + d5}

for the network sketch “loop({(d6, d1)},A)”. Assigning the
same typing Con∗

1 to hole X – after mapping i1, i2, o1, o2 to
d2, d3, d4, d5 resp. – allows us to derive the strong typing:

Con∗
2 = { ′d1 : [4, 6], i1 : [2, 3], i2 : [2, 3],

′d4 : [2, 3], ′d5 : [2, 3], ′d6 : [4, 6],
′d1 = i1 + i2,

′d1 = ′d6, i1 + i2 = ′d4 + ′d5 }

for the sketch “conn({(o1, ′d3), (o2,
′d2)}, X, ′A)”, which for-

mally requires invoking rules Hole (for X), Module (for
′A), and Connect (for connecting X and ′A), as well as
checking that the side condition (Ct) of the latter holds.

Finally, with the typing Con∗
1 for “loop({(d6, d1)},A)”

and the typing Con∗
2 for “conn({(o1, ′d3), (o2,

′d2)}, X, ′A)”,
any of the 4 possible ways of placing the former in the hole
of the latter does not break its strong validity. For this we
invoke rule Let and check its side condition (Lt).

8. SOUNDNESS
The inference rules for typed network sketches presented in
Figure 2 are sound with respect to both strong and weak
versions of validity. This claim is stated formally in Theo-
rem 3. The theorem is proven by an inductive argument for
which there exist two base cases, which we state below.

Axiom 1 (Module). If we have by the inference rule
Module that Γ ` (A, In,Out, C) : C∗

0 then it is the case that
V |= (A, In,Out, C) : C∗

0 .

Axiom 2 (Hole). If we have by the inference rule Hole
that Γ ` (X, In,Out, {}) : C∗

0 then it is the case that V |=
(X, In,Out, {}) : C∗

0 .

Modules and holes are the basis of our inductive proof.
While it is possible to construct a module A for which V 2
A : C∗

0 and holes for which V 2 X : C∗
0 , it is unreasonable

to expect any network with such modules or holes to have a
valid valuation. Thus, we assume that all modules and holes
trivially satisfy our theorem.

Theorem 3 (Soundness). If Γ ` N : C∗ can be de-
rived by the inference rules then for any V , V |= N : C∗.
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Figure 3: Graphic representation of module A, network sketch “loop({(d6, d1)},A)”, and network sketch

“conn({(o1, ′d3), (o2,
′d2)}, X, ′A)”. We omit “let X ∈

n
loop({(d6, d1)},A)

o
in conn

“
{(o1, ′d3), (o2,

′d2)}, X, ′A
”

”.

Proof. The theorem holds by induction over the struc-
ture of the derivation Γ ` N : C∗. Axioms 1 and 2 are
the two base cases. The four propositions covering the four
possible inductive cases can be found in the full version of
this paper [6].

In related work [22], a significant portion of the proof
has been formalized and verified using a lightweight formal
reasoning and automated verification system.9

9. RELATED WORK
Our formalism for reasoning about constrained-flow networks
was inspired by and based upon formalisms for reasoning
about programs developed over the decades within the pro-
gramming languages community. While our work focuses
in particular on networks and constraints on flows, there is
much relevant work in the community addressing the general
problem of reasoning about distributed programs. However,
most previously proposed systems for reasoning in general
about the behavior of distributed programs (Process algebra
[4], Petri nets [30], Π-calculus [28], finite-state models [25,
26, 27], and model checking [18, 19]) rely upon the reten-
tion of details about the internals of a system’s components

9There are other theoretical results certifying that our rules
in Figures 1 and 2 work as expected. These results will be
included in forthcoming reports. For example, for untyped
network sketches M, N and P, which are to be connected
according to the one-one maps:

θ1⊆1-1 Out(M)× In(N ) and

θ2⊆1-1 Out(conn(θ1,M,N ))× In(P)

we can compute the one-one maps:

θ′1⊆1-1 Out(N )× In(P) and

θ′2⊆1-1 Out(M)× In(conn(θ′1,N ,P))

such that

conn(θ2, conn(θ1,M,N ),P) = conn(θ′2,M, conn(θ′1,N ,P))

Moreover, the valid typings (weak or strong) are exactly the
same for both sides of the equation. Informally, the order in
which we connect M, N and P, does not matter – whether
M and N first and then appending P, or N and P first and
then prepending M.

in assessing their interactions with one another. While this
affords these systems great expressive power, that expres-
siveness necessarily carries with it a burden of complexity.
Such an approach is inherently not modular in its analysis.
In particular, the details maintained in a representation or
model of a component are not easily introduced or removed.
Thus, in order for a global analysis in which components are
interfaced or compared to be possible, the specifications of
components must be highly coordinated. Furthermore, these
specifications are often wedded to particular methodologies
and thus do not have the generality necessary to allow mul-
tiple kinds of analysis. This incompatibility between differ-
ent forms of analysis makes it difficult to model and reason
about how systems specified using different methodologies
interact. More generally, maintaining information about in-
ternal details makes it difficult to analyze parts of a system
independently and then, without reference to the internals of
those parts, assess whether they can be assembled together.

Discovering and enforcing bounds on execution of pro-
gram fragments is a well-established problem in computing
[36], and our notion of types (i.e., linear constraints) for
networks can be viewed as a generalization of type systems
expressing upper bounds on program execution times. Ex-
isting work on this problem includes the aiT tool (described
in [32], and elsewhere), which uses control-flow analysis and
abstract interpretation to provide static analysis capabilities
for determining worst and best case execution time bounds.
Other works, belonging to what have been called Depen-
dent Type Systems, provide capabilities for estimating an
upper bound on execution time and memory requirements
via a formal type system that has been annotated with size
bounds on data types. These include (but are not limited
to) Static Dependent Costs [31], Sized Type Systems [20],
and Sized Time Systems [24]. Many other Dependent Type
Systems directly target resource bounding for the real-time
embedded community (e.g., the current incarnation of the
Sized Time System [15], Mobile Resource Guarantees for
Smart Devices [3]).

More generally, there has been a large interest in apply-
ing custom type systems to domain specific languages (which
peaked in the late nineties, e.g., the USENIX Conference
on Domain-Specific Languages (DSL) in 1997 and 1999).
Later type systems have been used to bound other resources
such as expected heap space usage (e.g., [17], [3]). The sup-



port for constructing, modelling, inferring, and visualizing
networks and properties of network constraints provided by
our work is similar to the capabilities provided by modelling
and checking tools such as Alloy [21]. Unlike Alloy’s system,
which models constraints on sets and relations, our formal-
ism focuses on constraints governing flows through directed
graphs.

Our work intersects the body of work on Interface The-
ories [2, 13, 33], yet differs both in relation to motivation
and the formalization of the concepts that follow from it.
Like our work, Interface Theories models composition of sys-
tems by relating the interfaces of components but, unlike
our work, provides a calculus of relations to describe such
interfacing. Our work has grown from interest in modeling
large compositions of constrained-flow networks, where not
all components are known or assembled at the same time,
using ideas inspired by type systems for strongly-typed pro-
gramming languages, in our work, safe interfacing of com-
ponents corresponds to a case of inferring or checking that
a subtyping relationship holds (not unlike the observation
made by [23]). We intend to carry out a careful comparison
between the two approaches in forthcoming work, assess-
ing limitations and advantages of both in the modeling and
design of large safety-critical systems.

One of the essential activities our formalism aims to
support is reasoning about and finding solution ranges for
sets of constraints that happen to describe properties of a
network. In its most general form, this is known as the con-
straint satisfaction problem [35] and is widely studied [34].
The types we have discussed in this work are linear con-
straints, so one variant of the constraint satisfaction problem
relevant to our work involves only linear constraints. Find-
ing solutions respecting collections of linear constraints is a
classic problem that has been considered in a large variety
of work over the decades. There exist many documented
algorithms [11, Ch. 29] and analyses of practical consider-
ations [14]. However, the typical approach is to consider a
homogenous list of constraints of a particular class. A distin-
guishing feature of our formalism is that it does not treat the
set of constraints as monolithic. Instead, a tradeoff is made
in favor of providing users a way to manage large constraint
sets through abstraction, encapsulation, and composition.
Complex constraint sets can be hidden behind simpler con-
straints – namely, types (i.e., linear constraints) that are
restricted to make the analysis tractable – in exchange for a
potentially more restrictive solution range. Conjunction of
large constraint sets is made more tractable by employing
compositional techniques.

The work in this paper extends and generalizes our ear-
lier work in Traffic (Typed Representation and Analysis of
Flows For Interoperability Checks [5]), and complements our
earlier work in Chain (Canonical Homomorphic Abstraction
of Infinite Network protocol compositions [9]). Chain and
Traffic are two distinct generic frameworks for analyzing
existing grids/networks, and/or configuring new ones, of lo-
cal entities to satisfy desirable global properties. Relative
to one particular global property, Chain’s approach is to
reduce a large space of sub-configurations of the complete
grid down to a relatively small and equivalent space that is
amenable to an exhaustive verification of the global property
using existing model-checkers. Traffic’s approach uses
type-theoretic notions to specify one or more desirable prop-
erties in the form of invariants, each invariant being an ap-
propriately formulated type, that are preserved when inter-
facing several smaller subconfigurations to produce a larger

subconfiguration. Chain’s approach is top-down, Traffic’s
approach is bottom-up.

While our formalism supports the specification and ver-
ification of desirable global properties and has a rigorous
foundation, it remains ultimately lightweight. By lightweight
we mean to contrast our work to the heavy-going formal
approaches – accessible to a narrow community of experts
– which are permeating much of current research on for-
mal methods and the foundations of programming languages
(such as the work on automated proof assistants [29, 16, 10,
12], or the work on polymorphic and higher-order type sys-
tems [1], or the work on calculi for distributing computing
[8]). In doing so, our goal is to ensure that the constructions
presented to users are the minimum that they might need to
accomplish their task, keeping the more complicated parts
of these formalisms “under the hood”.

10. CONCLUSION AND FUTURE WORK
We have introduced a compositional formalism for modelling
or assembling networks that supports reasoning about and
analyzing constraints on flows through these networks. We
have precisely defined a semantics for this formalism, and
have illustrated how it can be used in specific scenarios
(other examples can be found in a companion paper [7] de-
scribing NetSketch, a tool that implements this formalism).
Finally, we noted that this formalism is sound with respect
to its semantics in a rigorous sense (a complete formal proof
of this assertion can be found in the full version of this report
[6]).

In the tool that employs our formalism (NetSketch), the
constraint system implemented is intended to be a proof-
of-concept to enable work on typed networks (holes, types,
and bounds). We intend to expand the constraint set that is
supported within NetSketch to include more complex con-
straints. Likewise, future work involving the formalism it-
self could involve enriching the space of constraints. This
includes both relatively straightforward extensions, such as
the introduction of new relations or operators into the gram-
mar of constraints, as well as more sophisticated ones. For
instance, we have only briefly begun experimentation with
making time an explicit parameter in our current framework.
As a concrete example, consider the preservation of density
at a fork gadget, currently defined as d1 = d2 + d3. Time as
an explicit parameter, we could describe constraints indexed
with discrete time intervals (e.g., d1(t) = d2(t) + d3(t)) and
can easily imagine constraints that are dependent on prior
parameter values.

The equivalent of type inference within our formalism
also deserves more attention and effort. As we indicated,
there is no natural ordering of types. If no optimal constraint
function is assumed, any reasonable type inference process
could produce multiple, different valid types. Types can be
considered optimal based on the size of their value ranges
(e.g., a wider or more permissive input range, and narrower
or more specific output range, are preferable, in analogy
with types in a strongly-typed functional language or in an
object-oriented language), but even then, multiple “optimal”
typings may exist. It is necessary to establish principles and
algorithms by which a tool employing our formalism could
assign types. Such principles or algorithms might operate
by assigning weights for various valid typings.
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