Multiplexing VBR Traffic Flows with Guaranteed Application-level QoS
Using Statistical Rate Monotonic Scheduling*

Alia Atlas'
Dept of Internetwork Research
BBN Technologies
Cambridge, MA 02138

Azer Bestavros
Computer Science Department
Boston University
Boston, MA 02215

{akatlas, best}@cs.bu.edu

Abstract

The data units transmitted by an application may vary in
size while being constant in rate, which results in a vari-
able bit rate (VBR) data flow. That data flow requires QoS
guarantees. Statistical multiplexing is inadequate, because
no guarantees can be made and no firewall property ezists
between different data flows. In this paper, we present a
novel resource management paradigm for the maintenance
of application-level QoS for VBR flows. Our paradigm is
based on Statistical Rate Monotonic Scheduling (SRMS), in
which (1) each application generates its variable-size data
units at a fized rate, (2) the partial delivery of data units is
of no value to the application, and (3) the QoS guarantee
extended to the application is the probability that an arbi-
trary data unit will be successfully transmitted through the
network to/from the application.

1. Introduction

There are many applications, such as video, with peri-
odic message transmissions where (1) the message sizes are
variable, (2) the entire message must be received for the
transmission to be useful, and (3) not all messages must be
received to support acceptable functionality. If such an ap-
plication were to reserve its peak rate, the network would
have very poor utilization and would refuse many other
reservation requests. Instead, a VBR reservation with a
QoS guarantee is preferable.

In [4] we have introduced Statistical Rate Monotonic
Scheduling (SRMS)—an algorithm that allows for the ef-
ficient scheduling of periodic real-time task systems with
statistical QoS guarantees. In this paper, we present an
SRMS-based paradigm for multiplexing many VBR data
flows across a constant bandwidth link while supporting
QoS for each data flow. SRMS lends itself very well to com-
munication systems due to its ability to cope with variable
(rather than deterministic) resource consumption require-
ments, its ability to manage tasks with QoS guaranteed
best-effort deadlines, and its support of the firewall prop-
erty. Our paradigm incorporates a number of unique fea-

*This work was supported by NSF research grant CCR-9706685.
TResearch completed while co-author was at Boston University.

tures and novel capabilities, including: (1) fixed priority
scheduling that takes into account both task criticality and
periodicity, (2) message admission control that allows for
early rejections of messages that are not guaranteed to meet
their specified QoS, thus preserving resources, (3) integra-
tion of reservation-based and best-effort resource schedul-
ing seamlessly, and (4) controllable graceful degradation
under conditions of overload.

The problem of scheduling multiple data streams across
a single link has been extensively studied. A comprehensive
literature review of such studies is given in [4].

2. Network Model and SRMS Framework

Our network model in this research consists of border
switches which are connected to each other via an arbi-
trary network. Each border switch handles a large number
of data flows from an internal network. A CBR connec-
tion, or a virtual circuit, is assumed to exist between any
two border switches which must communicate. The situa-
tion described is depicted in Figure 1. Each application is
assumed to generate application-level data units, known as
messages, at a constant rate, R;. The messages are of vari-
able size. The message flow can be modeled as a periodic
task with a variable resource requirement. The period of
the message flow is % At the beginning of each period, a

complete message is ready to be sent.

We assume that the number of applications generating
traffic which need to be routed through a border switch is
significantly greater than the number of CBR connections
and virtual circuits which are established from that bor-
der switch. Therefore, many different message flows will
need to be switched to the same output link. It is neces-
sary to schedule which cells are selected to be transmitted.
Therefore, at each output link, buffering and scheduling are
necessary. A buffer which can hold two maximum-length
messages is required for each message flow. The buffer will
hold the incoming message, to be sent out the next period,
and the outgoing message. To conserve buffer space and to
minimize delay, each message must be fully transmitted by
the end of the period at which it was ready to be sent.

With this deadline restriction, the traffic flow repre-
senting messages generated from an application resembles
a classical real-time periodic task model, with two differ-

Internal
Network

Border
® \swich/e ® @

JeuJaju

HIOMAN

HOM])
Jeusaiu| ey

[euwsau|

MIOM}aN
[eudaju

Figure 1. Model of Network

ences. First, the resource requirement is variable. Second,
if a message cannot be sent by its deadline, then the entire
message should be dropped; this is known as a firm dead-
line. The additional requirement of the application is that
some QoS guarantee be provided.

In the remainder of this paper, we will consider each
message flow to represent a periodic task. Namely, a peri-
odic task system represents a set of VBR traffic flows that
are multiplexed on a single CBR, channel. Thus, through-
out the paper, we use the terms “task” (“resource”) and
“VBR traffic flow” (“CBR channel”) interchangeably.

2.1. Statistical Rate Monotonic Scheduling

A periodic task, 7;, is a three-tuple, (P;, fi(z), QoS;),
where P; is the task’s period, f;(z) is the probability den-
sity function (PDF) for the resource requirement (message
size), and QoS; is the task’s guaranteed QoS. The qual-
ity of service for a task (message flow) 7; is defined as the
probability that an arbitrary job (message) of 7; will be
completed (transmitted) by its deadline. We denote this
probability by QoS;.

RMS and SRMS are both preemptive scheduling algo-
rithms. A cell cannot be preempted while it is being trans-
mitted. Therefore, all periods must be multiples of CT, the
amount of time it requires to transmit a single cell, given
the bandwidth of the outlinlk. This requirement can be re-

inforced by setting P; = LCR—;J Therefore, all preemptions

occur at the end of a cell’s transmission.

Without loss of generality, we assume that tasks are
ordered rate monotonically. Task 1, 71, is the task with the
shortest period, P;. The task with the longest period is 7,,,
where n is the total number of tasks in the system. The
shorter the period, the higher the task’s priority. At the
start of every P; units of time, a new message of task 7; (a
job of task 7;) is available and has a firm deadline at the
end of that period. Thus, the jth job of task i—denoted by
7;,;—Iis released and ready at time (j — 1) * P and its firm
deadline is at time j * P.

We assume that the resource requirements for all jobs
of a given task are independent and identically distributed
(iid) random variables. The distribution is characterized
using the probability density function (PDF), f(z). We

assume that the resource requirement for a job (message
size) is known when the job is released and that such a
requirement is accurate.The resource requirement for the
Jjth job of the ith task is denoted by e; ;.

The third element of a task specification under the
SRMS paradigm is its QoS requirement. Using the methods
presented in this paper, this QoS requirement can be used
to determine the necessary allowance needed to guarantee
the QoS. The allowance a; is the amount of time alloted to
task, 7;, over an epoch of time equal to the period of the
next lower priority task 7;41. If the allowance a; is spec-
ified instead of QoS;, then the QoS of the task with that
allowance is QoS(7;).

The superperiod of 7; is Pj;1, the period of the next
lower priority task, 7;11. A job 7; ; whose release time is in
one superperiod and whose deadline is in the next superpe-
riod is called an overlap job. The utilization requirements of
overlap jobs could be satisfied through the use of allowances
disbursed within either (or both) superperiods, whereas the
utilization requirements of a non-overlap job must be sat-
isfied through the use of the allowance disbursed within a
single superperiod—namely the enclosing superperiod.

A set of tasks 11, 72, ..., Ty, is said to be schedulable under
SRMS, if every task 7; is guaranteed to receive its allowance
a; at the beginning of every one of its superperiods.

In SRMS, the highest priority admitted job is scheduled.
SRMS maintains a budget for each task in the system. Jobs
belonging to a task are allowed to use the resource, if there
is enough budget for them to do so. More specifically, at
the beginning of the superperiod of task 7;, the budget of
7; is replenished to 7;’s allowance (namely a;).

Upon the release of a non-overlap job 7;;, if the re-
source requirement of that job, namely e; ;, is less than the
remaining budget for the current superperiod, then job 7; ;
is admitted and the remaining budget for the current su-
perperiod is decreased by an amount equal to e; ;. If e; ; is
more than the remaining budget for the current superpe-
riod, then job 7; ; is not admitted and the remaining budget
for the current superperiod remains unchanged. However,
if job 7; ; is an overlap job, then it may still be possible to
admit that job by delaying its service—assuming that such
a delay does not result in missing 7; ;’s deadline—until the
start of the next superperiod, at which time the budget is
replenished, and admission may be possible.

There are many issues that we have not discussed with
regard to SRMS, including specific optimizations. For more
details, interested readers should refer to our presentation
of SRMS and its extensions in [4].

3. QoS Management using SRMS

With the brief description of SRMS presented in the pre-
vious section, we are now ready to discuss our SRMS-based
QoS management paradigm. First, we will consider how to
calculate the QoS of a task, given a set allowance. For sim-
plicity, we shall discuss calculating the QoS for task systems
with harmonic periods and provide a trivial example. In
subsection 3.2, we present a generalization for task systems
with arbitrary periods. Finally, we will discuss calculating
the allowance from QoS requirement.

3.1. QoS for Harmonic Task Systems

A task set is harmonic if, for any two tasks 7; and 7,
P; < P; = P;|P;. Under SRMS, a necessary and sufficient
condition [4] for a harmonic task set to be schedulable is
that > v, gy < 1.

i+1

Lemma 1 Given a schedulable, harmonic task set
T1, T2,y ey Tn, the mazimum possible resource utilization re-
quirement for any job of task ; is e]"**?, where:

maz i—1 a;*xP;

&SP B
The proof of this lemma follows from the fact that the task
set is schedulable, and hence every task 7; that has a pri-
ority higher than that of 7,—namely 7;,j < i—must be
able to claim its allowance for every superperiod of 7; that
occurs within a single period of task 7;.

Because SRMS uses job admission control, a task is not
affected by the variability in the resource utilization of the
other tasks in the system. Therefore, each task can be given
seperate statistical guarantees.

As illustrated in figure 2, a job 7;; can fall into P"le
different phases within the superperiod P;y;. The proba-
bility that 7; ; will be admitted is dependent on the phase
in which it falls. To explain this, it suffices to observe that
the first job in the superperiod has a replenished budget
and has the best chance of making its deadline, while the
last job in the superperiod has a smaller chance, because
the budget is likely to have been depleted.

1
[ee]

\ \
P=2, P
1 |

_—

‘ Phase! Phase | Phase| Phase | Phase| Phase | Phase| Phase
‘112‘314 102 1 3 4

t=10 t=12 t=14 t=18 t=20 t=22
t=8 t=16

t=24
Figure 2. Sample Task with Four Phases

An arbitrary job 7; ; has an equal probability of being in

any given phase out of the possible P%l phases within the
superperiod P;1;. To explain this, it suffices to note that in
an infinite execution of task 7;, there will be an equal num-
ber of jobs in each phase, and thus a uniform distribution

for the phase of a randomly selected job is reasonable.

Let Six =1 (Si,x = 0) denote the event that a job 7; ;
released at the beginning of phase k of a superperiod of
task 7; is admitted (not admitted) to the system. Now,
we proceed to compute P(S;, = 1)—the probability of
admitting a job in the kth phase of a superperiod of task
7; (i.e. the probability of success).

Recall that a; is the allowance made available to task 7;
at the start of its superperiod P;i1, which is the start of
the first phase. Obviously, a job 7; ; released in this first
phase (i.e. k = 1) will be admitted only if its requested
utilization is less than or equal to a;. This leads to the
following relationship.

P(S;,1 = 1) = P(ei,; < ai)

For a job 7;; released in the second phase (ie. k =
2), two possibilities exist, depending on whether the job
released in the first phase was admitted or not admitted.
This leads to the following relationship.

P(S;2 =1) = P(es,j—1 < a;) * Ples,j—1 +eij <a;)
+P(eij—1 > ag) x Plei,j < a;)

Obviously, each P(S;; = 1) can be calculated as the
sum of 25—1 different terms, where each term expresses a
particular history of previous jobs being admitted and/or
rejected (i.e. deadlines met and/or missed). Thus, to calcu-
late P(S; 3 = 1), the sum of the probabilities of all possible
histories, where the job in the third phase meets its dead-
line, must be calculated. The set of possible histories are
((1,1,1), (1,0,1), (0,1,1), (0,0,1)), where 1 represents a met
deadline and 0 represents a missed deadline.

We are now ready to define the QoS guarantee that
SRMS is able to extend to an arbitrary set of tasks with
harmonic periods.

Theorem 1 Given a task set with harmonic periods, the
probability than an arbitrary job 7;; of task ; will be ad-
mitted is the QoS function of ;.

Piy1

QoS(ri) = gy * 23,204 P(Sig =1)

Theorem 1 follows from the assumption that an arbitrary
job has an equal probability of being in any given phase.
The value thus calculated, QoS(7;), is the statistical guar-
antee which harmonic SRMS provides on the probability
that an arbitrary job will miss its deadline.

To illustrate the use of the above formulas, consider the
example task system shown in Table 1. The results of ap-
plying Theorem 1 to that system are shown in Table 2.

(i [P | E"®® | E(E;) | PDF [# Phases |
1 5 2 1.5 | uniform 2
2 10 3 2 | uniform 3
3 30 13 7 | uniform fe's)
4 90 4 2.5 | uniform 1

Table 1. Example: 4 Tasks, Max Utilization 1.178

What do these calculations mean? Because the periods
are harmonic, all of the processor time can be guaranteed.
Therefore, the allowances ai, a2, as and a4 could be set
to any set of values, as long as the total utilization is not

greater than 1 (i.e. Z?Zl P?jrl < 1. Table 3 shows a num-
ber of feasible resource assignments and the associated QoS
delivered to the various tasks in the system. Obviously, the
choice of a particular assignment should reflect the impor-

tance of the different tasks.

3.2. QoSfor Arbitrary Task Systems

The calculation of QoS for a task system with arbitrary
periods is an elaboration of the QoS calculation for a har-
monic task system. The additional complexity is caused by
an analysis of the behavior for overlap jobs. Recall that,
according to SRMS, when an overlap job, 7; ;, is released,
that job may be delayed for a bounded time. After that

Guarantee Calculations for Task 1

[a1 [P(Sy,1 =1) [P(S1,2 =1) [QoS(m1) |
2 1 : 2
4 1 1 1

Guarantee Calculations for Task 2

(a2 [P(S2a=1) [P(S22=1) [P(S23=1) [QoS(r2)]
3 1 3 = 0.523
6 1 I 0.6296 0.877
9 1 1 1 1

Guarantee Calculations for Task 3
| as || P(S31 =1) | P(S32 =1) | P(S3,3 =1) | QoS(713) |

21 1 0.911 0.5628 0.825
24 1 0.982 0.701 0.8944
27 1 1 0.834 0.9448
30 1 1 0.925 0.975
33 1 1 0.9745 0.9915
36 1 1 0.995 0.998
39 1 1 1 1

Table 2. Example: QoS Calculations

| a1 as as aq || Util || QoS1 QoS> QoS3 QoS4 |
4 9 24 3 1 1 1 0.8944 0.75
4 3 39 4 0.9778 1 0.523 1 1
2 9 39 4 1 0.625 1 1 1
4 6 33 3 1 1 0.877 0.9915 0.75

Table 3. Example: Valid Resource Assighments

delay, the task budget is renewed and the overlap job is
tested for admittance.

‘ P =12 R=5
2 [>
[] [[} ' ' °
| Phase ! Phase | Phase | Phase | Phast | Phase | Phase | Phase | Phase! Phasé Phase | Phase |
112 \11211\‘2131\1121\11213
t=5 1= 10
=0 =12 t=24 =36 t=48 t=60

Figure 3. Phases for Task with Overlap Jobs

In Figure 3, an example task is shown with the various
phases. Each black circle represents a renewal of the bud-
get and, potentially, a delayed job release time. For more
details on the algorithm, please see [4]. As can also be seen
in Figure 3, the largest possible number of jobs which might
need to share an allowance is | ’+1'| This worst-case oc-

curs, for example, when the deadline of the last job in the

superperiod is also the end of the superperiod. The small-
est possible number of jobs is LPHT‘ |. This occurs when the
release time of a job corresponds to the start of a super-
period. Exactly how many times each of these cases occur

can be calculated as follows.

LCM(P;11,P;)
P11

highCount % [ﬁ] + lowCount * L%J =

highCount + lowCount =

LCM(P;41,P;)
P;

where, LCM (P;41, P;) is the least common multiple of the
two perlods HighCount is the number of superperiods in

LCM (P;41, P;) in which there are [P’+1] phases. Similarly,
lowCount is the number of superperlods in LCM(P;11, P;)
in which there are L%J phases.

The first equation expresses the fact that highCount
plus lowCount must equal the total number of superperiods
in the LCM (P, i1 P;). The second equation describes the
number of jobs in the LCM (P;11, P;). Both highCount
and lowCount are weighted by the number of jobs they
represent. The weighted sum must equal the total number
of jobs in LCM (P;y1, P;). By solving these two equations,
highCount and lowCount can be determined.

Job admission for a task set with arbitrary periods pro-
ceeds through two tests. The first test is a check that the
sum of allocated execution times during the superperiod
is less than or equal to the task’s allowance. Thus, the
probability that a job will be able to meet its deadline (i.e.
P(S; = 1)) is equal to the sums of the probabilities of the
possible histories. The second test for job admission exists
because an overlap job (that passed the first test) may have
been delayed so long that it is impossible to meet its dead-
line (i.e. even if admitted). Therefore, in the probability
calculations for each possible history, the value P(e; 1 < a;)
(P(ei,1 > a;)) used in the harmonic case is conditioned by
the probability that the second admission test is passed.
Given this slight complication, the probability that a job
in the jth phase of 7; is admitted, P(S;, = 1), is still the
sum of the probabilities of all possible histories, where a
job in the kth phase meets its deadline.

To calculate the probability that a job in the first phase
will pass the second admission test, we make several as-
sumptions. First, we assume that the resource requirement
of the job associated with the superperiod, e;1,m, is the
maximum schedulable. This assumption also ensures that
no cascading priority inversion can occur [6]. Second, we
assume that the deadline for that superperiod job corre-
sponds to the deadline of a job of 7;. This is the worst
case, because it requires all of the allowance allotted for
the superperiod to be spent during the actual superperiod

and the number of phases in that superperiod to be [%]

The maximum schedulable resource requirement for 7;
is slightly different from the case with harmonic periods

and is given by:
mazp _ p, i—1 P;
ei _Pz_Zk:Iak*[Pk+1-|
The remaining resource requirement of a job 7; ; at a time
t is represented by elef t(t).

The probability that the first task is admitted is
P(eéflt,k((j —1) % P) +e; < e "). The PDF for
e;; is known. Next, we need to determine the PDF of

iiflt x((7 —1) x P;), the remaining resource requirement for
job Tiy1,; when the overlap job, 7; ; is released. The worst
case resource requirement for a job of 7;,; is €]} 7"
At (j—1) % P;, the time when the overlap jth job is released,
the minimum resource requirement spent on the kth job of
task 7,41 is given by:
e =(—1)x P — (k1) Piy1 — ai—

Z':;ll " |—(J 1)%P; Wfil 1)*P1+1-|

= Yot am (=]
Given knowledge of a,,,,Vm < i, this value, effl’?,i, can be
completely calculated as a function of a;. For simplicity, we

P;
= P; % |_},—+11J —a;

define t¢v%" to be the minimum amount of time available
at priority level i for work of priority level i or lower for the

. P;
interval P; x |55 |.

javail — py Pig1) g1 " Pixl l+1J
avail — Py | Pt | - 3L g (D T

.. . left .
The remaining resource requirement, e;}; ,((j — 1) * F),

is simply calculated from the assumed original resource re-

. ¢
quirement and €;75"; as follows.

left marp spent
t+1 k((] - 1) * PZ) - E)H—l - eH—l,k

— eﬁalwp t;_wazl + a;
=Py — Z:'n) [Pz+1 1 — tavail 4 g
= Piyq —tgvail - Zjn L am[5L

left

This value, e;}’; , ((—1)*F;), can now be used to determine

the probability that a job in the first phase will pass the

second admission test.

Pl (G -1« P) +eiy <) =

P(el j < emaacp Pi+1 + t?"a“ + Z:;

The above probability needs to be related to those calcu-

lated according to the number of phases. Assuming the

worst case—that all jobs in the first phase must undergo

this secondary admission test, we get the following.

P(S;,1 =1le;,1 < ai) =
P(em S ema:cp

z+1)

am{Pm+1

z+1+tava”+zm 1amrPH—l)

Theorem 2 Given a task set with arbitrary periods, the
probability than an arbitrary job 7; ; of task ; will be ad-
mitted is QoS (1;)—the QoS function of 7;. QoS(7;) can be
computed through the calculation of the following values as
detailed in [2].

1. P(Si’l = 1) = P(e,-,1 < ai) * P(Si’l = 1|e,-,1 < ai)

2. Vk < [P;'TT}, P>

3. vk < [T, P(Yk_,

ek < a;)

€.k > a,-)

3.3. Calculating Allowances from QoS Requirements

In the previous two subsections, we have shown how to
calculate a QoS guarantee for a task given its allowance.
However, the reverse operation is necessary. Tasks (mes-
sage flows) will require a given QoS. The system must de-
termine whether it can support that QoS. If the QoS can be
guaranteed, then the task can be admitted to the system
and its allowance must be calculated; otherwise the task
must be rejected—namely, a? < a = QoS(7?) < QoS(7}).

As expressed above, the transformation from QoS to
allowance requires that QoS increases monotonically with
increasing allowance. As can be seen from our analysis,
this is the case. Therefore, a binary search can be used
to find the minimum allowance which satisfies the QoS re-
quirement of a task. For a binary search, the maximum and
minumum values must be specified. Obviously, the mini-
mum allowance is zero. The maximum possible allowance
is the task’s superperiod, guaranteeing 100% utilization for
that task.

4. Performance Evaluation

To evaluate the performance of SRMS-based VBR traffic
flow multiplexing, and to compare the application QoS it
delivers with that it promises through the analytical QoS
calculations presented in section 3, we developed a simula-
tor to run a periodic task system subject to the model and
assumptions discussed in section 2. Namely, a periodic task
system represents a set of VBR traffic flows that are multi-
plexed on a single CBR channel. Thus, in this section, we
use the terms “task” (“resource”) and “VBR traffic flow”
(“CBR channel”) interchangeably.

We conducted two sets of simulation experiments. In
the first, we used task sets consisting of five periodic tasks
with harmonic periods. The first period was fixed, and
the remaining periods were chosen randomly, so that the
ratio between adjacent periods was an integer uniformly
distributed between 1 and 4. In the second, we used task
sets consisting of five periodic tasks with arbitrary periods,
where the ratio between adjacent periods are uniformly dis-
tributed between 1.75 and 6.

For comparison purposes, we considered the Job Failure
Rate (JFR) as our performance metric. JFR is the per-
cent of missed deadlines per task, averaged over all tasks
[1]. The use of JFR as a performance metric is superior to
the conventional percentage missed deadlines, because JFR
gives equal weights to all tasks as opposed to equal weights
to all jobs.

In our experiments, we evaluated three versions of
SRMS. The first version, which we term Basic SRMS, works
only on harmonic periods and includes no heuristic opti-
mizations. The harmonic QoS calculations in section 3 were
based upon an analysis of Basic SRMS. The second version,
which we term Simple SRMS, works on arbitrary periods
and includes no heuristic optimizations. The non-harmonic
QoS calculations in section 3 were based upon an analysis
of Simple SRMS. The third version, which we term SRMS,
is an improvement of Simple SRMS. In particular, it al-
lows unreserved/unclaimed resource utilization to be used
to improve the overall system performance in a best-effort
fashion (above and beyond the minimal guaranteed QoS).

The first set of experiments considered a constant re-
source requirement. This removes the statistical nature of
the QoS guarantee and allows us to verify our analysis. As
can be seen in the leftmost plots in Figures 4 and 5, the
JFR based on the calculated QoS for each task matches the
JFR simulated with Basic SRMS or Simple SRMS.

We considered exponential, gamma, poisson, normal,
uniform and Pareto distributions of resource requirements.
This allowed us to determine if the algorithms’ behaviors
changed based upon distribution. We found that the gross
behavior of the algorithms did not vary significantly, and
that the QoS analysis maintains its relevance. Therefore,
we will only show the results of the poisson and normal
distributions.

Our experiments show that the calculated QoS generally
provided a good upper bound for Basic SRMS under all dis-
tributions considered. Since the calculated QoS (as derived
in section 3) is a statistical guarantee, it is important to
note that, occasionally, in any experiment of finite length,

100 100
o o
90 SRMS 90 SRMS) 1 90 SRMS
o Calculated QoS o Calculated QoS ° %S 0503 o ' Calculated QoS
80 % Basic SRMS 801 | % Basic SRMS 6oc6 @@ 0 80 % Basic SRMS
50
©
701 5 e 70 000 701
© 00
o} I £ o) CHENE)
T o8 % °°8 T 00 X T
@ 6or @ & & ® x 6of g° TR St I -
o 8@ @ (] @ RN X oxx [
< ® g R B @ [2o XX g b <
3 sop : 3 so0p 9. K¢ 3 sof
T ee ® K 0g° K T
w e ow i 098" % w
L L % L
g w0 & i@ e g w0 o Ex g 4
i & (=] x L)
301 @ . 301 o % 301
® &
20+ e & : 1 201 % 20
101 & 8 101 5 10f
o X
0 o ; i ; 20090 ; ;
(o 05 25 0 05 25 25

1 15 2
Average Utilization Requested

1 15 2
Average Utilization Requested

1 15 2
Average Utilization Requested

Figure 4. JFR for constant (left), Poisson (middle) and normal (right) message sizes with harmonic periods.

N "o
9 %009a00®
90 SRMS & 90 SRMS 6,8 %9 ¢0.0 | 90 SRMS
o Calculated QoS ® @ 5 @ o Calculated QoS 0%0 Q@ 000 ix °)§ o Calculated QoS
L ©5, o | L %
80 |'« simple SRMS) 85 E @% 5 o 80 |'« simple SRMS o Fp XX e S 80 |'% simple SRMS
& % e 5 8 o o X TR X x
70+ & o m @ B q 70+ >0 - x0¢ s 70
@ o 8% @ % o %o * o
L =® L XY]
S eoF S eoF Xt % S eoF
4 5 4 Q% o
® 0 o® ® o ®
L L % 3
= 50 & = 50 & = 50
o o () o
w @0 w 2 w
g “of pa- 5 5 5 wf
=] o® = ° =]
301 1 30[¥ 301
@ 5
201 1 201 o8 201
o 0><
10 o 8 10 10
°y 08
I It v It It
0 05 25 0 05 25 0 05 25

1 15 2
Average Utilization Requested

1 15 2
Average Utilization Requested

1 15 2
Average Utilization Requested

Figure 5. JFR for constant (left), Poisson (middle) and normal (right) message sizes with arbitrary periods.

Basic SRMS may not deliver the promised QoS. This can
be seen in the simulations with normal distributions (right-
most plots in Figures 4 and 5, where, rarely, basic SRMS
behaves worse than the calculated QoS.!

As expected, our experiments show that the QoS deliv-
ered using SRMS (with all possible improvements) is far
superior than that delivered by Basic SRMS under all dis-
tributions. The difference is more pronounced for task sets
with arbitrary periods (Figure 5) This is due to the fact that
the unutilized/unclaimed resource utilization is “larger” for
task sets with arbitrary periods, compared to that for task
sets with harmonic periods. The calculated and guaranteed
QoS is a statical bound on the QoS provided by the basic
SRMS algorithm; with the unanalyzed improvements, the
statistical nature of the guarantee is less significant because
a QoS superior to that calculated is actually delivered.

5. SRMS Workbench

For demonstration purposes, we have packaged: (1) the
SRMS QoS negotiator (i.e. schedulability analyzer), and
(2) our SRMS simulator (Basic SRMS + all extensions)

ITn some cases, the difference between the calculated QoS and
the QoS delivered through Basic SRMS is not negligible. We believe
that this is due to the truncation of the probability distributions (in
the simulation) and to the randomness of the resource requirements.
As evidence, when the resource requirement is fixed (leftmost plots
in Figures 4 and 5), the calculated QoS and that obtained through
Basic SRMS are identical.

into a Java Applet that can be executed remotely on any
Java-capable Internet browser. For comparison, a RMS [5]
simulator and a SSJAC [3] simulator are included. The
SRMS Workbench is available at:

http://www.cs.bu.edu/groups/realtime/SRMSworkbench

References

[1] A. K. Atlas. Statistical Rate Monotonic Scheduling: Quality
of Service through Management of Variability in Real-time
Systems. PhD thesis, Boston University, June 1999.

A. K. Atlas and A. Bestavros. Multiplexing vbr traffic flows
with guaranteed application-level qos using statistical rate
monotonic scheduling. Technical Report BUCS-TR-98-011,
Boston University, Computer Science Department, 1998.

A. K. Atlas and A. Bestavros. Slack stealing job admission
control. Technical Report BUCS-TR-98-009, Boston Uni-
versity, Computer Science Department, 1998.

A. K. Atlas and A. Bestavros. Statistical rate monotonic
scheduling. In IEEE Real-Time Systems Symposium, Dec.
1998.

C. Liu and J. Layland. Scheduling algorithms for multipro-
gramming in a hard-real-time environment. Journal of the
ACM, 20(1), 1973.

L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheri-
tance protocols: an approach to real-time synchronization.
IEEE Transactions on Computers, 39:1175-1185, 1990.

[2]

