
Optimal Scheduling of Secondary Content for Aggregation
in Video-on-Demand Systems1

Prithwish Basu2 Ashok Narayanan3 Wang Ke Thomas D.C. Little
Department of Electrical and Computer Engineering, Boston University

8 Saint Mary’s St., Boston, MA 02215, USA

Azer Bestavros
Department of Computer Science, Boston University

111 Cummington St., Boston, MA 02215, USA

Abstract – We present and evaluate an optimal scheduling
algorithm for inserting secondary content for improving resource
utilization in VoD systems. The algorithm runs in polynomial
time, and is optimal with respect to the total bandwidth usage
over the merging interval. We present constraints on content
insertion which make the overall QoS of the delivered stream
acceptable, and show how our algorithm can satisfy these
constraints. We discuss dynamic scenarios with user arrivals
and interactions, and show by simulations that content insertion
reduces the channel bandwidth requirement to almost half.

Keywords: Video-on-demand, service aggregation, secondary
content insertion, scheduling

I. INTRODUCTION

Non-uniform popularities of movies can result in skewed
user access patterns in VoD systems[5] . Several techniques
exploit this principle to aggregate individual users and serve
them in groups. These resource sharing schemes map multiple
“logical” channels onto a smaller number of “physical”
channels to perform service aggregation[5, 9, 2, 6, 8, 10].

Stream merging minimizes end-to-end network bandwidth
requirements by bridging the temporal skew between streams
carrying the same content. This can be done by adaptive
piggybacking[6] (we call it rate adaptive merging) and by
content insertion[8]. Rate adaptive merging of two streams
can be achieved by accelerating the trailing stream towards
the leading stream by about ��4 until both are at the same
position in the program. At this time, all users on both streams
can be served off the same stream using multicast.

Secondary content insertion is similar to rate adaptation,
but at a much coarser granularity. Here, the temporal skew
between two streams is bridged by inserting short segments
of secondary content into the leading stream, to allow the
trailer to catch up. In [8], content insertion is presented in
server overload situations and is unconstrained. We propose
to use this technique to actively aggregate streams during
normal operation of a VoD system. Clearly, indiscriminate

1This work is supported in part by the NSF under grants No. NCR-9523958
and CCR-9706685.

2correspondence to: pbasu@bu.edu
3now at Cisco Systems, Chelmsford, MA, USA
4an acceptable limit according to an empirical study

insertion of content may cause unacceptable degradation
of the viewing experience for some users. We address this
problem by introducing a number of QoS constraints which
bound the amount of secondary content inserted into streams,
and also shape the inserted content to make the entire package
acceptable.

The aggregation process involves two steps:clustering and
merging. A clustering algorithm is used to generate clusters of
streams to be merged [3]. A cluster consists of a number of
streams, each serving the same content, but skewed temporally
with respect to each other. The channels in a cluster are then
merged by selectively inserting secondary content.

In this paper, we deal with stream merging. We discuss
optimal techniques for scheduling of secondary content under
different constraints with the primary goal of minimizing
total bandwidth used during merging. We refer to this as
the “static snapshot” case because a snapshot of the stream
positions is taken at the beginning of the merging period
and no user interactions are allowed to take place during
this period. We begin with a simplified version of the
problem where the inter-stream spacings are multiples of
time-intervals equivalent to a group of ads and present a
dynamic programming (DP) algorithm of time complexity
����� to solve the problem. By adapting our earlier DP
algorithm, a more general version of the problem can be
solved. We also outline certain heuristics for the harder,
“dynamic” version of the problem where user arrivals and
interactions5 are allowed to occur during the merging process.
Throughout this paper, the terms “advertisement”, “ad(s)” and
“secondary content” have been used interchangeably, and they
refer to the same thing.

Secondary content can take the form of advertisements,
short news flashes, weather information, stock updates, sports
scores, or other items of interest. Advertisements also serve
to directly defray the cost of content production and service.
We believe that such a scheme would help the VoD service
provider in earning extra revenue, and at the same time
subsidize the cost of programming to subscribers who are
willing to receive QoS-constrained secondary content. Some

5Fast-Forward, Rewind, Pause, Quit

subscribers may wish to receive premium service with no
advertisements, or receive all the ads at the beginning of the
movie (near VoD). Our algorithm supports these cases too,
optimally. Furthermore, these techniques are not restricted
to the commercial VoD scenario, but can be extended to
video-over-IP streaming frameworks as well.

With the increasing popularity of streaming media over the
Internet, user demand may frequently outstrip the resources
available at popular streaming servers. Using secondary
content insertion, the server can continue supporting the
existing users while merging them dynamically, meanwhile
trying to accommodate new users, who would otherwise have
been blocked.

The main contribution of this paper is an optimal solution
for the QoS-constrained content insertion problem. The
use of content insertion for bridging large skews and rate
adaptation for fine-tuning has been described in [8]. Content
insertion and excision have been discussed in conjugation with
dynamic buffer management for near-VoD systems by Tsai
and Lee [10]. Optimal techniques for performing rate-adaptive
merging or adaptive piggybacking have been discussed in
[3, 1].

Section II describes the problem and the constraints in
detail; Section III proposes a DP based solution for the
problem; Section IV discusses simulation results; Section V
concludes the paper.

II. PROBLEM FORMULATION

We define an ad schedule as a sequence of tuples, of the
form ��� � ���. This represents delivery of advertisements for
time �� , followed by delivery of video content for time � � .
Fig. 1 depicts a possible ad schedule for a single user. When
generalized to a set of � users, the ad schedule becomes a
matrix of tuples ���� � ����, where each tuple represents the � ��

pair of ad and video time given to user �. Typically, the interval
��� will consist of a burst of multiple ads.

a
1

v
1

a v
2

a v
2 3 3

Fig. 1. Ad schedule for a single user

If the system could insert ads in an unconstrained manner,
the optimal way to merge two users temporally separated by �
seconds, is to keep the leader on ads for � seconds, and allow
the trailer to catch up in this time period. For large values of
� , this unacceptably degrades the viewing experience for the
leader. Therefore, aggressive use of advertisement scheduling
can succeed only when it is controlled by a set of QoS
constraints which ensure that the viewing experience is not
intolerably degraded due to advertising: no burst of ads should
be excessively long; neither should ad bursts be delivered too
close to each other; no user should receive more than a certain
amount of ad time over some viewing interval; partial ads

cannot be displayed. These constraints can be formally stated
as follows:

��� � ����� � � �� ���� (1)

��� � ����� ��� � 	��� ���� (2)

�

	

��� �

�

	

���� � ���� ���� (3)

In this paper, we assume that all advertisements are of the
same length, ���� which represents the granularity of every
��� . However, this approach can easily be extended to serve
ads of different lengths, as long as all the ad-lengths are integer
multiples of some base value ����. ���� is the maximum
length of a single ad burst. Clearly, ���� should also be an
integer multiple of ����. 	��� is the minimum video time
that has to occur between two ad-bursts. There are two limits
on the fraction of viewing time that can be used to display ads.
One is the long-term ad-dosage limit �
� � �, which represents
the fraction of viewing time available for ads
, over some
time interval � . This is a pinwheel scheduling constraint [7],
applicable over any time interval � . The other is the short-term
ad-dosage limit which represents the maximum rate at which
ads can be inserted in video. It is given by � �
���

��������
. It

is easy to see that in general,
 � �.

The problem which we are trying to address in this paper is
the following - “For a group of � streams carrying the same
content but at different points in time (i.e. if a snapshot of the
stream positions is taken at a particular time instant), what is
the ad-video schedule that minimizes the total bandwidth while
merging them into one stream, at the same time obeying the
above QoS constraints?”

If at the start of the merging cycle, stream � was at
position � and stream � was at position � , then for these
two streams to merge, the following relation should hold:
� � � � ������ � � ��. This implies that ad scheduling
can only be used to bridge skews which are integral multiples
of the minimum ad length. In practice, such temporal skews
are uncommon, therefore ad insertion must be coupled with
another, more fine-grained aggregation technique like rate
adaptive merging [6].

III. OUR SOLUTION APPROACH

In this paper we discuss a restricted version of the problem
and owing to paucity of space, direct the reader to [4] for the
details regarding the general version of the problem. Following
are the simplifying assumptions:

 � � (4)

��� � � ����� ���� (5)

��� � 	��� ���� (6)

In brief, we simplify the problem by making the two
constraints on ad dosage equal. Also, we constrain the ad

Time

merge points

program position

ads

(j) (i)(k+1) (k)

3

7

9

(b) Rectilinear Representation(a) Intuitive Representation

Time

Vmin

Vmin

Amax

45
o

0 3 7 9

Program Position

25

m = 0.5

Slope = -1

Amax = 1
Vmin = 2

m = 1/2

P(i,j)

Vmin

Amax

(i)

(j)

(k+1)

(k)

T(i,k)

T(k+1,j)

P(k+1,j)

β = 1/3
P(i,k)

Fig. 2. Restricted ad schedule grid for multiple users

dosage to zero, or a fixed value which is the maximum we
can give. Inter-ad video dosage is also fixed at the minimum
possible limit. It is clear that any solution satisfying these
constraints will also satisfy the general constraints presented
earlier. We also impose the following additional constraint on
program positions at the beginning of the snapshot, so that
only programs whose difference in positions is an integral
multiple of our ad dosage unit, can be merged.

A. Preliminaries

We first introduce a graphical notation to denote the merge-
able streams with different content progression rates on a time
scale. Fig. 2(a) shows an intuitive representation of the streams
on Cartesian axes; diagonal motion along a line with slope
� refers to a stream with normal speed and vertical motion
refers to a stream in content-insertion state. In the particular
example, there are � streams receiving the same program but
their positions are skewed in program time as indicated in the
figure. Our task is to alter the content progression rates of these
given streams from the initial time instant and merge them into
one stream. This merging process should consume minimum
network bandwidth.

For simplicity, we use a rectilinear representation of this
graph, as shown in Fig. 2(b). The figure has two time axes:
horizontal for video time, and vertical for ad time. Units
on both these axes are taken to be equal. Note that for two
streams with an initial skew 	 to merge, the leading stream
must be given ads for 	 time more than the trailing stream,
for any 	. The leading stream is farthest to the right (Stream
� in the figure) and the trailing stream is the one at the top
(stream �). Other streams are placed along the horizontal
time axis according to the skews shown in Fig. 2(a). These
are denoted by � marks on the horizontal line at the top of
Fig. 2(b). Then, we can plot a line with slope �� through

the initial point, and project the initial temporal skews from
the horizontal (video) time-line onto the diagonal to obtain
the initial points on the graph. In this rectilinear grid graph,
a horizontal step represents video delivery for time 	��� on
that stream, and a vertical step represents ad delivery for time
����. At any given point in time, a diagonal line with slope
�� gives the locus of all stream positions. We can visualize
this diagonal line sweeping towards the North-East direction
across the grid as time progresses. A merge point is defined as
a point where two or more streams merge into one. A segment
is a section of a stream between two merge points, or between
the start point and the first merge point. We can see that a
merging schedule in Fig. 2(a) becomes a staircase like pattern
in Fig. 2(b). The terms � �	� and � �	� have been defined later
in Section B.

Our solution relies on the following observations. Detailed
proofs of these are presented separately in [4].

Observation 1 To achieve optimality, at any time a segment
can only be in one of the two states: decelerated and steady. A
segment in decelerated state receives the maximum ad-dosage
available. A segment in steady state receives no ads. Also, at
each merge point, exactly two segments merge into a single
segment. These can be deduced by noting that a segment lies
between merge points, and therefore does not contain any
merge points within itself. Therefore, the aim of giving ads
to a stream can only be to slow it down so that a trailing
stream may catch up. Clearly the optimal merging policy will
decelerate the segment at the maximum possible rate so that
the merge happens earlier and a channel is released sooner.
This has been illustrated in Fig. 3. It is clear that both case
(b) and case (c) have less cost in terms of bandwidth usage
than case (a), since the merge happens later in (a).

(a) (b) (c)

normal

fast

slow slow

fast fast

slow

fast
slow

Fig. 3. Merging of three streams

(a) Giving ads early (b) Giving ads late

Fig. 4. Ad dosage earlier vs. later

Observation 2 If advertisements are to be inserted in a
segment, it is less costly to give advertisements as early as
possible, and video content later. In Fig. 4(a), the decelerated
stream merges earlier with the trailing stream than in 4(b),
because ads are given earlier, hence the bandwidth consumed
in the former case is less than in the latter.

Observation 3 For a decelerated segment, the optimal ad
scheduling technique is to give the maximum possible ad
dosage (���� in this case) in the beginning, followed by the
video complement for this ad dosage. This pattern is repeated
periodically throughout the segment. This follows from the
previous observation and the pinwheel scheduling constraint
in (3).

Observation 4 The point where all streams finally merge
occurs at a time 	��� before the intersection of a horizontal
line corresponding to the trailing stream, and a diagonal line
of slope � � �

���
drawn through the initial point (projected

on the line with slope ��) of the leading stream. This line has
been shown in Fig. 2(b). All streams are constrained within
the envelope formed by these two lines because these two lines
depict the maximum and minimum ad dosage, therefore all
streams must receive ad dosage between these.

In Fig. 2, the ad constraint envelope is shown by a diagonal
line of slope �. For convenience, � is shown here to be �

�
;

in practice, � would be considerably less (around �

�
, which

translates to a maximum of �� minutes of ads per hour of
viewing time).

Theorem 1 The graph with segments formed from a merging
schedule for a given scenario is a binary tree where the
average slope of each segment is either � (no ads) , or
� � �

���
�
���

����
(ad-video bunches). Also, finding the

optimal (minimum bandwidth cost) merging schedule is
isomorphic to finding the optimal binary tree on � leaf nodes,
separated by given distances.

This follows from the previous observations. See [1, 3] for
similar results on rate-adaptive merging.

B. Solution to the Restricted Case

Since the number of binary trees with � leaf nodes grows
exponentially with �, exhaustive search of all possible trees
is impractical for any large value of �. However, a dynamic
programming approach helps us to solve this problem in
polynomial time. We outline the solution below.

We number the streams from � to �, with � being the leading
stream and � being the trailing stream. Let � be the length of
the movie (last program position). Consider the two streams, �
and � in Fig. 2(b), with � � � and � � � . From observation 4,
we can see that � ��� �� is the optimal merge point for streams
�� � � � � � and is given by (7) and (8).

� ��� �� � �� � � � (7)

� � �
� � �

�
� 	���� �
� � (8)

Let � ��� �� denote an optimal binary tree for merging streams
�� � � � � � and ���� �� denote the cost of this tree all the way to
the end of the program. The cost of a binary tree is the sum of
the lengths of all the segments in the tree. This is equivalent
to the total bandwidth consumed until all given streams merge
into one. Obviously, if � ��� �� is optimal, then ���� �� is the
minimum possible cost for merging streams �� � � � � �. Since
this is a binary tree, there exists a point � such that the right
subtree contains the nodes �� � � � � � and the left subtree contains
the nodes � � �� � � � � �. From the “principle of optimality”,
which holds for binary trees, if � ��� �� is optimal, then both
the left and right subtrees must be optimal, i.e., � ��� �� and
� �� � �� �� must be optimal. The cost of this tree is given by
a dynamic programming formulation ((9) and (10)), and the
optimal policy merges � ��� ��� and � ��� � �� �� into � ��� ��,
where �� is given by (11).

Here ���� �� and ��� � �� �� are the costs of the right and
the left subtrees respectively, calculated all the way till the
end of the movie. The third term is subtracted to eliminate the
cost duplication after the streams � and � merge. The fourth
term is added to include the ad time after � ��� �� into the
cost formulation. This is because, even if a certain stream
has been put on ads momentarily, the resources allocated
to it in the server and the network (in case of bandwidth
reservation) cannot be freed until it actually merges with some
other stream. Since the number of ad channels is assumed
to be fixed (ideally, one multicast ad channel suffices), the
bandwidth costs due to those channels do not feature in (10).

We begin by calculating � ��� �� and ���� �� for all �. Then,
we calculate � ��� �� �� and ���� � � ��, then � ��� � �
� and
���� ��
� and so on, until we find � ��� �� and ���� ��. This
gives us our optimal cost. The algorithm has been summarized
below:

���� �� � �� �� � � � (9)

� ���� �� � ��� � �� �������� � ��� ��� �� � � � ��� �
� � (10)

�� � arg min��������� �� � ��� � �� �������� � ��� ��� �� � � � ��� (11)

Algorithm DP Find Tree

�

for (�=1 to �)
initialize � ��� ��, ���� �� and � ��� ��
from (7) and (9)

for (�=1 to �� �)
for (�=1 to � � �)

Compute � ��� � � ��, ���� � � �� and � ��� � � ��

from (8), (10) and (11)
�

There are ���� iterations of the outer loop and ����
iterations of the inner loop. Additionally, determination of
���� �� requires���� comparisons in the arg min step. Hence,
the algorithm DP Find Tree has a complexity of �����. A
point to be noted here is that in real systems, � is not likely
to be very high, thus making the complexity acceptable. We
show later in the simulation section that not much optimality
is lost by reducing the size of a snapshot.

C. The General Case

We relax the constraint imposed by (5), making � �� variable,
while still being subject to (1) and (2). We also remove the
constraint imposed by (4) resulting in the appearance of both
the short-term and the long-term ad constraints, as defined in
Section II. Like in the restricted situation, the optimal content
insertion policy schedules as much ad time as early as possible,
and then fills in the video as necessary. The calculation of
� ��� �� is more complicated in this case since a merge point
can occur during an ad-burst. But the structure of the merging
tree remains binary and hence DP Find Tree can still be
applied with a modified expression for � ��� ��. Due to space
limitations, we cannot include details of our optimal algorithm
here, and direct the reader to a longer version of the paper[4].

The algorithms described till now generate optimal
schedules only in the static snapshot case. But while designing
real VoD systems, one needs to find techniques for handling
user interactions without sacrificing optimality. A standard
way of achieving this goal is to re-compute the optimal
schedule by DP Find Tree periodically. This period can be
based on time or the rate of arrivals/interactions. However,
if the rate of interactions is high, then the re-computations
have to be done very frequently. Another technique that
sacrifices some optimality is a segment fitting technique,
which maintains the original merging schedule and tries

to optimally “connect” the (interactive) streams that have
cropped up in the interior of the merging tree, to the original
tree, if possible. Of course, this technique may lead to highly
suboptimal solutions under specific situations and has no good
upper bounds on the cost increase. We conduct simulations to
observe the effectiveness of this segment fitting heuristic.

TABLE 1
SIMULATION PARAMETERS

Parameter Meaning Value

� Number of moviesa ���

	 Length of a movie ��� min

��� Length of one ad �� sec

��� Max. length of an ad-burst � min
���� Min. video time between ad-bursts � min
� Long term time window �� min
� Frac. of ad-time in the long run �

�

 Re-computation interval ���� sec
� Initial batching interval
��� 	 �� sec
���� Mean inter-arrival rateb ������ s��

���� Mean interaction rateb ���
 s��

���� Mean interaction durationb � sec
� Rate of Rewind/FF ��

IV. SIMULATION RESULTS

In this section, we describe the simulation results of a
general dynamic scenario where the users come into the
system, interactively view the movie, and then leave6. Our
primary performance measure is the ratio of the number
of running streams to the number of users in the system,
as it directly quantifies the gains due to secondary content
insertion.

A re-computation period, � is an interval of time during
which a content insertion algorithm attempts to release
channels, and after which a new snapshot is taken. Initially
all streams are run for time � at normal speed and only then
the ad-insertion starts. At the beginning of every snapshot,
algorithm DP Find Tree computes the optimal paths
for each stream, and until the next snapshot happens, all
currently running (non-interacting) streams follow the paths as
prescribed by the algorithm. Newly arrived streams, however
are allowed to run at normal speed until the next snapshot.
One important assumption that we make in the interaction

aZipfian popularity distribution
bExponential distribution assumed
6Simulations of static scenarios have been described in [4].

model is that interactions are not allowed during ad-bursts.
All interactions that occur during an ad-burst are serviced at
the end of the burst. When a user interacts, he/she is allocated
a new stream at least for the duration of interaction. But
after resuming the user can be merged with any other stream
since the ad-budget of that stream is reset after the interaction
event. This is to discourage users from interacting for the sole
purpose of skipping the ads.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 10
4

0

100

200

300

400

500

600

700

Num movies = 100, λ
arr

 = 0.0833, λ
int

 = 0.07, R = 120 sec

Time (sec)

N
um

be
r

of
 s

tr
ea

m
s

Users in the system

Streams after batching

Streams after aggregation

Fig. 5. Dynamic Case with Arrivals and Interactions

The simulation parameters have been listed in Table 1. We
simulate the case where the most popular movie has arrivals
once every minute, and it translates to the aggregate arrival
rate of �

��
����� for ��� movies. Fig. 5 shows the gains due to

ad-insertion in this dynamic interactive scenario. The average
number of users in the system � should approximately be
���� � � � ���, in our case. The simulations show a slightly
higher value (around �
�) since ad-insertion slows users down
resulting in more number of users. But, after aggregation, the
number of streams in the system is only around ���, which
directly translates to a ��� saving in capacity. On the other
hand, batching reduces the channel bandwidth requirement by
a mere ���. Therefore secondary content insertion helps us
in cutting down the bandwidth requirement to almost half the
original amount; the spare bandwidth, if any can be used to
serve a larger number of customers.

We also increased the re-computation interval from �
�
seconds to �
�� seconds, and observed no appreciable
increase in resource usage. Thus we concluded that for low
to medium interaction levels, segment fitting heuristics work
well and re-computation can be done relatively infrequently,
hence reducing the computational overhead of the algorithm
significantly.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented and evaluated an optimal
algorithm for inserting secondary content for service

aggregation in an interactive VoD system. We demonstrated
that the algorithm runs in ����� time, where � is the number
of streams in a cluster. We have presented the simulation
results for a fully interactive scenario where the users are
arriving, interacting and leaving the system. For a mean
arrival rate of around �

��
�����, and a combined interaction

rate of around ���� �����, we show almost ��� reduction in
the number of channels required.

Personalization and value-added secondary content such
as news are important factors in increasing the acceptability
of this solution. Another important factor for the success of
ad insertion is an appropriate pricing policy which provides
enough subsidies to the user. Also, uniform ad insertion into
a video stream is not always feasible due to the occurrence
of “gripping” scenes in the movie. Metadata can be inserted
off-line, into certain points of the stream, instructing the server
not to attempt any aggregation at those points in time.

The problem of differentiated content insertion at multiple
levels needs to be examined. Analyses of the effects
of changing access patterns and interaction rates on the
performance of our algorithm are currently underway.

REFERENCES

[1] C.C. Aggarwal, J.L. Wolf and P.S. Yu, “On Optimal Piggyback
Merging Policies for Video-on-Demand Systems,” Proc. SIGMETRICS
’96: Conference on Measurement and Modeling of Computer Systems,
Philadelphia, PA, USA, pp. 200-209, May 1996.

[2] K.C. Almeroth and M.H. Ammar, “On the Use of Multicast Delivery
to Provide a Scalable and Interactive Video-on-Demand Service,” IEEE
Journal on Selected Areas in Communication, Vol. 14, No. 6, pp. 1110-
1122, Aug 1996.

[3] P. Basu, R. Krishnan, T.D.C. Little, “Optimal Stream Clustering
Problems in Video-on-Demand,” Proc. Parallel and Distributed
Computing and Systems ’98 - Special Session on Distributed Multimedia
Computing, Las Vegas, NV, USA, pp. 220-225, Oct 1998.

[4] P. Basu, A. Narayanan, W. Ke, T.D.C. Little and A. Bestavros, “Optimal
Scheduling of Secondary Content for Aggregation in Video-on-Demand
Systems,” MCL Technical Report MCL-TR-12-16-98, Dec 1998. URL:
http://hulk.bu.edu/pubs/papers/1999/
basu-adins99/TR-12-16-98.ps.gz

[5] A. Dan, D. Sitaram, and P. Shahabuddin, “Scheduling Policies for an
On-Demand Video Server with Batching,” Proc. ACM Multimedia, San
Francisco, CA, USA, pp. 15-23, Oct 1994.

[6] L. Golubchik, J.C.S. Lui and R.R. Muntz, “Adaptive Piggybacking:
A Novel Technique for Data Sharing in Video-On-Demand Storage
Servers,” Multimedia Systems, ACM/Springer-Verlag, Vol. 4, pp. 140-
155, 1996.

[7] R. Holte et al., “The pinwheel: A real-time scheduling problem” Proc.
22nd Hawaii International Conference on System Science pp 693-702,
Kailua-Kona, HI, USA, Jan 1989.

[8] R. Krishnan, D. Venkatesh and T.D.C. Little, “A Failure and Overload
Tolerance Mechanism for Continuous Media Servers,” Proc. Fifth Intl.
ACM Multimedia Conference, Seattle, WA, USA, pp. 131-142, Nov
1997.

[9] W.D. Sincoskie, “System Architecture for a Large Scale Video on
Demand Service,” Computer Networks and ISDN systems, Vol. 22, pp.
155-162, 1991.

[10] W.-J. Tsai and S.-Y. Lee, “Dynamic Buffer Management for Near Video-
On-Demand Systems,” Multimedia Tools and Applications, Kluwer
Academic Publishers, Vol. 6 Issue 1, pp. 61-83, Jan 1998.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

