
End-to-End Informed VM Selection in Compute
Clouds

Mario Meireles Teixeira
Department of Informatics

Federal University of Maranhão
São Luı́s, MA, Brazil

Email: mario@deinf.ufma.br

Azer Bestavros
Computer Science Department

Boston University
Boston, MA, USA

Email: best@bu.edu

Abstract—The selection of resources, particularly VMs, in cur-
rent public IaaS clouds is usually done in a blind fashion, as cloud
users do not have much information about resource consumption
by co-tenant third-party tasks. In particular, communication
patterns can play a significant part in cloud application perfor-
mance and responsiveness, specially in the case of novel latency-
sensitive applications, increasingly common in today’s clouds.
Thus, herein we propose an end-to-end approach to the VM
allocation problem using policies based uniquely on round-trip
time measurements between VMs. Those become part of a user-
level ‘Recommender Service’ that receives VM allocation requests
with certain network-related demands and matches them to a
suitable subset of VMs available to the user within the cloud. We
propose and implement end-to-end algorithms for VM selection
that cover desirable profiles of communications between VMs in
distributed applications in a cloud setting, such as profiles with
prevailing pair-wise, hub-and-spokes, or clustered communication
patterns between constituent VMs. We quantify the expected
benefits from deploying our Recommender Service by comparing
our informed VM allocation approaches to conventional, random
allocation methods, based on real measurements of latencies
between Amazon EC2 instances. We also show that our approach
is completely independent from cloud architecture details, is
adaptable to different types of applications and workloads, and
is lightweight and transparent to cloud providers.

I. INTRODUCTION

In current cloud utilization scenarios, a customer requests
and obtains from the cloud provider a set of virtual machines
(VMs) with generic processing capabilities that should be
organized in such a way to provide the best possible services
with the least consumption of resources and hence the least
cost to the customer. The allocation of generic compute and
network resources to customer workloads so as to provide
the best performance at the least cost is a classical resource
management problem with many variants, dating back to
the management policies of mainframe computers. Today, in
Infrastructure as a Service (IaaS) clouds, the problem to be
tackled is not very much different, although some complicating
issues arise, such as application heterogeneity, geographically
dispersed nodes, multiple administrative domains and so on.

When cloud customers request a set of VMs from a
cloud provider such as Amazon EC2, they usually do not
have any information about which physical machine each
VM is actually residing on and neither about how these
shared physical resources are used by co-tenants, in terms
of computational, data and network consumption. Moreover,

customers do not know how the VMs in their allocated set
relate to one another in terms of delay inside the cloud’s
network. Although this ‘opaque’ cloud computing is necessary
and even welcome in a scenario with so many independent
customers, most cloud customers would certainly benefit from
a more informed application-to-VM mapping that would speed
up the completion of tasks (and correspondingly reduce cost)
and provide a more clever utilization of contracted resources.

In this context, we propose a Recommender Service to be
used by cloud costumers who wish to make better use of the
cloud resources they contracted, by making more informed VM
allocation decisions that neither waste nor over-utilize those
resources. These VMs would be identified from a larger set
of VMs allocated by the cloud provider to the customer, or
to an aggregator or broker working on behalf of a number of
customers [1].

Our main focus here is not on VM placement from the
perspective of the cloud administrator, as this problem has
been well studied recently [2]–[4]. Instead, we are particularly
interested in empowering the cloud customers’ perspective
who have been using cloud resources up to now as a black
box, although they could certainly leverage some knowledge
about the environment surrounding their contracted VMs.

An important motivation for our work is on efficiently
using the network inside the cloud. This is a critical issue,
and not only for delay-sensitive tasks such as in real-time,
multimedia and sensor applications. In general, communication
latency issues can delay job completion times within the cloud
[3] and consequently hinder the quality of services provided.
Additionally, recent research has shown that intercommunica-
tion patterns among VMs can play an important and decisive
role in application efficiency [5] and definitely have an impact
on application performance and responsiveness as perceived
by end users.

More specifically, in this paper we consider VM allocation
algorithms that employ round-trip times (RTT) between VMs
as a heuristic to support VM allocation decisions in Iaas
clouds. Real-time inter-VM latency measurements serve as
input to the Recommender Service, responsible for selecting
a subset of m VMs out of n possibilities, subjected to certain
requirements set by the cloud customer. The output of the
Recommender Service will be a VM mapping that can even
follow certain predefined topologies, such as a hive, a star or
a set of close VM pairs.

IEEE ICC 2015 - Workshop on Cloud Computing Systems, Networks, and Applications (CCSNA)

978-1-4673-6305-1/15/$31.00 ©2015 IEEE 9994



The end-to-end VM allocation strategies described herein
are topology agnostic, i.e., they are deliberately blind regarding
the cloud’s internal architecture and base their allocation de-
cisions exclusively on round-trip time measurements between
VMs. This is an innovation and is in contrast to similar re-
search [2], [3], which usually employs some knowledge of the
underlying datacenter architecture for that purpose. We argue
that this approach is consistent with emerging models of cloud
and inter-cloud marketplaces, such as in the Massachusetts
Open Cloud (MOC) initiative [6].

Our work does not rely on any form of network bandwidth
provisioning [7], what simplifies its deployment in a cloud.
Additionally, we focus only on inter-VM latency figures, thus
we do not approach the problem of how delay is perceived by
end users outside the cloud, as in [8].

This paper is organized as follows: Section 2 discusses
the current cloud utilization scenario and outlines the Rec-
ommender Service. Section 3 highlights the VM selection
policies and algorithms proposed herein and their respective
applicability. In Section 4, the algorithms are evaluated through
simulation using a reference architecture validated with real
Amazon EC2 measurements, and the main results are dis-
cussed. Finally, Section 6 discusses the main conclusions and
intended future work.

II. SYSTEM ARCHITECTURE

A. Background

Customers of cloud computing infrastructure services
(IaaS) typically access a public cloud provider through a web
interface and make requests for generic virtual machines which
they intend to employ in different types of computing tasks.
The underlying idea here is that of computing as a utility
because the clients do not use a specific cloud application
but rather request access to a remote computing platform to
be used for any purpose they may think fit. The computing
resources requested (usually VMs) may come prepackaged
with some software and normally belong to a certain range
in terms of computing power — tiny, small, medium and so
on, depending on each cloud provider’s terminology.

Many providers also make available some kind of monitor-
ing service to customers whereby they can obtain coarse and
fine-grained information about how their applications are using
their allocated VMs in terms of CPU, data and network con-
sumption. However, these monitoring services do not provide
any visibility regarding the impact of third-party applications
concurrently running beside their own applications (e.g., in
another VM on the same physical machine) or anywhere else
in the cloud. The lack of such knowledge can lead to truly
unwise application-to-VM mappings.

Our intention here is to provide a service that will collect
cloud usage information by one side and couple them with
customer requirements on the other side, in order to suggest a
VM mapping in accordance with customer needs and suitable
to current datacenter resource utilization. Such a service would
be especially useful in emerging cloud business models, as
shown in Figure 1, where there are brokers that contract a
batch of resources from the cloud provider and act as resellers
(or aggregators) between the cloud provider and the cloud
customer [1], [6], [9].

Fig. 1. Emerging cloud services contracting and provisioning model

Fig. 2. Architectural components of proposed Recommender Service

B. Recommender Service

In this context, we propose a Recommender Service, as
shown in Figure 2. Cloud customers will make a request for
VMs that should meet specific requirements (1), such as a
minimum RTT threshold between them or a particular VM
topology within the cloud.

The Recommender maintains a set of n VMs previously
contracted from a cloud provider and periodically monitors
them for performance information (2). As a request arrives, the
Recommender will select a subset of m VMs out of the total
n that should satisfy the customer’s demands, as expressed
by the current VM selection policy. It then suggests this
VM arrangement to the requester (3), which in turn deploys
applications on the VMs, accordingly. As a result, the customer
can choose among the available resources with more certainty,
making more informed application-to-VM commitments.

The Recommender does not function as a broker, as it does
not allocate the VMs itself. What it actually does is monitor
the environment surrounding each VM (e.g., network latency
or throughput), in order to be able to better balance its clients’
requests over the available resources, providing a VM selection
tailored to their needs.

We believe such a service can become a centerpiece in
cloud resource management in the near future, as applications
become more and more complex and with more stringent
demands, that cannot be satisfied uniquely by current cloud
provider-to-customer models.

A fundamental part of the Recommender Service are the
VM Selection Algorithms and also the performance informa-
tion available to them. In the present study, we are particularly
interested in algorithms that leverage end-to-end latency infor-
mation between VMs for allocation decisions.

III. VM SELECTION ALGORITHMS

This section details the approach for end-to-end latency
monitoring between VMs and also discusses four algorithms
we propose for VM selection within the cloud, all of which use
some sort of delay information for their placement suggestions.

IEEE ICC 2015 - Workshop on Cloud Computing Systems, Networks, and Applications (CCSNA)

9995



A. Latency Matrix

The primary input for the algorithms is a Latency Matrix
(RTTi,j) that is periodically updated with round-trip time
information between any pair (i, j) of VMs known to (or
managed by) the Recommender Service:

RTTi,j =


0 t1,2 t1,3 . . . t1,n
t2,1 0 t2,3 . . . t2,n
t3,1 t3,2 0 . . . t3,n
. . . . . . . . . . . . . . .
tn,1 tn,2 tn,3 . . . 0

 (1)

Each row or column in the matrix represents a VM inside
the cloud and the element (i, j) contains the round-trip time
between VMi and VMj . We consider this information as
symmetric, thus the equivalent element (j, i) is ignored. As
the values in the main column of the matrix are set to zero,
for all implementation purposes we assume an upper triangular
matrix.

We chose to use the latency as the basis for the VM
selection algorithms because RTTs are a reliable metric for
measuring network distance within clouds, as recent research
has pointed out [3], [5], [10]–[12]. Additionally, RTTs are
computationally cheap and straightforward to use and obtain.
In our study, latency measurements will be employed to
estimate the distance between VMs and will constitute a
fundamental parameter for VM allocation recommendations.

To verify how this would work in a real-world set up,
we performed a round-trip time monitoring experiment using
Amazon EC2 machines. First, we implemented and deployed
a client-server PING application in each of the rented VMs.
We then made the PING client periodically wake up and send
a message to each of the other virtual machines, in a round
robin fashion. This step was repeated a number of times (set
to 10 in our experiments) and, as the client received the return
messages, it computed the average delay for each (VMi, VMj)
pair and updated the figures in the Latency Matrix.

To assess the complexity of this algorithm, consider that
each VM needs to ping all other VMs except itself. Hence,
we have 2(n− 1) round-trip messages per VM, giving a total
of 2n(n − 1) messages for n VMs. Thus the complexity is
O(n2) for each updating cycle. The sheer number of mes-
sages exchanged may seem forbidding but remember that the
PING messages are short, about 64 bytes each. Additionally,
this monitoring applies only to the machines known to the
Recommender Service (not to all VMs in the cloud) and it
can be done on demand, aiming at the machines of a particular
cloud customer currently asking for VM placement recommen-
dations. Our experiments indicated that VM performance was
not significantly affected by RTT monitoring.

B. Hive Algorithm

This algorithm aims to find a set of VMs close to one
another by a round-trip time less than r ms, i.e., the RTT
between any pair of VMs belonging to that set should be
less than r. A variation of that would be to mandate that the
95th percentile of the RTTij measurements be less than the
threshold r, in order to avoid that a good arrangement of VMs
be discarded because of a few outliers.

We call this approach the Hive Algorithm as it intends to
find clusters of nearby VMs in an attempt to exploit locality
of reference. In fact, most applications in the cloud may
benefit from such an approach because it minimizes intra-cloud
traffic and as a result lowers bandwidth usage. It also helps
reduce datacenter fragmentation since the VMs cooperating
in a computation tend to be brought together. However, note
that distance in this case is usually but not always related to
physical distance. Although VMs on the same blade or rack
tend to have lower RTT times between them, in some cases
this may not be true due to virtualization or workload issues.
And thus perhaps a VM on another rack might be the closest
neighbor.

The Hive Algorithm is very difficult to implement in
practical terms. It is actually a special case of an NP-hard
graph problem. What we are trying to find here is a subgraph
wherein we can only draw an edge from any node i to any node
j if the RTT between them is less than the specified threshold.
The greater the number m of VMs in the hive, the harder the
complexity of the algorithm. If we wanted to find the largest
possible hive subjected to RTTij < distance then we would
come to the MAXCLIQUE problem [13], where the challenge
is to find a clique of maximum size, what is NP-hard.

One way to address this problem is to restrict the number of
VMs in the hive to be very small. In Section III-E, we give an
example of a simple approach to find m pairs of VMs inside
the cloud with an RTT between them lower than a certain
threshold. And a heuristic approach to the same problem is
discussed in Section III-D.

C. Star Algorithm

Our second approach, the Star Algorithm seeks to find the
answer to a simple question: given a set of VMs inside the
cloud, we would like to know which VM is approximately in
the center of them, considering latency. In other words, we
want to organize this set of VMs according to a star topology
whose center (the selected VM) is closer on average to all its
neighbors.

We present Algorithm 1 which, for a set of VMs, will
return the VM with the lowest average of RTTs in relation to
all other VMs in the set, i.e., the one to be chosen as the center
of the star. In Line 2, we sum all elements (i, j) to the right
side of the main diagonal of the matrix and, in Line 3, we
sum all elements above it, taking advantage of the symmetry
of round-trip times. Thus our matrix can occupy only half of
the memory required by n × n elements. The complexity of
this algorithm is clearly O(n2).

This algorithm can be useful to any distributed application
where one node should be in the midpoint with respect to
the other nodes in the set. This could be the case of a VM
functioning as a name directory, a key distribution service or
multicasting a stream of data to the other VMs. In a standard
provider-to-customer model, where the latter is simply allotted
a number of VMs, it is usually very hard to guess which one
of the VMs should be sorted out as the hub. Thus, in all of
those cases, the cloud customer could clearly benefit from a
more informed allocation of VMs.

IEEE ICC 2015 - Workshop on Cloud Computing Systems, Networks, and Applications (CCSNA)

9996



Algorithm 1 Star
Input: RTT : Latency Matrix for n VMs

1: for i = 0 to # rows in RTT do
2: sumx←

∑n
j=i+1 tij

3: sumy ←
∑i−1

j=0 tji
4: avg ← (sumx+ sumy)/(n− 1)
5: if avg is the lowest one until now then
6: center ← i
7: end if
8: end for
9: return center

D. Best Centers Algorithm

We could generalize the approach of the above Star Al-
gorithm and say we want to choose not just one VM as the
center, but rather find the m best VMs that could function as
hubs (or super-nodes), aggregating the traffic from neighboring
VMs inside the cloud. As example of situations where this is
needed, consider an application that requires the maintenance
of an overlay network or a distributed hash table with super-
nodes used for managing close-by clusters.

We propose Algorithm 2 that will find m centers out of n
VMs, all of which have the lowest average RTT to all other
VMs in the set, as in the following:

Algorithm 2 BestCenters
Input: RTT : Latency Matrix for n VMs; m : number of best

centers
1: for i = 0 to # rows in RTT do
2: sumx←

∑n
j=i+1 tij

3: sumy ←
∑i−1

j=0 tji
4: avg ← (sumx+ sumy)/(n− 1)
5: centers{} ← (i, avg)
6: end for
7: best{} ← centers{} sorted by key avg ascending
8: return best{0..(m− 1)}

The Best Centers algorithm aims to identify the VMs
that are the best star candidates and thus can potentially
become hubs around which clusters of VMs would be formed.
Therefore, it is possible to have ‘VM hives’ spread throughout
the cloud in order to respond to specific customer needs.

Note this algorithm can be used as a heuristic approach
to solve the clustering problem introduced in Section III-B,
however using a technique with much less computational
complexity. As can be seen, Algorithm 2 has a complexity
that is at least the same that of the Star Algorithm, namely
O(n2), plus additional steps to sort the centers array, which
for a Quicksort routine would be O(n log n) on average.

E. Neighbors Algorithm

Consider now the case where we want to find m pairs of
VMs within the cloud which are very close to one another,
typically with a round-trip time between them below a given
threshold. This is a special case of the Hive Algorithm, but
limiting the number of VMs in the hive to only two, in order
to avoid an explosion in the number of iterations.

This approach is described in Algorithm 3, which receives
a Latency Matrix as input and returns all VM pairs whose
RTT is less than the given threshold. Assuming round-trip time
information is symmetric, we only test the elements to the right
side of the main diagonal (i < j, as in Line 2), since the ones to
its left will be verified as the loop progresses down the matrix.
This still provides a complexity of O(n2) for the algorithm,
however it leaves us with half of the matrix elements to be
tested.

Algorithm 3 Neighbors
Input: RTT : Latency Matrix for n VMs; thres : max RTT

between VMs
1: for i = 0 to # rows in RTT () do
2: for j = i+1 to # columns in RTT () do {only i < j}
3: if RTT (i, j) < thres then
4: pairs{} ← (i, j)
5: end if
6: end for
7: end for
8: return pairs{}

IV. EVALUATION OF END-TO-END POLICIES

A. Reference Architecture

In order to assess the effectiveness of the VM selection
policies and algorithms outlined here, we performed extensive
simulation studies using a model for inter-VM latencies, which
we developed using real measurements of Amazon Web Ser-
vices (AWS) EC2 instances.

The first step was to define a reference cloud architecture
on which to validate the proposed algorithms. In current data-
centers, the internal network architecture is usually organized
in a hierarchical manner, as shown in Figure 3. On the bottom
layer, there are the racks, each with several compute nodes
(herein referred to as CPUs, for simplicity) which serve as
hosts for a number of virtual machines. VMs on the same
CPU communicate directly without any interference from the
network. Machines that belong to the same rack but reside
on different CPUs need to communicate through a top-of-rack
(ToR) switch. VMs on different racks have to use an aggregator
to reach each other.

In the experiments, the architecture was configured with
a top-level aggregator to which 2 other aggregators are con-
nected, each with 2 racks attached to it, with 4 CPUs and 10
virtual machines in each one. This gives a total of 160 VMs
in our cloud (10 VMs per CPU, 4 CPUs per rack, 4 racks).

B. Round-trip Time Sampling

To populate the Latency Matrix discussed in Section III-A,
we employed a uniform distribution in the interval [0, 1) to
randomly generate the round-trip time values. Those served
subsequently as input for a cumulative distribution function
(CDF) to produce more realistic RTT figures, consistent with
our experiments using Amazon EC2 machines. Table I lists the
four different RTT levels considered depending on where the
VMs are located. The last column tells the percentage of VMs
found in each category, derived from the architecture shown in
Figure 3. This table is eventually used to populate the Latency
Matrix.

IEEE ICC 2015 - Workshop on Cloud Computing Systems, Networks, and Applications (CCSNA)

9997



Fig. 3. Cloud architecture used as reference for algorithm validation

TABLE I. DIFFERENT LEVELS FOR ROUND-TRIP TIMES

Level VM Location %

1 Same CPU 5.6%
2 Same Rack 18.8%
3 Same Aggregate 25.1%
4 Distinct Aggregates 50.3%

C. Results

In the first experiment, we analyze the performance of the
Neighbors Algorithm against a random selection of VMs.
For a more realistic setting, we generate a Latency Matrix
according to a CDF, as described in Section IV-B. The RTT
threshold is set so that only VMs pairs located in the same
aggregate, rack or CPU are selected by the algorithm. The
objective is to find 1,000 pairs of machines whose RTTs satisfy
the specified criteria.

As can be seen through the extract in Figure 4, RTTs are
grouped around the above specified thresholds. The average
RTT for VM pairs selected by the Neighbors algorithm is
16.9566, compared to an average of 112.6947 when a random
selection is used. The percentage of discards by the Neighbors
approach is 49.44% on average, corresponding to roughly 50%
of VMs located in distinct aggregates, as defined in Table I.
For all cases reported the algorithm execution time was less
than 1 second.

The second selection policy to be analyzed is the Star Al-
gorithm. Latency Matrix figures were generated as described
previously. We consider 100 VMs and run the algorithm to
find the VM that has the lowest RTT average concerning all
the others. In Figure 5, there is a comparison between the real
center found by the Star Algorithm and 1,000 random choices
of centers. As can be seen, our algorithm always points out
the same center for a given RTT Matrix setting, here with an
RTT average of 87.4828. However, in the random case, most
“centers” fall far from the target, which they miss by more
than 20%.

Finally, we performed an experiment to study the Best
Centers Algorithm using as input a Latency Matrix with 100
VMs. This algorithm caters for a special class of applications
that require a set of hubs that somehow condense the traffic
around them, functioning as local points of attraction. In this
experiment, we aim to find the 10% best centers out of the
set of VMs provided. Each VM is individually chosen as a
center candidate and its average RTT is computed. Finally, all

Fig. 4. Neighbors vs. Random selection (same aggregate)

Fig. 5. Star vs. Random center selection

average RTTs are sorted from lowest to highest.

These results are depicted in Figure 6 where the blue
triangles precisely point out which VMs are better suited for
the purpose of being local hubs. Contrary to what may seem at
first, those best centers are not clustered in any special region
of the matrix but rather scattered on it; for instance, in one
particular run of the algorithm the list of center candidates
returned was {36, 57, 25, 5, 82, 77, 50, 45, 75, 56}. The
execution time of the algorithm was less than one second,
what makes it fast enough to be used in a real cloud setting.

D. Discussion

As the above results have shown, the employment of more
informed VM selection policies allows the cloud customer
to better match the application’s profile to current cloud and
VM utilization. This results in a better application-to-VM
mapping and can have a decisive impact on the performance
of applications executing in the cloud.

IEEE ICC 2015 - Workshop on Cloud Computing Systems, Networks, and Applications (CCSNA)

9998



Fig. 6. Best Centers selection

Note that a simple and straightforward selection policy as
the Neighbors algorithm can indeed yield very good results in
terms of extracting a subset of VMs that complies to some
previous requirements specified by the cloud customer. This
algorithm can even be fine tuned so as to return VMs exhibiting
a given latency from each other, as it was the case with the
‘same aggregate’ experiment above.

The Star Algorithm is useful when the customer needs
to select one of their contracted VMs to be the center of a
particular subset, for instance, in the case of a directory service.
Most probably, our customer would end up, by misfortune,
allocating the directory server far from its clients, with a crucial
impact on the system’s responsiveness. On the other hand, our
algorithm can precisely indicate the proper VM for such a role.

The Best Centers algorithm is able to find a subset of
VMs, among the ones contracted, better suited to perform the
role of local traffic hubs. Such a feature would be specially
important in a peer-to-peer application within the cloud, where
each selected hub could assume the role of a supernode for its
neighboring machines.

The selection policies and accompanying algorithms ana-
lyzed herein distinguish themselves from similar approaches
because they are able to make better VM commitments with
minimum knowledge of the underlying cloud infrastructure.
They simply infer VM relative distances from round-trip time
measurements and employ this information as heuristics to
make wiser VM selections.

V. CONCLUSION

Recent research has pointed out that intercommunication
patterns play a major role in application overall performance
in the cloud, thus this topic has drawn much attention from
the community. In this paper, we proposed a Recommender
Service to which a cloud customer can make a request for
VMs that should meet some particular criteria and receive, in
return, a set of machines that satisfies those demands. This
service allows for knowledgeable VM allocation decisions, in
contrast to the blind cloud resource allocation seen nowadays.

In particular, we focused our study on locality-aware VM
selection policies and algorithms that utilize latency between
VMs as a heuristic to support allocation decisions. Round-
trip time measurements were used as the main input to the
algorithms and four different VM selection policies were
proposed. They all employ an end-to-end approach and are
independent from datacenter topology details. Algorithms’
execution time was found negligible and all of them provided
VM allocation recommendations far better than their non-
informed counterparts.

As future work, we intend to deploy the Recommender
Service and related algorithms on a real cloud infrastructure
and also to evaluate the usefulness of this approach for latency-
sensitive applications. This will allow for a better understand-
ing of our algorithms’ performance in a real-world setting as
well as indicate novel forms of applying them.

ACKNOWLEDGMENT

The first author would like to thank CAPES, Brazilian
research agency, for its financial support and also the Hariri
Institute at Boston University for having received him as a
Visiting Fellow for the year of 2014. This work was supported
in part by a number of NSF awards, including PFI:BIC
award #1430145, SaTC awards #1414119 and #1012798, CNS
awards #1347522 and #1239021.

REFERENCES

[1] A. Bestavros and O. Krieger, “Toward an open cloud marketplace:
Vision and first steps,” IEEE Internet Computing, vol. 18, no. 1, pp.
72–77, 2014.

[2] X. Meng, V. Pappas, and L. Zhang, “Improving the scalability of data
center networks with traffic-aware virtual machine placement,” in IEEE
INFOCOM, 2010, pp. 1–9.

[3] M. Alicherry and T. Lakshman, “Network aware resource allocation in
distributed clouds,” in IEEE INFOCOM, 2012, pp. 963–971.

[4] J. T. Piao and J. Yan, “A network-aware virtual machine placement and
migration approach in cloud computing,” in 9th IEEE GCC, 2010, pp.
87–92.

[5] K. LaCurts, S. Deng, A. Goyal, and H. Balakrishnan, “Choreo: network-
aware task placement for cloud applications,” in ACM SIGMETRICS,
2013, pp. 191–204.

[6] MOC, “Massachusetts Open Cloud (MOC) ,” http://www.bu.edu/moc,
2014, [Online; accessed 3-Nov-2014].

[7] J. Chase, R. Kaewpuang, W. Yonggang, and D. Niyato, “Joint virtual
machine and bandwidth allocation in software defined network (sdn)
and cloud computing environments,” in IEEE ICC, 2014, pp. 2969–
2974.

[8] X. Nan, Y. He, and L. Guan, “Optimal allocation of virtual machines
for cloud-based multimedia applications,” in IEEE 14th Int’l Workshop
on Multimedia Signal Processing (MMSP), 2012, pp. 175–180.

[9] M. Böhm, G. Koleva, S. Leimeister, C. Riedl, and H. Krcmar, “Towards
a generic value network for cloud computing,” in GECON. Springer,
2010, pp. 129–140.

[10] D. Battré, N. Frejnik, S. Goel, O. Kao, and D. Warneke, “Evaluation
of network topology inference in opaque compute clouds through end-
to-end measurements,” in IEEE CLOUD, 2011, pp. 17–24.

[11] R. Shea, F. Wang, H. Wang, and J. Liu, “A deep investigation into
network performance in virtual machine based cloud environments,” in
IEEE INFOCOM, 2014, pp. 1285–93.

[12] B. Jonglez, M. Boutier, and J. Chroboczek, “A delay-based routing
metric,” arXiv:1403.3488, 2014.

[13] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to algorithms, 3rd ed. MIT press Cambridge, 2009.

IEEE ICC 2015 - Workshop on Cloud Computing Systems, Networks, and Applications (CCSNA)

9999


