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ABSTRACT:
In this paper, we overview the implementation of TCP Boston—
a novel fragmentation-tolerant transport protocol, especially
suited for ATM's 53-byte cell-oriented switching architecture.
TCP Boston integrates a standard TCP/IP protocol, such as
Reno or Vegas, with a powerful redundancy control mecha-
nism based on AIDA—an adaptive version of Rabin's IDA dis-
persal and reconstruction algorithms. Our results show that
TCP Boston improves TCP/IP's performance over ATMs for
both network-centric metrics (e.g., effective throughput) and
application-centric metrics (e.g., response time).

1 Introduction
In the last few years, the Transmission Control Protocol (TCP)
[15]—a reliable transport protocol that uses a window-based
flow and error control algorithm on top of the Internet Protocol
(IP) layer—has emerged as the standard in data communica-
tion. However, the introduction of the Asynchronous Transfer
Mode (ATM) technology and attempts to integrate that technol-
ogy with IP protocols have raised many questions regarding the
effectiveness of using TCP/IP over ATM networks [7, 12, 17].

The poor performance of TCP over ATMs is mainly due
to packet fragmentation, which occurs when an IP packet flows
into an ATM virtual circuit through the AAL5 (ATM Adapta-
tion Layer 5)—the emerging, most common AAL for TCP/IP
[1] over ATMs. AAL5 acts as an interface between the IP and
ATM layers; it is responsible for the task of dividing TCP/IP's
large data units (i.e., the TCP/IP packets) into sets of 48-byte
data units called cells. Since the typical size of a TCP/IP packet
is much larger than that of a cell, fragmentation at the AAL
is inevitable. In order for a TCP/IP packet to successfully tra-
verse an ATM switching network (or subnetwork), all the cells
belonging to that packet must traverse the network intact. The
loss even of a single cell in any of the network's ATM switches
results in the corruption of the entire packet to which that cell
belongs. Notice however that when a cell is dropped at a switch,
the rest of the cells that belong to the same packet still proceed
through the virtual circuit, despite the fact that they are destined
to be discarded by the destination's AAL at the time of packet-
reassembly, thus resulting in low effective throughput.

There have been a number of attempts to remedy this prob-
lem by introducing additional switch-level functionalities to
preserve throughput when TCP/IP is employed over ATM. Ex-
amples include the Selective Cell Discard (SCD) [2] (called Par-
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tial Packet Discard (PPD) in [17]) and the Early Packet Discard
(EPD) [17]. In SCD, once a cell c is dropped at a switch, all sub-
sequent cells from the packet to which c belongs are dropped by
the switch. In EPD, a more aggressive policy is used, whereby
all cells from the packet to which c belongs are dropped, in-
cluding those still in the switch buffer (i.e. preceding cells that
were in the switch buffer at the time it was decided to drop
c). Notice that both SCD and EPD require modifications to
switch-level software. Moreover, these modifications require
the switch-level to be aware of IP packet boundaries—a viola-
tion of the layering principle that was deemed unavoidable for
performance purposes in [17].

The simulations described in [17] show that both SCD and
EPD improve the effective throughput of TCP/IP over ATMs.
In particular, it was shown that the effective throughput achiev-
able using EPD approaches that of TCP/IP in the absence of
fragmentation. However, these results were obtained for a net-
work consisting of a single ATM switch. However, for multi-
hop ATM networks the cumulative wasted bandwidth (as a re-
sult of cells discarded through SCD or EPD) may be large, and
the impact of the ensuing packet losses on the performance of
TCP is likely to be severe. To understand these limitations, it
is important to realize that while dropping cells belonging to
a packet at a congested switch preserves the bandwidth of that
switch, it does not preserve the ABR/UBR bandwidth at all the
switches preceding that (congested) switch along the virtual cir-
cuit for the TCP connection. Moreover, any cells belonging to a
corrupted packet which would have made it out of the congested
switch will continue to waste the bandwidth at all the switches
following that (congested) switch. Obviously, the more hops
separating the TCP/IP source from the TCP/IP destination, the
more wasted ABR/UBR bandwidth one would expect even if
SCD or EPD techniques are used. This wasted bandwidth trans-
lates to low effective throughput, which in turn results in more
duplicate data packets transmitted from the source, in effect in-
creasing the response time for the applications.

To summarize, techniques for improving TCP/IP's perfor-
mance over ATMs based on link-level enhancements do not take
advantage of ATM's unique, small-sized cell-switching envi-
ronment; they cope with it. Furthermore, these techniques are
not likely to scale for large, multi-hop ATM networks. In this
paper, we present the implementation and performance evalua-
tion of TCP Boston, a novel transport protocol that turns frag-
mentation into an advantage for TCP/IP, thus enhancing the per-
formance of TCP in general and its performance in ATM envi-
ronments in particular.



2 TCP Boston: Principles and Implementation

AIDA Characteristics: AIDA is a novel technique for dy-
namic bandwidth allocation, which makes use of minimal, con-
trolled redundancy to guarantee timeliness and fault-tolerance
up to any degree of confidence. AIDA is an elaboration on the
Information Dispersal Algorithm (IDA) of Michael O. Rabin
[16]. To understand how IDA works, consider a segment S of
a data object to be transmitted. Let S consist of m fragments
(hereinafter called cells). Using IDA's dispersal operation, S
could be processed to obtain N distinct cells in such a way
that recombining any m of these cells, m � N , using IDA's
reconstruction operation, is sufficient to retrieve S. Figure 1
illustrates the dispersal, transmission, and reconstruction of an
object using IDA. The dispersal and reconstruction operations
are simple linear transformations using irreducible polynomial
arithmetic, which can be performed in real-time [4].
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Figure 1. AIDA dispersal and reconstruction

In IDA, there is no distinction between data and parity. It is
this feature that makes it possible to scale the amount of redun-
dancy used in IDA. Indeed, this is the basis for Adaptive IDA
(AIDA) [5]. Using AIDA, a bandwidth allocation operation is
inserted after the dispersal operation but prior to transmission.
This bandwidth allocation step allows the system to scale the
amount of redundancy used in the transmission. In particular,
the number of cells to be transmitted, namely n, is allowed to
vary from m (i.e., no redundancy) to N (i.e., maximum redun-
dancy).

In order to appreciate the advantages that AIDA brings to
TCP Boston, we must understand the main difficulty posed by
fragmentation. When a cell is lost en route, it becomes im-
possible for the receiver to reconstruct the packet to which that
cell belonged unless: (1) there is enough extra (redundant) cells
from the packet in question to allow for the recovery of the miss-
ing information (e.g., through parity), or (2) the cell is retrans-
mitted. The incorporation of AIDA in a TCP protocol allows
us to strike a critical balance between these two alternatives. To
explain how this could be done, consider the following scenario.
The sender disperses an outgoing m-cell segment (packet) into
N cells, but sends a packet of only m of these cells to the re-
ceiver, where N �� m. Now, assume that the receiver gets
r of these cells. If r � m, then the receiver could reconstruct
the original segment, and acknowledge that it has completely
received it by informing the sender that it needs no more cells
from that segment. If r � m, then the receiver could acknowl-

edge that it has partially received the packet by informing the
sender that it needs �m � r� more cells from the original seg-
ment. To such an acknowledgment, the sender would respond
by sending a packet of �m� r� fresh cells (i.e. not sent the first
time around) from the original N dispersed cells. The process
continues until the receiver receives enough cells (namely m or
more) to be able to reconstruct the original segment.

Two important points must be noted. First, using AIDA, no
bandwidth is wasted as a result of packet retransmission or par-
tial packet delivery; every cell that makes it through the network
is used. Moreover, this cell-preservation behavior is achieved
without requiring individual cell acknowledgment. Second, us-
ing AIDA, no modification to the switch-level protocols is nec-
essary. This stands in sharp contrast to the SCD and EPD tech-
niques, which necessitate such a change. The incorporation of
AIDA into TCP/IP over ATMs requires only additional func-
tionality at the interface between the IP and ATM layers (i.e.,
the AAL), which we discuss later in the paper.

TCP Boston: Implementation TCP Boston can be imple-
mented over both ATM and packet-switched networks for re-
liable transfer of data. The protocol consists of three top-
level components: a Session Manager, a Segment Manager,
and a Flow Manager. Figure 2 details the interactions among
these modules, summarizing the implemention semantics dur-
ing packet transmissions and receptions.

Session Manager: The protocol manages a TCP session in
three phases: a connection establishment phase, a data transfer
phase, and a termination phase. The purpose of these phases, as
well as the functions performed therein, generally follow those
of current TCP implementations, except that information spe-
cific to IDA (which is required by the receiver for reconstruction
purposes, such as the value of m for example), is piggy-backed
onto the protocol packets during the three-way handshaking at
the connection establishment phase.

Segment Manager: Three functions that are unique to TCP
Boston are: (1) segment encoding (at the sender), (2) segment
reconstruction (at the receiver), and (3) redundancy control (at
the sender).

Segment encoding: Before transmitting a data block (segment)
of size b bytes, the encoder divides the data block into m cells
of size c, wherem � b�c bytes. Then, the m cells are processed
using IDA to yield N cells for some N �� m. For example,
if b = 1,000 bytes and c = 50, then m � ��, and N could be
set to 40. For each cell, one byte of header is required for cell
identification, which is needed during reconstruction at the re-
ceiver end. Once this encoding is done, the first m cells from
the segment are transmitted as a single packet and the unused
N � m cells are kept in a buffer area for use when (if) more
cells from that segment must be transmitted to compensate for
lost cells.

Segment reconstruction: When a packet of cells is received, the
protocol first checks if it has accumulated m (or more) differ-
ent cells from the segment that corresponds to that packet. If it
did, it reconstructs the original segment using the proper IDA
reconstruction matrix transformation. When a partial packet is
received, it keeps the received cells in its buffer for later recon-
struction.
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Figure 2. TCP Boston: Top-level modules, Session Manager, Segment Manger, and Flow Manager, and
their interactions during packet transmissions and receptions for sender (left) and receiver (right).

Redundancy Control: This module closely interacts with TCP's
Flow Manager to estimate the redundancy rate, �, at the time
of each packet (re)transmission. Feedback information such as
Round Trip Time (rtt) and Success Rate (SR) in the acknowl-
edgment (hereinafter referred to as an ACK) can be used as net-
work congestion information to compute �. Figure 3 shows the
transmission window managed by this module. Prior to a packet
(re)transmission, the module estimates � (� � � � ���), and
adds (� � original packet size) data units (i.e., cells) to the
original packet. For example, when an m-cell segment is to be
transmitted, it computes � to decide n, the transmission window
size ( � m � m � �), which represents the size of the packet
that will actually be transmitted.

The transmission window manager can be custom-tuned to
meet the spatial redundancy requirements of particular appli-
cations or services. For example, time-critical applications may
require that the level of spatial redundancy be increased to mask
cell erasures (up to a certain level), and thus to avoid retrans-
mission delays should such erasures occur. By avoiding such
delays, the likelihood that tight timing constraints will be met is
increased (at the expense of wasted bandwidth).
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Figure 3. Transmission Window managed by Re-
dundancy Manager

Flow manager: The main function of this module is flow and
transmission control. To that end, any feedback-based TCP flow
control algorithm (e.g., Tahoe, Reno, or Vegas) can be used with

TCP Boston, with a minor modification to handle the revised
feedback mechanism of TCP Boston. To manage its unique
feedback scheme effectively, the data structure for ACK needs to
be augmented with an integer field, Pending, to record the num-
ber of pending cells. The Flow Manager's end-to-end feedback
and reaction scheme includes a set of provisions for handling
three possible cases of packet receptions at the destination: (1)
a complete packet has been received, (2) a partial packet has
been received (i.e. some of the packet's cells were lost), or (3)
an entire packet is missing (.e., all cells were lost). The proce-
dures followed by the receiver and sender for each of the above
cases are described below:

Upon a complete packet reception: The receiver and sender fol-
low the feedback and reaction scenarios of conventional flow
control scheme, i.e., receiver sends an ACK, signaling a normal
reception of a packet and sender adjust its congestion window
accordingly and transmits next batch of segments. In addition,
receiver resets Pending in the ACK to signify a complete packet
reception. Also, if the complete packet is the result of multiple
rounds of receptions, the receiver disposes any space used for
the packet from its buffer.

Upon a partial packet reception: The receiver keeps the re-
ceived cells in its buffer for later reconstruction, finds out the
number of missing cells, enters that number in the Pending field
of the ACK, which is transmitted immediately. Such an ACK
would inform the sender that reconstruction is not possible, and
that the pending number of cells from that segment need to be
transmitted immediately (i.e., fast transmission).� Upon receiv-
ing an ACK with a positive value for Pending, the sender finds
the cells from its buffer that belong to the segment specified
by the Segment# field, and immediately transmits the pending
number of cells (= Pending) plus redundant cells determined by
the redundancy control module (i.e., fast transmission). At the

�In non-TCP Boston fast transmission is not possible since there is no con-
cept of partial packet reception, and thus no ACKs that signal partial packet
reception.



same time, it updates the protocol variable, Next seg trans, to
prevent a duplicate retransmission of the same segment in the
future (i.e., TIMEOUT or three successive dup-ACKs). Notice
that the partial delivery of a packet does not result in updat-
ing the Last segment# for the receiver's TCP window manager. �

Also, an ACK signaling a partial packet delivery does not cause
an increase in the sender's congestion window. Rather, it acts
as a hint to the sender to fast-transmit the missing cells.

Upon an entire packet miss: The receiver and sender follow the
conventional flow control semantics, i.e., the receiver does not
send an ACK for the missing packet. Instead, it sends duplicate
ACKs on subsequent complete packet receptions. At retrans-
mission time (due to TIMEOUT or three dup-ACKs) the sender
encodes the original segment again, instead of using the cells in
the buffer that were already encoded.

For simulation purposes, we tuned the system so as to use
no spatial redundancy. We chose to do so for three reasons: (1)
We wanted to evaluate the effectiveness of TCP Boston in deal-
ing with fragmentation. This required that our measurements
be unaffected by the forward error correction capability pro-
vided by AIDA, which is enabled through spatial redundancy.
(2) We wanted to compare the performance of TCP Boston with
that of other TCP implementations (e.g., TCP Reno [13]) with
and without switch-level enhancements (e.g., EPD [17]). Since
these other protocols do not support forward error correction,
this feature of TCP Boston had to be turned off. (3) To work
properly, the dynamic redundancy control mechanism of TCP
Boston requires a congestion avoidance algorithm that provides
accurate forecasting of network congestion (e.g., TCP Vegas
[8]). TCP Reno, which was the best available option in the sim-
ulation package at the time of our experiment, is reactive (rather
than proactive), and thus would not bring much performance
benefits when used to forecast congestion for the dynamic re-
dundancy control mechanism in our protocol.

3 Performance Evaluation

Simulation Environment: We performed a host of simula-
tion experiments to evaluate the performance of TCP Boston
against that of TCP Reno, under UBR service in ATM networks.
Due to space limitations, we only present the baseline simual-
tion results. For a more elaborate treatment, we refer the reader
to [6].

The simulated network consists of a single ATM switch
connecting 16 source nodes and 1 sink node. The link band-
width in the network is set to 1.5 Mbps with propagation delay
of 10 msec. This configuration simulates a WAN environment
with a radius of 3,000 km and a bottleneck link bandwidth of
1.5 Mbps.

The ATM switch is a simple, 16-port output-buffered
single-stage switch [9]. The output buffer is managed using
FIFO scheduling, and cells in input ports are served in a round-
robin fashion to ensure fairness. In our simulator, the ATM
Adaptation Layer (AAL) implements the basic functions found
in AAL5, namely fragmentation and reconstruction of IP pack-
ets [1, 11]. AAL divides IP packets into 48-byte units for trans-

�This enables the receiver to send duplicate ACKs to signal congestion to the
sender.

mission as ATM cells, and appends 0 to 47 bytes of padding to
the end of data.

Each simulation uses a total of 16 TCP connections, each
is established for one of the configuration's source-sink pairs.
Each source generates an infinite stream of data bytes. Each
simulation runs for 700 simulated seconds to transfer an average
of 120 MB of data. The parameters used in the simulation in-
clude the TCP packet size, the TCP window size, and the switch
buffer size. Four different packet sizes were selected to reflect
maximum transfer unit (MTU) of popular standards: 512 bytes
for IP packets, 1,518 bytes for Ethernet, 4,352 bytes for FDDI
link standards [14], and 9,180 bytes which is the recommended
packet size for IP over ATM [3]. The values for the TCP win-
dow size are 8 kB, 16 kB, 32 kB, and 64 kB. Buffer sizes used
for the ATM switch are 64, 256, 512, 1,000, 2,000, and 4,000
cells.

The LBNL Network Simulator (ns) [10] was used for both
packet-switched and ATM network simulations. To simulate
TCP Boston, we modified ns extensively to implement the three
main modules described in the previous section.

Performance Characteristics of TCP Boston: The perfor-
mance of TCP Boston versus that of TCP Reno was measured
in four metrics: loss rate, response time, retransmission rate,
and effective throughput. Unless otherwise noted, each one of
the graphs presented in this section portrays one of these per-
formance metrics (on the y-axis) as a function of the switch
buffer size (on the x-axis). The function is shown as a family of
curves, each corresponding to one of the four different packet
sizes considered.

Figure 4(a) shows the loss rates of Reno and Boston over
an ATM network. The loss rate for Reno refers to the packet
loss rate caused by cell drops at the ATM switch.

The ratio between Reno's loss rate and Boston's loss rate
increases toward the marginal buffer size. This increase is more
pronounced as the packet size increases. This is because, as the
packet size increases, the number of cells per packet increases,
and the chance of a cell in a packet being dropped at a switch in-
creases (as a result of fragmentation), which results in a packet
loss under Reno. For small buffer sizes, this phenomenon be-
comes more remarkable, resulting in near 100% packet loss rate
for Reno when the buffer size is smallest. On the contrary, using
Boston, cells that are not dropped will be accumulated for even-
tual packet reconstruction at the receiver end, thus reducing the
chance of repeated retransmissions. This leads to a relatively
lower cell loss rate.

Figure 4(b) shows the effective throughput (goodput) for
Reno and Boston under a 64 kB TCP window size. The effec-
tive throughput refers to a throughput where only the bytes that
are useful at application layer are considered. The goodput of
Reno stays low, especially for larger-size packets, throughout
the entire range of buffer sizes, while that of Boston approaches
the optimal level near 100 kB buffer sizes and stays almost opti-
mal for larger buffer ranges. In Reno's case, the extremely low
goodput at small buffer sizes turned out to be the result of the
wasted bandwidth due to cells that pass through the bottleneck
switch but get discarded at AAL5, as well as the link idle time
that affects Boston.
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Figure 4. TCP run for an 64 kB window size

Figure 4(c) compares the average response time of the two
protocols under 64 kB TCP window size. The response time
represents the average time for an application at a higher layer
to receive a byte. For buffer sizes between 3.5 kB and 13.5 kB,
Reno's average response time increases hyper-exponentially for
the two larger packet sizes, and the ratio between Reno's re-
sponse time and Boston's response time increases sharply. As
the bottleneck buffer size decreases, the cell drop rate increases,
resulting in a larger number of packets being corrupted and dis-
carded for Reno, which in turn results in the retransmission
of the same packet repeatedly, and hence sharply increasing
Reno's response time. For Boston, the increased cell drop rate
results in a proportional amount of additional cell transmissions
(but not as many as in Reno's case), which results in a gradual
increase in response time. On the other hand, as the buffer size
increases, less cells are lost, increasing the probability of suc-
cessful packet transfer in a minimal number of rounds, which
in turn results in good response times for both protocols, with
Boston edging Reno by a margin of 7 �sec/byte on average.
Notice that this difference is per byte. Thus, for large-size file
transmissions, the impact on the response time may be non-
negligible, even when the buffer size is moderately large.

We have conducted a host of experiments to further charac-
terize the performance of TCP Boston under various conditions.
The results of these experiments are presented in [6].

4. Summary
TCP Boston integrates a standard TCP/IP protocol, such as
Reno [13] or Vegas [8], with a powerful redundancy control
mechanism based on AIDA encoding [5] to turn the fragmenta-
tion of IP packets [17] into an advantage—thus enhancing the
performance of TCP/IP in general and its performance in ATM
environments in particular. In this paper, we presented the im-
plementation of TCP Boston and briefly summarized its perfor-
mance characteristics.
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