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Abstract

Internet streaming applications are affected by adverse net-
work conditions such as high packet loss rates and long de-
lays. This paper aims at mitigating such effects by lever-
aging the availability of client-side caching proxies. We
present a novel caching architecture and associated cache
management algorithms that turn edge caches into accel-
erators of streaming media delivery. A salient feature of
our caching algorithms is that they allow partial caching of
streaming media objects and joint delivery of content from
caches and origin servers. The caching algorithms we pro-
pose are both network-aware and stream-aware; they take
into account the popularity of streaming media objects, their
bit-rate requirements, and the available bandwidth between
clients and servers. Using realistic models of Internet band-
width derived from proxy cache logs and measured over real
Internet paths, we have conducted simulations to evaluate
the performance of various cache management alternatives.
Our experiments demonstrate that network-aware caching
algorithms can significantly reduce service delay and im-
prove overall stream quality. Our experiments also show
that partial caching is particularly effective when bandwidth
variability is not very high.

1 Introduction

The increasing popularity of multimedia content on the
Internet has stimulated the emergence of streaming media
applications. This trend is partly prompted by the wide
distribution of software from industry such as RealNet-
works and Microsoft Windows Media, and the adoption of
application-level protocols such as RTSP [22] and RTP [21]
for streaming media transmission. Access to streaming me-
dia requires a high and stable transmission rate. To meet
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such requirements, customers and ISPs typically upgrade
their connections to the Internet (e.g., by going to higher
bandwidth services). While necessary, this upgrade of the
“last mile” bandwidth does not translate to improved quality
of service (QoS) for streaming media access. Specifically,
for such upgrades to yield the desired effects, Internet and
streaming media servers must be able to handle the increased
demand. To that end, several issues need to be addressed.

First, it is not clear whether the physical bandwidth of
the Internet can match the pace of increasing demand. In-
ternet resources are shared by a large number of connec-
tions; an individual customer can only expect to get a por-
tion that reflects his/her “fair share” of the physical available
bandwidth. This is the result of requirements that network
transport protocols for streaming media be “TCP-friendly”
[9, 18]. Thus, the bandwidth available to an individual con-
nection is likely to be limited by the unpredictable sharing
of Internet resources beyond the over-provisioned last mile.
Second, the Internet exhibits extreme diversity in terms of
end-to-end packet loss rates and round-trip delays. This di-
versity is made worse by the bursty nature of these metrics as
evidenced by findings in a number of recent studies on Inter-
net traffic characteristics [8, 16, 10]. Thus, Internet dynam-
ics deprive streaming applications of the smoothness condi-
tions necessary to meet customer expectations. Finally, even
if the Internet transport would meet its end of the bargain,
streaming media servers may themselves become a signifi-
cant bottleneck, especially at times of high usage.

Combined, all these factors suggest the importance of ef-
ficient and robust streaming content delivery mechanisms
that go beyond the point-to-point, server-to-client delivery
of streaming media content. Caching of streaming media is
a good example of such mechanisms. By placing streaming
media objects closer to customers, network bandwidth re-
quirements are reduced, user-perceived quality is improved,
and demand on servers is decreased. Caching techniques
have been widely explored for serving traditional Web ob-
jects such as HTML pages and image files [5, 6, 12, 25, 26].
For streaming media objects, caching becomes especially at-



tractive due to the static nature of content, long duration and
predictable sequential nature of accesses, and high network
resource requirements.
Paper Contributions and Overview: This paper proposes
a novel technique that turns edge caches into accelerators
of streaming media delivery. A salient feature of our pro-
posed technique is the ability of a proxy to partially cache
a streaming media object. Partial or whole streaming me-
dia objects are placed in caches closer to clients to accel-
erate access and improve stream quality. The cache man-
agement algorithms we propose are both stream-aware and
network-aware; they not only account for the popularity of
streaming media objects, but also they account for the bit-
rate requirements of these objects, and the network condi-
tions, such as the available bandwidth between server, client,
and caches. Using realistic synthetically-generated access
workloads, our simulations show that our proposed acceler-
ation algorithms can efficiently utilize cache space to reduce
streaming media service Delay and improve stream quality.
Our simulations are unique because they rely on realistic
models of available bandwidth conditions, reflecting band-
width characteristics we observed in proxy cache (NLANR
proxy cache [15]) logs and from real Internet paths.

The remainder of the paper is organized as follows. We
first formalize the cache problem and propose our service
acceleration algorithms. Section 3 describes the methodol-
ogy of our performance evaluation experiments. Section 4
presents results from our simulations. We revisit related
work in Section 5, and end in Section 6 with conclusion and
directions for future research.

2 Caches as Accelerators: Algorithms

In this section, we describe an architecture that uses
caches to accelerate streaming media access. We formal-
ize the cache management problem and propose algorithms
based on this formalization.

2.1 Architecture of Streaming Media Delivery

We consider an Internet streaming media delivery archi-
tecture consisting of: (1) caches deployed at the edge of
the Internet; (2) streaming media objects that are replicated
either entirely or partially on these caches; and (3) clients
whose requests are satisfied (possibly jointly) by servers and
caches. Figure 1 illustrates such an architecture.

We first examine how streaming media accesses may pro-
ceed in the absence of caches. A client may request any ob-
jects available from an “origin” server. To do so, the client
measures the bandwidth between the server and itself. If the
bandwidth is abundant, the client can play the stream imme-
diately (it may still need to buffer a few initial frames of the
stream in order to tolerate network jitters). If the bandwidth
is not high enough to support immediate and continuous play

Cache

Lossy links

1 Mb/s

Client cloud

0.1 Mb/s

Cache

Cache

Server Server

Figure 1. Using caches to accelerate Internet streaming
access and improve quality. Streaming media accesses are
served by both servers and caches.

of the stream at an acceptable QoS, e.g., the object play-
back rate is 400 Kb/s but the bandwidth is only 200 Kb/s,
two choices are possible: (1) it introduces a delay, during
which it prefetches a prefix of the stream, before continu-
ously playing the stream, or (2) it negotiates with the server
and degrades the stream quality. For the previous example,
the client can retrieve a half of a layer-encoded object.

Now, we turn our attention to streaming media access
in the presence of caches deployed closer to the client (e.g.
within the “last mile”). Rather than relying solely on the ori-
gin server, a client could retrieve an entire or partial stream
from a neighboring cache with higher bandwidth. It does so
by measuring the bandwidth from the server and the band-
width from the cache, and deciding if it is possible for both
the server and the cache to jointly support immediate and
continuous play. For the previous example, if half of the ob-
ject has been cached, then the client can immediately and
continuously play out the object. While the client is playing
out the object from the cache, the other half is prefetched
from the server. Generally, with caches, clients are less af-
fected by the limited and variable bandwidth from the server.

2.2 Formalization of Caching Problem

As we hinted earlier, “network awareness” is an impor-
tant aspect of the streaming media caching techniques we
propose in this paper. To appreciate this, consider the paths
from a cache to two origin servers (shown in Figure 1),
whereby one path has a bandwidth of 1 Mb/s while the other
can only support streaming at a 0.1 Mb/s rate. Intuitively, it
is more important and valuable to cache objects available
from the second origin server.

Before we formalize the cache management problem, we
make several assumptions. First, we assume that the band-
width of a path is constant over some appropriate time scale.
In a real setting, and as we explained earlier, the bandwidth
achievable over a given Internet path may vary significantly
with time. In section 2.5, we relax this assumption and show
how our algorithms can be modified to manage bandwidth
variability. Second, we assume that the objective of the sys-



tem is to minimize service delay. We define service delay
to be the total delay perceived by the client before the play-
out of an object (at some acceptable QoS) can begin. Third,
we assume that streaming media objects are encoded using
a constant bit-rate (CBR) technique. For variable bit-rate
(VBR) objects, we assume the use of the optimal smooth-
ing technique [20] to reduce the burstiness of transmission
rate. Finally, we assume abundant bandwidth at the client
side. Also, we assume that clients (a client cloud) behind a
caching proxy are homogeneous.

Let N be the number of streaming media objects avail-
able for access. For any such object i, we denote by Ti the
object’s duration in seconds, by ri the object’s CBR encod-
ing in Mb/s, by λi the arrival rate of requests for that object,
and by bi the bandwidth between the cache and the origi-
nal server storing that object. The notation y+ means that
y+ = y if y > 0 and 0 otherwise.

Let C denote the total capacity of the cache, and let xi

denote the size of the cached part of object i. Upon request-
ing object i, the playout of that object must be delayed by
[Tiri − Tibi − xi]+/bi. Notice that Tiri reflects the total
size of the requested object and that Tibi reflects the size of
the portion of the object that can be streamed during playout.

The optimization problem that the cache management al-
gorithm must address is thus to find a set of values {xi, 1 ≤
i ≤ N}, which would minimize the average service delay of
all streaming media accesses. Namely, we need to maximize

1
∑N

i=1 λi

N∑

i=1

λi[Tiri − Tibi − xi]+/bi,

subject to the constraint
∑N

i=1 xi ≤ C, xi ≥ 0.

2.3 An Optimal Solution for Populating Caches

We derive the optimal solution under static conditions.
By static conditions, we mean that the cache content is static
(i.e. no replacement). By optimal solution, we mean that
caching decisions are made with prior knowledge of request
arrival rates. We obtain the optimal solution by solving the
above optimization problem.

First, for an object i, if ri ≤ bi (i.e., the bandwidth is
higher than the object’s bit-rate), then there is no need to
cache that object (i.e., xi = 0).

Now we consider all other objects. Let I denote the set
of objects whose bit-rate is higher than the bandwidth. The
above optimization problem is equivalent to minimizing:

1
∑N

i=1 λi

∑

i∈I

λi(Tiri − Tibi − xi)/bi,

subject to the constraint
∑

i∈I xi ≤ C, 0 ≤ xi ≤
(ri − bi)Ti. Notice that we restrict xi to be no larger than
(ri − bi)Ti since a larger xi does not yield more delay re-
duction.

The above minimization is equivalent to maximizing∑
i∈I λixi/bi. This is a fractional Knapsack problem,

which has the following optimal solution: the caching al-
gorithm chooses those objects with the highest λi/bi ratios,
and caches them up to (ri − bi)Ti until the cache is used up.

2.4 Dealing with Unknown Request Rates through
Replacement

In practice, caching algorithms have no prior knowledge
of request arrival rates. Thus, the optimal solution derived
in the previous section (which assumed a priori knowledge
of these rates) is not practical. To approximate the opti-
mal solution, we propose a cache replacement algorithm.
Our cache replacement algorithm estimates the request ar-
rival rate λi of each object by recording the number (or fre-
quency) of requests to each object, which we denote by Fi.
Our cache replacement algorithm works as follows.

As before, if the bit-rate of an object is lower than the
measured bandwidth to the server (i.e. if ri ≤ bi), then
the object is not cached. Otherwise, we define the utility of
object i as the ratio Fi/bi. The cache replacement algorithm
always caches those objects with the highest utility value.
The size of the cached part of object i is up to (ri − bi)Ti.

Such a replacement algorithm can be implemented with a
priority queue (heap) which uses the utility value as the key.
Note, on each access to an object, the object’s utility value is
increased. Therefore, the replacement algorithm may evict
other objects. The processing overhead for heap operations
is O(log n), where n is the number of objects in the cache.

2.5 Dealing with Bandwidth Variability through
Over-provisioning

In our exposition so far, we assumed that the bandwidth
of a path is a constant. In realistic settings, the bandwidth of
an path may change (possibly drastically and unpredictably)
over time. Without a priori knowledge of bandwidth vari-
ability, it is impossible to derive an optimal solution for
caching (as was done in the previous sections). Hence, we
use a heuristic modification of our caching algorithm.

The basic idea behind our heuristic is to make partial
caching decisions based on a more conservative estimation
of bandwidth. This would result in caching more than the
minimum Ti(ri−bi) needed for object i. To understand why
we need to do so, we observe that when bandwidth varies
significantly, if we only cache Ti(ri − bi), then it is very
possible that this portion of object i will not be enough to
hide the access delay. But, how much of the object would
be “enough” to cache? Intuitively, such a determination
should depend on the amount of bandwidth variability. If
bandwidth does not vary (much), then caching Ti(ri − bi)
is (close to) optimal. If bandwidth varies, then more conser-
vative caching decisions are warranted—the larger the vari-
ations, the larger the portion of the object to be cached.



In the extreme case, the most conservative heuristic
would yield a caching algorithm that chooses those objects
with the highest λi/bi ratios, and would cache them up to
riTi (i.e., it would cache whole objects) until the cache is
used up. We use the term Integral caching to refer to tech-
niques that restrict cached content to be of complete objects.
Thus, Integral caching disallows partial caching. With Inte-
gral caching, the cache can be used up quickly since it would
accommodate fewer objects. As we show in Section 4, such
an approach is only advantageous when bandwidth variabil-
ity is extremely high.

3 Evaluation Methodology

This section describes the methodology used in our simu-
lations. We first present our analysis of NLANR proxy cache
[15] logs as well as results from measurement experiments
we conducted on real Internet paths to get realistic band-
width models. Next, we describe how to generate synthetic
streaming media access workloads to drive our simulations.
Finally, we describe the performance metrics used to com-
pare various algorithms.

3.1 Network Bandwidth Modeling

For our performance evaluation, we needed to adopt a
realistic model of the base bandwidth over various paths, and
how such base bandwidth may vary over time. We derived
such models using two methods: (1) analysis of proxy cache
logs, and (2) measurement of bandwidth over a set of real
Internet paths.

We obtained bandwidth statistics by analyzing the
NLANR proxy cache logs. We used a nine-day log of site
UC (April 12-20, 2001). This site has a popular client (a low
level proxy). We observed those missed requests for objects
larger than 200 KB. A bandwidth sample is obtained by di-
viding the size of an object by the connection duration. We
used requests for large objects since long duration of HTTP
connections results in more accurate measurement of band-
width.1 We used the missed requests so that the objects were
served by the original servers.

Figure 2(a) shows a histogram of the bandwidth values
observed from analysis of the NLANR proxy cache logs. It
shows that the bandwidth of various paths varies drastically.
This heterogeneity of bandwidth suggests that caching al-
gorithms could benefit from differentiating between objects
from origin servers with widely different bandwidth.

We also observed the bandwidth variability for requests
made to the same server over different times. To do this, we
first computed the average bandwidth of each path. Then

1Large file transfers enable TCP to “exit” slow-start phase and settle
on a transfer rate that reflects available bandwidth. Our characterization of
the correlation between NLANR transfer times and file sizes (not shown)
suggests that 200 KB is a good threshold.
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Figure 2. Bandwidth values observed in NLANR cache
logs. Here (a) shows the number of samples in each 4KB/s
slot; (b) shows sample-to-mean ratio of the same paths.

we took the ratio of the bandwidth samples to the average
value. Figure 2(b) shows the distribution of this sample-to-
mean ratio. It indicates that the bandwidth of a single path
may vary significantly.

It is important to note that the analysis of NLANR logs
cannot give us a realistic model for bandwidth variability. To
obtain more realistic bandwidth variability models, we mea-
sured the bandwidth of real Internet paths over long peri-
ods. We repeatedly downloaded large files from Web servers
around the world. Each download takes 5 to 30 seconds.
We carefully scheduled the downloads to avoid overlapping
them on the client machine (IP address: 128.197.12.3). Fig-
ure 3 shows the bandwidth evolution (time series) of three
such paths spanning over 30 to 45 hours (starting from 2PM,
Oct. 15, 2001). The following observations were made:
(1) The magnitude of bandwidth variability depends largely
on the paths. For instance, the INRIA server appears to
have much lower variability than the other two servers. (2)
All paths have much lower variability than those obtained
through analysis of the NLANR cache logs. This compar-
ison was done by computing the coefficient-of-variation of
the samples in Figure 3, and contrasting it to the coefficient-
of-variation obtained from Figure 2.

3.2 Synthetic Workload Generation

We used the GISMO toolset [13] to generate a synthetic
workload. Table 1 lists the characteristics of this work-
load. The workloads used in our simulations consisted of
requests to N = 5000 streaming media objects, whose pop-
ularity follows a Zipf-like distribution [27]. With Zipf-like
distributions, the relative popularity of an object is propor-
tional to r−α, where r is the rank of the object’s popular-
ity. The probability that the ith ranked object is accessed is
r−α/

∑N
j=1 j−α. The default value for α is 0.73; we also

present results with a range of values.
Each workload (for a single run) consisted of 100000 re-

quests. Request arrivals were generated using a Poisson pro-
cess; i.e., the requests arrive independently. The duration
(in minutes) of the streaming media objects follow a Log-
normal distribution. The average duration of the objects is
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Figure 3. Bandwidth variation of real Internet paths from Boston University, MA (IP address:128.197.12.3) to several Web servers.
One sample was taken every four minutes.

Table 1. Characteristics of the Synthetic Workload
Number of Objects 5,000
Object Popularity Zipf-like

Number of Requests 100,000
Request Arrival Process Poisson

Object Size Lognormal,µ = 3.85,σ = 0.56

Object Bit-rate 2KB/frame, 24 frames/sec.
Total Storage 790 GB

Bandwidth Distribution NLANR logs
Bandwidth Variation NLANR logs and measurement

about 79 K frames, or about 55 minutes since we assume 24
frames per second. The bit-rate of the objects is 48 KB/s.
The total unique object size is 790 GB. Although we have
changed the base parameters and generated workloads of
different characteristics, we found that the relative perfor-
mance of the different algorithms is fairly similar.

In our simulation experiments, we varied the cache size
from 4 GB, about 0.5% of the total unique object size, to
128 GB, about 16.9% of the total unique object size. The
bandwidth between the cache and the servers follows the
sample distribution from the NLANR logs, c.f. Figure 2.
When we study the impact of bandwidth variability, we gen-
erate bandwidth instances varying according to the models
depicted in Figures 2 and 3.

3.3 Performance Metrics

Different caching algorithms have different objectives. A
particular algorithm may optimize one performance metric
but sacrifice others. For example, an algorithm (such as LRU
and LFU) caches objects based on their access frequency
only, not on the network bandwidth. It aims at improving hit
ratios and reducing traffic, but not the average service delay
or stream quality. Therefore, we need to compare several
performance metrics so that we can understand the trade-
offs of different caching algorithms.

In our experiments, we considered a number of per-
formance metrics, each reflecting a different objective of
caching. We discuss these metrics below. (1) Caching al-
gorithms may aim at reducing backbone traffic. We define

the traffic reduction ratio as the fraction of the total bytes
that are served by a cache. (2) When bandwidth (assisted by
cache or not) is not enough to support the immediate play-
out of a stream, the client may choose to wait for service.
During this waiting period, the client may prefetch a pre-
fix before continuously playing the stream. In this case, we
are interested in the average service delay. (3) When band-
width (assisted by cache or not) is not enough to support a
full stream, the client may chose to downgrade the quality of
the stream in order to play it out immediately. In this case,
we are interested in the average stream quality, which we
define to be the percentage of the full stream that yields an
immediate playout.

4 Simulation Results

This section presents results from our simulation ex-
periments in which we compared the performance of var-
ious caching algorithms and heuristics. Specifically, we
study how bandwidth variability affects the performance of
caching algorithms. Each result is obtained by averaging ten
runs of the simulated system.

4.1 Performance of Replacement Algorithms

We conducted the first set of simulations to compare the
performance of three caching algorithms. The first algo-
rithm caches those objects with the highest request arrival
rates and only allows whole objects to be cached. We call
this Integral Frequency-based caching—or IF caching for
short. The second algorithm is the one described in sec-
tion 2.3. It caches those objects from origin servers with-
out abundant bandwidth for streaming (i.e., preference is
given to those with higher λi/bi ratio). It allows partial
caching. We call this Partial Bandwidth-based caching—
or PB caching for short. The third algorithm is the one de-
scribed in section 2.5. It caches those objects with the high-
est λi/bi ratio, but does not allow partial caching. We call
this Integral Bandwidth-based caching—or IB caching for
short. All of them estimate object access frequency and net-
work bandwidth progressively, and make eviction decisions
when the cache is used up.
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Figure 4. Comparison of IF, PB, and IB cache replacement algorithms under constant bandwidth assumption.

Figure 4 shows the results we obtained from our simula-
tion experiments. For each run of the simulation program,
we first warm up the cache using the first half of the work-
load, and then compute the performance metrics from the
second half. For this set of simulations, we assumed that the
bandwidth of a path does not vary over time (i.e., no band-
width variability).

As depicted in Figure 4(a), IF caching achieves the high-
est backbone traffic reduction while PB caching achieved the
least such reduction. This is expected since PB caching does
not cache whole objects even if the objects are very hot. Al-
ternately, Figure 4(b-c) shows that PB caching achieves the
lowest average service delay and the highest average quality,
whereas IF caching achieves the worst results for these met-
rics. Even when cache size is relatively high, the inferiority
of IF caching is still obvious. The reason is that it results
in caching hot objects even when there is abundant band-
width for streaming such objects from origin servers—thus
limiting its ability to effectively use the cache.

Figure 4(a) shows that IB caching yields performance
metrics that lie in between those of the other two algorithms.
IB caching achieves high traffic reduction ratios, and is rea-
sonably close to PB caching in terms of average service
delay and stream quality. An additional advantage of IB
caching is simplicity: it caches whole objects making it un-
necessary to coordinate joint service by origin servers and
caches (whereas PB caching requires a client to download a
stream from the cache and the origin server in parallel).

4.2 Impact of Temporal Locality of Reference

We conducted a second set of simulations to study the
effect of the skewness (i.e., the parameter α) of the Zipf-
like distribution governing streaming media object popular-
ity. This skew is a measure of temporal locality of reference.
When α increases, temporal locality in the workload is in-
tensified. In simulations, we varied α from 0.5 to 1.2. Fig-
ure 5 shows the results of these simulations with respect to
the various performance metrics. Only traffic reduction ratio
and stream quality are considered here, and only the results
of IB caching and PB caching are presented. In general,
intensifying temporal locality results in performance gains
for both algorithms. Moreover, the relative performance of
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Figure 5. Effect of Zipf-like popularity distribution.

the algorithms does not seem to change: IB caching obtains
much higher traffic reduction ratios, whereas PB caching
achieves moderately better average stream quality.

4.3 Impact of Bandwidth Variability

We conducted a third set of simulations to study the im-
pact of bandwidth variability on the performance of the three
caching algorithms under consideration. In these simula-
tions, we allowed the bandwidth of a path to change over
time. We generated such variations as follows: each path
has an average bandwidth that follows the distribution in
Figure 2(a), but an instance of the bandwidth is obtained by
multiplying that bandwidth by a random ratio that follows
the distribution in Figure 2(b). The results from this set of
simulations are shown in Figure 6.

Comparing Figure 6(a) with Figure 4(a) shows no no-
ticeable difference in traffic reduction ratio for all three al-
gorithms. However, the other two metrics (average delay
and average stream quality) exhibit major differences. First,
bandwidth variability results in increased service delay and
degraded stream quality for all three algorithms. When
bandwidth varies drastically over time, partial caching be-
comes less effective in accelerating access and improving
stream quality. High bandwidth variability makes it diffi-
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Figure 6. Comparison of caching algorithms under variable bandwidth assumption. The variation is obtained from cache logs.
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Figure 7. Comparison of caching algorithms under variable bandwidth assumption. The variation is measured from Internet paths.

cult to choose the right objects and the right fraction of each
object to cache. Second, IB caching is no worse than PB
caching. This is because the optimality of PB caching de-
pends on the constant bandwidth assumption. When band-
width is insufficient (due to variability), clients see higher
delays or lowered quality. On the contrary, IB caching
makes conservative decisions, and caches whole objects
with the highest λi/bi ratio. It caches those objects with
high access frequency and low bandwidth for streaming.

As we discussed before, the bandwidth observed from
NLANR cache logs appears to have higher variability than
real Internet path measurements we performed. To that end,
we conducted a fourth set of simulations using the lower
variability modeled by the distribution in Figure 3. The re-
sults of these simulations are shown in Figure 7. We observe
that, with this more realistic setting, PB caching outperforms
the other integral algorithms (IF and IB) in reducing service
delay and improving stream quality. These results suggest
that the choice of partial versus integral caching should in-
deed depend on the level of bandwidth variability.

5 Related work

Several studies focused on streaming media workload
characterization [1, 3, 4, 7]. In particular, temporal locality
is key to the effectiveness of caching techniques. Acharya
et al. characterized streaming objects [1] and user access
patterns [3]. Their work revealed the skewed popularity of
objects, and the existence of temporal locality. Almeida
el al. [4] analyzed workloads from two educational me-
dia servers. Chesire et al. [7] analyzed a client-based

streaming-media workload and found that a small percent-
age of all requests are responsible for almost half of the total
bytes served. They found that requests during periods of
peak loads exhibit a high degree of temporal locality.

Several studies proposed caching techniques for stream-
ing media. Wang et al. [24] proposed a video staging
strategy to reduce network bandwidth requirements. Sen
et al. [23] proposed that proxies cache prefixes and use
work-ahead smoothing. Miao et al. [14] proposed selec-
tive caching to maximize the robustness of video streams
against network congestion. Rejaie et al. [19] considered
layered-encoded multimedia streams and proposed a proxy
caching mechanism to increase the delivered quality of pop-
ular streams. Acharya et al. [2] proposed the MiddleMan
cooperative caching techniques to utilize the aggregate stor-
age of clients. Reisslein et al. [17] developed and evaluated
a caching strategy which explicitly tracks client request pat-
terns to achieve higher hit ratios. To the best of our knowl-
edge, none of them considered measuring network band-
width, and none used bandwidth models derived from real
Internet measurements in performance evaluation.

6 Conclusion

We proposed a caching architecture and associated cache
management algorithms that turn Internet edge caches into
accelerators of streaming media delivery. A salient feature
of our caching algorithms is that they allow partial caching
of streaming media objects and joint delivery of content
from caches and origin servers. The caching algorithms we
proposed are both network-aware and stream-aware in that



they optimize cache occupancy decisions based on knowl-
edge of network conditions as well as streaming media ob-
ject properties. Performance evaluation experiments using
realistic streaming media access workloads and a realistic
model of Internet path bandwidth demonstrated the effec-
tiveness of caching mechanisms that take into considera-
tion network bandwidth information. Our simulation ex-
periments have shown that bandwidth variability may affect
the effectiveness of partial caching in reducing service de-
lay and stream quality. However, simple over-provisioning
heuristics work reasonably well, even in the presence of high
bandwidth variability.

Our ongoing and future work will proceed on a num-
ber of fronts. First, as evident from our findings, accurate
measurement of network bandwidth and jitter is key to ef-
ficient streaming media delivery techniques. We are in the
process of augmenting GISMO [13] with realistic models of
Internet path bandwidth and bandwidth variability distribu-
tions. Second, we are investigating the possibility of com-
bining our partial caching mechanisms with other streaming
content delivery techniques, such as patching techniques at
caching proxies. Finally, given the importance of real-time
bandwidth measurement techniques, we are considering ap-
proaches that integrate active bandwidth measurement tech-
niques [11] into proxy caches. This would allow us to pro-
totype the acceleration architecture proposed in this paper
using off-the-shelf caching proxies.
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