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Abstract

Ad-hoc overlay networks are increasingly used for sharing static bulk
content but their promise for scaling the delivery of on-demand, real-
time content is yet to be tapped. In this paper, we show that over-
lay networks could be used efficiently to distribute popular real-time
streaming media on-demand to a large number of clients. We propose
and evaluate OSMOSIS a cache-and-relay end-system multicast ap-
proach, whereby a client joining a multicast session caches the stream,
and if needed, relays that stream to neighboring clients which may
join the multicast session at some later time. OSCMOSIS is fully dis-
tributed, scalable, and efficient in terms of network link costs. We
present analytical and empirical results of our evaluation of OSMO-
SIS. Our analysis establishes OSMOSIS scalability characteristics un-
der a variety of assumptions. Our simulations are over large, synthetic
random networks, power-law degree networks, and small-world net-
works (all of which could well be representative of ad-hoc overlay
topologies, as well as over large real router-level Internet maps.

1 Introduction

Ad-hoc overlay networks are increasingly used for sharing
static multimedia content (e.g., music and video content),
whereby an end-point (client) would simply search for the con-
tent and download such content from another client, using a
variety of existing protocols (e.g., gnutella) or proposed P2P ar-
chitectures (e.g., CAN and Chord). A basic assumption under-
lying these systems is that the content to be retrieved is stored
in full at one or more clients in the overlay network. As a result,
the the problem of bulk content retrieval reduces to (1) finding
one (or more) set of peers who have the content, and (2) down-
loading that content from one (or more) of these peers.

Motivation: For many applications, the assumption that the
content be stored in full at one or more of the nodes in the net-
work is not realistic. This is particularly true of applications
requiring the delivery of live real-time content. Example ap-
plications include video on-demand, video feeds of live events,
streaming sensor data in ad-hoc sensor networks, among others.

For synchronous access to real-time media, multicast so-
lutions (whether using native network support or using end-
system support) are attractive. Multicast reduces both net-
work link costs and server bandwidth requirements for serving
a large number of clients [6, 5, 24, 14, 13, 20].

∗This work was partially supported by NSF research grants ANI-9986397,
ANI-0095988, and ANI ANI-0205294.

However, for asynchronous access, no such “attractive” so-
lutions exist, especially using overlay networks. One of the
obstacles that may have hindered the use of overlay networks
in the distribution of live, real-time content is the long-held
belief that the delivery of streaming media objects presents a
formidable strain on server and network capacity (due to the
need to store-and-forward the entire content at various peers
and the need to judiciously allocate the rather miniscule re-
sources available to all peers in the network). In this pa-
per, we show that it is indeed possible to efficiently support
asynchronous access to real-time content to a large number
of clients in ad-hoc overlay networks, subject to realistic con-
straints on client bandwidth and storage capacity.

Current Techniques: To enable asynchronous access to
streaming media objects, various periodic broadcasting and
stream merging techniques [24, 14, 13, 20] have been proposed.
Using these techniques, scalability in terms of network link cost
is assured by virtue of multicast messaging, whereas scalability
in terms of server bandwidth requirement is achieved by ensur-
ing that a relatively small number of multicast sessions (possi-
bly coupled with short unicast sessions) are enough to cater to
a large number of asynchronous client requests.

Periodic broadcasting and stream merging techniques as-
sume the availability of a network infrastructure that is sup-
portive of multicast delivery—IP multicast, for example. While
such an assumption may be practical within the boundary of a
multicast-enabled intranet, it is not a viable alternative in to-
day’s Internet. This realization has led to a large body of work
on application layer (or end system) approaches. However,
existing end system multicast solutions [6, 5] have focused
on synchronous real-time delivery—i.e., all clients receive the
same content at the same time. As such, these techniques can
not be used to service asynchronous clients.

Paper Contributions and Overview: In this paper, we pro-
pose and evaluate OSMOSIS—a scalable “cache-and-relay” end
system multicast protocol for the asynchronous delivery of
streaming media objects. Unlike existing periodic broadcast-
ing and stream merging techniques, our protocol relies only
on unicast messaging, and unlike existing end system multi-
cast techniques, our protocol supports asynchronous delivery.
Using our approach, upon joining an ongoing end system mul-
ticast session, a client caches the stream either partially or en-
tirely, and if needed, relays that stream to neighboring clients
which join the multicast session at some later time. The paper
mainly analyzes the network link cost of this approach, studies
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Figure 1. Illustrations of the OSMOSIS “cache-and-relay” approach. Earlier clients temporarily keep the
objects and relay them to later clients. (a) Scenario with unconstrained clients. (b) Scenario with
bandwidth-constrained clients, whereby client 2 is limited to receive and send at most 3 streams.

the effect of limited client-side bandwidth and limited client
cache capacity, and uses simulations to validate our findings.

2 The OSMOSIS Cache-and-Relay Protocol

Using OSMOSIS, end-hosts are responsible for the caching and
distribution of streaming media. Here, end-hosts can be client
machines or proxies thereof. End-hosts keep retrieved media
objects in their local caches temporarily, as the results of client
requests. If another client requests the media objects later, the
original server can redirect the request to those end hosts who
are geographically closer to the client.

We illustrate the cache-and-relay approach of OSMOSIS us-
ing the example in Figure 1(a). In that example, there are 11
clients requesting an object. These clients are placed on a two-
dimensional grid to visualize network “distance” between these
clients.1 Clients arrive at different times. In Figure 1(a), each
client is marked with a number denoting the order of its arrival.
Also, the value of the z-axis for a given client indicates the
progress of the playout for that client. The figure shows how
an object is forwarded from “earlier clients” to “later clients”.
Clearly, such an approach assumes that clients (or client-side
caching proxies) have enough cache space to temporarily keep
the received media objects either partially or entirely. Also, it
assumes that a non-leaf client, while receiving and playing out
an object, has additional bandwidth to forward that object to
(one or more) neighboring clients who may arrive later.

Without loss of generality,2 we assume that the objective
of our OSMOSIS cache-and-relay approach is to minimize the
total network link cost, or hop-distance. It is not difficult to
establish that the cache-and-relay solution shown in Figure 1(a)
is optimal when client-side bandwidth and client cache capacity
are unlimited. Each client receives the object from the nearest
on-going peer. The total hop-distance is 28.

1Distance could be measured in physical terms (e.g., number of feet), which
may be meaningful for wireless communication as it reflects power consump-
tion, or it could be measured in topological terms (e.g., number of hops).

2Specifically, our discussion and results can be easily adapted to allow for
the minimization of other metrics such as delay, packet loss rates, etc.

3 OSMOSIS: Scalability and Instantiations

In this section, we first show how effectively OSMOSIS could
reduce network link cost, given unlimited client-side bandwidth
and cache space. Then we formalize the problem when either
client-side bandwidth or cache size is limited. In each case, a
specific instantiation of OSMOSIS is proposed.

Network Link Cost: Assuming unlimited client-side band-
width and cache capacity, a new client can always fetch the
object from the nearest ongoing peer client—a peer that started
receiving that object but have not finished. We define the cost
of serving the new client to be the hop-distance between that
client and the nearest ongoing peer. Let L(n) denote the total
network link cost for n consecutive client arrivals within a unit
time, whereby each client fetches the object from the nearest
ongoing peer. Here, a unit time is defined as the duration of
the media object, and hence n is the average client concurrency
level. L(n) reflects how OSMOSIS scales (in terms of network
link cost) as the level of client concurrency n increases.

In random networks, which have exponential neighborhood
expansion functions, we have computed the following asymp-
totic scaling behavior (see [16] for a detailed derivation):

L(n) ∼ n

(
1 − lnn

lnN

)
, (1)

where N is the total number of nodes in the network. This
result implies that the increase in network link cost is a sub-
linear function of the client arrival rate n. This underscores a
clear reduction in network link cost compared to unicast service
whose cost is linear in n.

The key to the derivation of L(n) is the neighborhood ex-
pansion function E(d) of the network, which is defined as the
average fraction of vertices reachable in d hops, starting from
an arbitrary vertex. In random networks, this function is ap-
proximated by an exponential function. While the derivation
of L(n) for an arbitrary network is impossible, we have also
considered networks whose neighborhood expansion functions
follow a power-law. As detailed in [16], we found that if the
neighborhood expansion function is a power-law with exponent
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Figure 2. Comparisons of theoretic network link cost and simulation results using synthetic networks.

H , then L(n) increases asymptotically as

L(n) ∼ n1− 1
H (2)

Example networks with power-law neighborhood expansion
function include two-dimensional and three-dimensional grids.

Handling Limited Client Bandwidth: In practice, clients may
have limited bandwidth to receive and send streams. There-
fore, it may be infeasible for a client to receive a stream from
the nearest on-going peer. For example, in Figure 1(a), if we
assume that each client can receive and send at most three
streams, then the solution shown in the figure becomes infeasi-
ble since client 2 cannot receive and send four streams in total.
In Figure 1(b), a feasible solution is shown.

It is difficult to find the optimal solution when bandwidth is
limited. Indeed, even the off-line algorithm (with prior knowl-
edge of client arrivals) is NP-hard. To explain why this is
the case, it suffices to note that the construction of a degree-
constrained spanning tree3 is an NP-complete problem [12].
By restricting our problem to synchronous clients and integer
bandwidth values, finding an optimal cache-and-relay solution
is equivalent to finding a solution to the degree-constrained
spanning tree problem.

A simple greedy solution for the bandwidth-constrained
cache-and-relay problem works as follows. Each new client
receives the object from the nearest ongoing peer client who
still has abundant bandwidth. The solution in Figure 1(b) is ob-
tained using this greedy algorithm. Client 5 receives a stream
from client 4 and client 8 receives data from client 3. The to-
tal hop-distance is 32. Our simulation results suggest that this
greedy algorithm usually finds good solutions.

Handling Limited Cache Capacity: In practice, clients may
have limited cache capacity. For example, in a caching proxy,
it might be unrealistic to cache a whole video whose size is up
to Giga bytes, especially when many such media objects may
be competing for cache space.

3Given a graph G = (V, E) and a positive integer K ≤ |V |, find a span-
ning tree for G in which no vertex has degree larger than K.

When cache space is limited, the solutions in Figures 1(a)
and 1(b) may become infeasible. For example, if client 1 has a
cache capacity that enables it to keep only 50% of the object,
then when client 9 arrives, it is already too late for that client to
fetch the object from client 1. Instead, a feasible solution is for
client 6 to relay the object to client 9.

To handle cache capacity constraints, it is necessary to de-
termine a cache replacement policy. It is straightforward to use
a FIFO policy: a sliding window indicates the current segment
in the cache. The client can relay the object to other clients
who start slightly later (i.e., within that window). In the next
section, we show how constraints on cache capacity impact the
reduction of network link cost.

4 Performance Evaluation

In this section, we validate through simulation the network link
cost of OSMOSIS, and study the effect of limited client-side
bandwidth and cache capacity. Large, synthetic and real net-
works are used in simulation. Experimental results are com-
pared to theoretical bounds given earlier.

Networks Used in Our Simulations: In our simulations, four
synthetic and real networks were used. All four networks have
approximately 110000-120000 nodes and have an average de-
gree of 3.2. The topologies we consider are:

• A random network generated using the ER model [10]. In
this model, there is a uniform probability of having an edge
between any pair of vertices in the graph. The model does
not guarantee that the network is connected. So, we use the
largest connected component with 119,259 vertices.

• A random power-law degree network with 120,037 vertices
generated using the model in [1]—namely, the probability
of having node degree larger than d is proportional to d−α

(we set α = 2.5).
• A small-world network with power-law degree distribu-

tion, generated using the model in [18]. The network has
120,000 vertices. The resulting topology is different from
random power-law degree networks as it features a large
clustering coefficient. In generating this network, we not



only used power-law vertex degree with α = 2.5, but also
considered the physical distance of the vertices in creating
edges.

• A router-level Internet map (Lucent) available from [23].
This map has 112,269 vertices and it less strictly follows
a power-law degree distribution. In addition, it has a high
clustering coefficient [18]. We have found that our small-
world network is the closest to this real Internet in terms of
average path length and clustering coefficient.

Network Link Cost Validation: Our simulation proceeds as
follows. Client arrivals are Poisson, with each client residing at
a random node of the simulated network. We vary the client ar-
rival rate (or concurrency level n) and obtain the corresponding
network link cost L(n) scaling as a function of n.

We first assume unlimited client bandwidth and cache ca-
pacity in validating the network link cost presented in the last
section. Here only the results using the random network and
using the power-law random network are presented.

Figure 2(a) shows that when the random network is used,
the network link cost is well-predicted by Equation (1). In ad-
dition, it appears that Equation (2) also provides a good fit. This
is explained by our discussion in the last section, i.e., in limited
scales, this two equations are close. Figure 2(b) shows that the
network link cost is clearly higher than that predicted by Equa-
tion (1). Notice the log-scale of L(n) in the figure. This is
because power-law random networks do not have an exponen-
tial neighborhood expansion function.

Effect of Limited Client Bandwidth: Figure 3 shows the re-
sulting scaling behavior when the client-side bandwidth is cho-
sen in different ways. Also, for comparison purposes, it shows
the cost of unicast delivery.

When client-side bandwidth is chosen uniformly between
object playback rate and four times that rate, the network link
cost is not significantly higher than what is achievable with in-
finite bandwidth. This result suggests that our approach is ef-
fective even when client-side bandwidth is low.

Again, the simulation results using power-law networks ap-
pear to be rather different from those obtained using router-
level Internet maps. In the power-law network, the network
link cost reduction is less than that in router-level maps. How-
ever, we found that the simulation results using a small-world,
power-law network is close to that obtained using router-level
Internet maps. This underscores the importance of capturing
small-world behaviors in Internet topologies–namely cluster-
ing in networks is important to the scaling behavior of multicast
delivery [18].

Effect of Limited Client Cache Capacity: Figure 4 shows
the resulting scaling behavior when the client cache capacity
is constrained. In our simulations, we choose different cache
capacities, corresponding to 10%, 30%, and 100% of the object
size. Buffer management uses a FIFO replacement policy.

The results in Figure 4 indicate that: (1) Even when cache
space is limited, the reduction in network link cost is still sig-
nificant compared to that of unicast delivery. (2) There is still

room for improvement when cache capacity is small. Notice
that we use a simple FIFO policy which can be less efficient
than others. In addition, it is also possible to combine prefetch-
ing techniques to better utilize limited cache spacee. For exam-
ple, assume the client cache can only store a S-minute segment
of the object. When a later client starts, it may prefetches the
object from any client who started less than 2S minutes earlier.
Therefore, it works as if the cache size is doubled.

5 Related Work

End-system multicast was advanced by the authors of [6] as a
deployable alternative to IP multicast. In their Narada proto-
col, end systems self-organize into an overlay network using a
fully distributed protocol, with fairly low delay and bandwidth
overheads. Recently, they conducted an extensive evaluation
of schemes for constructing overlay networks on a wide-area
testbed [5]. This study demonstrated that end system multicast
is promising for conferencing applications in a dynamic and
heterogeneous Internet environment, and highlighted the im-
portance of adapting to latency and bandwidth while construct-
ing overlays optimized for the real-time delivery of content to
synchronous clients.

Delivery of content to asynchronous clients is the focus of
many recent studies, including periodic broadcasting [24, 14,
13, 20] and stream patching/merging techniques [4, 11, 7, 8].
These approaches are targeted mainly at video-on-demand ap-
plications. In periodic broadcasting techniques, segments of
an object (with increasing sizes) are repeatedly transmitted on
dedicated channels, and asynchronous clients simply join one
or more broadcasting channels to receive this data. Using
stream patching/merging techniques, asynchronous clients are
merged into larger and larger groups that share a single multi-
cast channel. Unlike our approach, both techniques assume the
availability of a lower-level multicast delivery infrastructure.
As such, they are scalable in minimizing server bandwidth re-
quirement [9, 17], but do not specifically attempt to optimize
for network link cost.

The idea of utilizing client-side cache space was developed
in a number of recent works [22, 21]. Here, the main objec-
tive was to reduce server load rather than network link costs.
A network level scheme was presented in [15], which caches
data at routers in the network to service subsequent requests. It
is therefore different from our application layer approach. In
addition, it also aimed at lightening the demand on the server
bandwidth.

Another class of content delivery techniques originated
with the use of periodic broadcasting of encoded content as was
done over broadcast disks [2], and as was done later through
the Digital Fountain approach [3]. These approaches enable
end-hosts to efficiently reconstruct the original content of size
n from a subset of any n symbols from a large universe of
encoded symbols. Such approaches enable reliability and a
substantial degree of application layer flexibility. The primary
weakness of these techniques is their inability to efficiently deal
with real-time (live or near-live) streaming media objects due
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Figure 3. Simulation results when client-side bandwidth is limited.
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Figure 4. Simulation results when client-side cache space is limited.



to the necessity of encoding/decoding rather large stored data
segments.

6 Conclusion

We proposed and evaluated OSMOSIS—a cache-and-relay ap-
plication layer multicast delivery mechanism for streaming me-
dia objects. Delivery by OSMOSIS minimizes the total network
link cost and is especially tailored for applications featuring
asynchronous client requests to live, real-time streaming me-
dia objects. We are currently investigating several issues that
need to be addressed in order for OSMOSIS to be deployable in
ad-hoc overlay networks. We briefly discuss these below.

First, one requirement the cache-and-relay approach used in
OSMOSIS is the need for an effective discovery mechanism for
close-by peers who can satisfy a request—that is, how to find
the closest client with a cached copy of the requested stream
and with sufficient bandwidth to serve that stream. One simple
peer discovery mechanism works as follows. The root server
maintains a set of addresses of on-going clients. When a new
client requests the media object, the server provides a subset of
candidates (from its list of on-going clients) based on efficient
clustering techniques, for example, the one in [19]. The new
client may then choose one of these candidtaes based on mea-
surements of the characteristics of its paths to those candidates.

Second, another concern regarding OSMOSIS is reliability.
For example, if one client is relaying some media object to a
another client, then if the first client dies, the latter needs to
figure out how and from where to receive the remainder of the
object. One solution for this vulnerability is for the latter client
to contact the original server, and establish a connection with
another client. In the worst case, the client may have to down-
load the remainder of the object from the original server. To
minimize the implications of this “switch-over” on real-time
playout, clients may wish to actively maintain a list of alternate
sources, and to factor in the delay of a switch-over into their
buffering requirements.

Finally, security is a common concern of application layer
approaches, including our proposed cache-and-relay protocol.
Since clients can access the caches at other end-hosts, the sys-
tem must prevent unauthorized accesses, for example access
without digital rights. Security support can be implemented by
either the original server (alone or assisted by trusted clients).
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