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Abstract—For decades, request-routing protocols operating at
multiple layers of the network stack have been a staple of Internet
services. Commonly deployed request-routing techniques use the
requestor’s IP address as an identifier of the client. For instance,
using DNS as a request-routing protocol, the local DNS resolver’s
IP address is used as a surrogate identifier of the client in
order to assign the client to the closest server. While such coarse
associations may be acceptable for performance-centric purposes,
they are not appropriate in settings that require fine-grained,
enforceable bindings of clients to servers — e.g., to ensure that
malicious clients are unable to bypass their bindings and issue
their request to a server of their choosing.

In this paper, we propose S3B (Software-defined Secure
Server Bindings), a protocol that provides precise and enforceable
client-server assignments. S3B uses a server module to assign
clients unique access keys. Using HTTP redirection with the key
encrypted as an additional domain label, the name server is able
to distribute precise server assignments specific to each client.
In addition, the server module maintains an access control list
to enforce these assignments. As an implementation of the S3B
protocol, we have developed an HTTP/S prototype and deployed
it to Amazon AWS. Our performance evaluation suggests that
our prototype introduces no discernible overhead for client
requests. To evaluate S3B’s effectiveness as a security appliance,
we developed an application to isolate clients suspected as spiders,
capable of virtually immediate containment once detected.

I. INTRODUCTION

For decades, request-routing protocols operating at multiple
layers of the network stack have been a staple of Internet
services and web applications (webapps). By managing how
client requests are “routed” (or assigned) to servers, these
protocols afford network operators and/or service providers a
level of indirection that can be used for a multitude of control
and management purposes, including the enablement of ad-
vanced localization, load balancing, and caching mechanisms.
While request-routing protocols can be implemented at the
application layer (e.g., through redirection), the most common
and widely-used protocols are extensions of the Domain Name
System (DNS) as a directory service.

The efficiency of control and management mechanisms
that leverage request-routing protocols depends largely on
the ability of these protocols to associate a service request
with the client that originated the request. This has been
a key limitation of DNS-based protocols, which are unable
to identify accurately the client that originated the request
since DNS queries are typically made to the name server
on behalf of the client by a local recursive resolver. For
example, when DNS is used for request-routing in support of

load balancing, rather than assigning requests to servers using
DNS’ default round-robin approach, the local DNS resolver’s
IP address is used as a surrogate identifier of the client to
assign clients to close servers [1], under the assumption that
the local DNS resolver is close to the client. This assumption is
seldom accurate [2]. Recent extensions to DNS have proposed
including a prefix of the clients IP address to be forwarded to
the name server to increase the accuracy of the assignment [2].

Even if the IP address attached to a request for service is
known, the use of client-side gateways and proxies often result
in the inability of a service to distinguish between a potentially
very large number of clients. As a result, mechanisms that use
IP addresses as identifiers are unable to provide fine controls
for applications that require them, e.g., security-related access
control applications. As a result, in practice, webapps tend to
block entire IP address ranges (e.g., TOR exit nodes) because
innocent users cannot be distinguished from malicious ones.
Up to 3.7% of the top 1,000 Alexa sites block TOR users, thus
legitimate clients fall victim to this practice [3].

In contrast to DNS-based request-routing, HTTP-based
request-routing has far greater knowledge of the client and is
capable of providing more accurate client-server assignments.
HTTP-based request-routing initially uses DNS to assign the
client to a virtual surrogate. This additional layer of indirection
allows the virtual surrogate to perform deep inspection of the
clients request to decide how it should be routed. For example,
session affinity (otherwise known as sticky sessions) [4] allows
for a load balancer to assign a client to a specific upstream
server based on an identifier stored in an HTTP cookie. All
future client requests are proxied through the load balancer to
the assigned server. Although session affinity can provide a
mechanism to bind a specific client to an upstream origin web
server, it cannot bind the client to the load balancer assigned by
DNS. Due to DNS and HTTP operating independently, the load
balancer will blindly accept requests, whether the assignment
originated from the name server or not.

Request-routing protocols do not provide the means for
enforcing desirable client-server assignments, thus allowing
clients to bypass their assignment and access a server of their
choosing directly. Even cloud security services attempting to
provide access control upstream have not been successful as
they have been circumvented by attackers [5]. These cloud
services act as reverse proxies for the origin web servers.
Although the web server can enforce the origin of the traffic
by white-listing the reverse proxies, this is only practical if the
IP addresses are static.

In this paper we introduce S3B, a protocol to create precise



and enforceable client-server assignments to solve these afore-
mentioned shortcomings. This is done by assigning each client
a unique access key (AK). For a given programmable function,
the AK is mapped to the IP address of a web server. To be
compatible with the existing name resolution system that DNS
provides, the authoritative name server ultimately provides the
interface for the client to receive their server assignment.

In order for the name server to learn the AK, we use DNS
object encoding [6]. While traditionally used to encode the
requested object, we use it to encode client information. First
the client is directed to a virtual surrogate running S3B server
software (S3Bware) to form a token. The token’s payload is
an encryption of the client’s AK and IP address. The token is
appended as an additional domain label and S3Bware issues
a redirect to this location. In response to the redirect, a DNS
query is performed, transferring the client information from
the virtual surrogate to the name server.

We adopt a hierarchical architecture used by software
defined technologies (i.e., software-defined everything (SDx))
to allow these assignments to be programmed while also de-
coupling the management, application, control and data planes.
As such, S3B uses a controller with a global view of the system
to enable management of the client-server assignment logic.
An application makes its decision based on the client AK,
IP address, the set of servers online, and other environment
conditions (e.g., performance metrics and security threats).

To enforce the assignments, each server runs S3Bware
which maintains an access control list (ACL). S3Bware is
positioned between the web server and the upstream webapp,
allowing requests and responses to be modified, while remain-
ing transparent to the application layer. The S3Bware’s ACL is
updated remotely by the controller, in effect creating a dynamic
application firewall.

In addition to being capable of fulfilling traditional QoS
goals, precise and enforceable client-server assignments pro-
vided by S3B allow for various security related applications,
including but not limited to:

• Dynamic deception - Assign malicious clients to honey-
pot servers.

• Application Layer (L7) DDoS defense - Reassign bots
to dummy servers.

• Moving Target Defenses (MTD) - Continuously modi-
fying client-server assignments to resist reconnaissance.

S3B provides stakeholders of a service (e.g., a website
owner) a tool to have a greater degree of control over their
clients experience, whether for performance or security rea-
sons. We have developed a prototype service that instantiates
S3B and have found client overhead to be negligible. That
said, a side effect of unique client domains is an increased
storage overhead for the intermediary recursive DNS resolver:
Rather than caching a single domain, the resolver must cache a
record for every active client it serves. The impact of this added
book-keeping depends on the scale of the service; it should be
negligible except for services with massive number of users,
which are not the types of services that would implement
granular control of client-server assignments in this manner
due to the additional infrastructure at their disposal.

To demonstrate its use as a security appliance we have cre-
ated an S3B application, SpiderTrap to isolate web spiders
to a honeypot server. We envision S3B to be deployed as a
cloud service, such that the S3B name server and controller is
maintained by the cloud service provider, while allowing the
customer to install applications to define how clients should be
assigned to servers (similar to Amazon lambda functions [7]).
To summarize, this paper makes the following contributions:

• We propose a new protocol, S3B (Software-defined Se-
cure Server Bindings) to improve the security of client-
server assignments distributed through DNS providing
two key capabilities,
◦ Precise, software-defined client-server assignments,
◦ Server-side enforcement of the client-server assign-

ment.
• We develop an HTTP/S prototype implementation of the

S3B protocol with no discernible client side overhead.
• We implement an S3B security application,
SpiderTrap, capable of virtually immediate isolation
of clients suspected as spiders to a honeypot server.

The remainder of this paper is organized as follows. In Sec-
tion II we provide a threat model summarizing the adversary.
In Section III we provide an overview of the S3B protocol,
walking through a real-world example of isolating a web spider
to a honeypot server. In Section IV we discuss the details of
each S3B component used in the example. We describe the
implementation of S3B in Section V and it is evaluated in
Section VI. Related work is reviewed in Section VII and we
conclude with future work and the conclusion in Section VIII.

II. THREAT MODEL

In this work we consider threats that require a large number
of requests to be made in order to be successful (e.g. data
harvesting, brute force attacks, application layer DDoS). Due
to the sheer number of operations required for the attack
to succeed, the attacker must rely on software to automate
their tasks (e.g. a bot). At a minimum the attacker has the
following capabilities: (1) they are associated with a benign IP
address, and if behind a NAT sharing a public IP address they
have the ability to sniff the local network, (2) they are able
to forge HTTP requests to appear as if they are originating
from a legitimate web browser and (3) they have the same
capabilities as a web browser such as storing cookies and
following redirects. However we also assume there exists a
class of challenges that can be solved by a human but not
the attacker (e.g. reverse Turing test, human interactive proof
(HIP), etc.). These bot prevention mechanisms have become an
important tool for any web developer. Nevertheless advances
in deep learning has made developing effective challenges
difficult allowing researchers to develop attacks for both
CAPTCHA [8] and reCAPTCHA [9]. Furthermore demand for
cracking CAPTCHAs has fueled an underground ecosystem
using human labor and automated solving techniques to solve
challenges [10]. While this has evolved into a cat and mouse
game, in the end the attacker is operating within a limited
budget, time and resources that they can allocate to solving
challenges.

S3B is a tool and therefore the tool is only as effective as
its user. In this case the user (or defender) expresses their



security requirements and the attacks they wish to defend
against in the form of S3B applications IV-B. The defender is
capable of detecting a threat through various network sensors
installed on its servers and adjusting its security policy on-
demand depending on the current threats in order to balance
usability and security. In particular the defender can escalate
the sophistication of the deployed bot prevention mechanism
when threats are detected or suspected [10].

III. OVERVIEW

S3B provides a mechanism to assign and enforce a client
to specific web server. This provides a foundation for many
security related applications such as client isolation. To provide
an overview of S3B and its basic functionality, we walk
through an example web server architecture using S3B in-
stalled with an app to isolate web spiders to a honeypot server.
An illustration of the messages passed between the involved
parties is displayed in Figure 1.

A spider (while not always malicious) is a common tool
used by attackers for a variety of purposes. For example,
a spider can be used to scrape or mirror websites, harvest
personal identifiable information (e.g., e-mails) and perform
reconnaissance by mapping the webapp [11]. A honeypot
server is a decoy server used to gather intelligence from a
specific threat [12]. Rather than simply blocking the session of
the spider, we isolate the spider to a honeypot server consisting
of dummy data to monitor the spider’s behavior and absorb
its computational resources so that it is not used elsewhere. In
this example we assume the spider performs headless crawling
(i.e., interacts with underlying HTML code, not a browser
GUI). This type of spider can be detected when a resource
to a honeypot link (a hidden decoy link not seen by clients
using the browser) is requested. Spider isolation occurs in two
stages. First the spider registers with S3B as a new client to
obtain a unique AK, just as any other client would. Once S3B
detects a honeypot link has been requested, the second stage
updates the spider’s server assignments to the honeypot server.
In this example, the web architecture using S3B is comprised
of a name server, two webapp servers, a honeypot server and
a controller.

Client Registration New clients unknown to the system
must undergo a one-time registration process to obtain their
unique AK which will be used by S3B to map the client
to a server (Steps 1-12). The registration process uses a
combination of DNS dispatching, DNS object encoding, and
HTTP redirection. The spider begins by unknowingly making a
request for a honeypot link foo.com/honey which initiates
a DNS query for foo.com. Honeypot links in actual de-
ployment consist of links commonly searched by vulnerability
scanners and Google dorks [13]. The name server is a proxy
cache, it does not contain any assignment logic. Since the
spiders request is a cache miss, the request is sent to controller
to be resolved. Without an AK encoded in the DNS query, the
client is unknown to the controller. To initialize the registration
process a S3B registration app implementing a round robin
algorithm responds with the IP address of a virtual surrogate
to register the client.

Once the spider receives the DNS answer it sends its HTTP
request to the web server. Each web server in S3B is installed

with S3Bware, software to register and enforce assignments.
Registration is the processes of assigning the client to a unique
AK which will be used as the identifier to map the client to a
web server. It is implemented to meet the web site’s security
requirements and risk of attack. It may be a transparent process
as described in this example to deter script kiddies using
off-the-shelf automated software or it may be an interactive
challenge for more security conscious applications in order to
limit a sophisticated automated adversary from harvesting and
stock piling AKs prior to an attack. For example it may require
the user to have an account with the web application, submit
a code received via text message, or solve a CAPTCHA [14].

Registered clients have the AK stored as an HTTP secure
cookie and are included in every request. S3Bware enforces
the mappings by maintaining an access control list (ACL). The
spiders request to the virtual surrogate, absent this cookie, ini-
tializes the registration process. S3Bware generates a random
AK for the client. The AK along with the clients IP address is
encrypted, to form the payload for token t1. Details on how
tokens are generated for users having the same IP address are
discussed in Section IV-D3. The token is set as an additional
domain label creating a new domain t1.foo.com. S3Bware
responds with a temporary redirect (307) with the location
HTTP header set to the new domain and the AK set as a secure
cookie. Every future request made by the spider includes the
AK in the cookie (omitted from Figure 1).

The redirect initiates a second DNS query. The purpose of
the token is to allow client information to be passed from the
web server to the name server which the name server cannot
obtain directly due to the architecture of DNS. The token in the
DNS name indicates to the name server this is an existing client
and it has already been registered. The name server first checks
its cache, since there is a miss, the request is forwarded to
the controller. A second S3B app resolves the server selection
for registered clients. However, before returning the result to
the name server, the controller messages the assigned server
to update their ACL, specifying the client matching the IP
address and AK tuple (q.a.z.w, X) should be allowed access
to the webapp. Upon receiving the DNS answer, the spider
has completed the registration process and is now uniquely
assigned to a server.

Client Reassignment S3B provides the ability to modify
existing assignments (Steps 13-26) which we use in this ex-
ample to relocate a spider to a honeypot server. Now assigned
to a web server, the spider makes its web request. However
the spider unknowingly makes a request for a honeypot link.
S3Bware (containing a plugin to support the S3B spider
isolation app) detects the honeypot link has been requested
and sends a security alert to the controller specifying the IP
address and AK of the misbehaving client. The spider isolation
app installed on the controller processes the security alert,
marks the AK as a spider and responds to the webapp server
to update its ACL to redirect clients with the matching AK. As
the spider continues to crawl the next link on the web page,
the spiders AK is not longer set to ‘Allow’ in the S3Bware’s
ACL. S3Bware reacts by issuing a redirect with a new token
t2 (yet still containing the same IP address and AK) to force
the controller to re-assign the client. Because the AK has
been marked as a spider, the DNS request received by the
controlled is processed by the spider isolation app and assigns



the spider to the honeypot. All future requests by the spider
are subsequently made to the honey pot server.

IV. DETAILS

The S3B architecture is inspired by software defined tech-
nologies and botnets for their dynamic and flexible characteris-
tics. It’s hierarchical design, illustrated in Figure 2, decouples
the data and control plane while providing abstraction for
applications to create and enforce client-server assignments.
The controller has a global view and control of the system
through S3Bware installed on each server, essentially creating
a botnet. Scalability and resilience of this architecture shares
many similarities to SDN [15] such as using multiple con-
trollers to decrease single point of failures. We plan to address
these topics further in future work. In this section we describe
in detail each plane using a top-down approach.

A. Management Plane

The management plane provides a central interface for
administrators to interact with S3B. This interface gives the
administrators the ability to install, remove, modify and inter-
act with S3B apps. The implementation of this interface may
exist simply as terminal access to the controller or through a
web interface.

B. Application Plane

The primary function of S3B apps is to define the logic for
client-server assignments. Assignments are determined based
on a number of factors received as feedback from the system
(e.g., server performance, financial constraints, security threats,
etc.). Apps are installed to the controller as middleware. Each
controller app is able to register a handler to a number
of callbacks issued by the controller. Handlers are chained
together, specified by a priority index, allowing multiple apps
to register to the same callback. Handlers with a higher priority
may modify the response of handlers with lower priority. In
addition to providing the client-server assignments, apps may
be used to gather metrics, log events and modify the running
environment. For example in a cloud settings apps could add
and/or remove servers in response to client-server assignments
and other environmental changes.

C. Control Plane

The control plane has a global view of S3B. It consists
of one or more controllers that administer the actions defined
by the apps. The controller is configured with a public-private
key pair (pkctrl, skctrl) used to authenticate messages. The
controller implements a callback framework to route messages
it receives to the appropriate app. Messages are received
over an encrypted secure channel and authenticated with a
cryptographic signature. Each message is identified by the
sources public key (pksrc), if verified the message is mapped
to its corresponding callback and the registered handlers for
the callback are executed. Table I provides a summary of the
callbacks.

Unknown and Existing Clients The controller receives
DNS messages from the name server to resolve the client-
server assignment. Existing clients are identified by having a

Source Callback Args Return
NS UnknownClient None DNS Answer
NS ExistingClient IP, AK DNS Answer
NS, S3Bware Join Profile Config
NS, S3Bware, Firewall/IDS SecurityAlert Alert Action
NS, S3Bware HealthAlert Alert None

TABLE I: Controller Callbacks

token in the domain name, where as this is absent for unknown
clients. If a token is present, the controller decrypts the payload
using a symmetric key k (also known to S3Bware) to obtain
the client’s IP address and AK before the callback handlers
are called. This process can be offloaded upstream to the name
server if it is trusted (Section IV-D2). Once the last app in the
callback chain has been called, its DNS answer is sent back
to the name server.

Join S3B servers are allowed to join and leave dynamically
to support automated scaling. To keep the S3B apps up-to-
date of the available servers and initialize S3Bware, the server
must send a join message to the controller. The join messages
include a profile specifying the server’s configuration and
capabilities. Profiles are used by apps for help determining the
client-server assignment. The join callback returns configura-
tion data to be used by the S3Bware. This includes information
such as its assigned role, and parameters for token generation.
Because a server may die unexpectedly, S3Bware does not
send leave messages. Instead it is up to the apps to actively
probe the servers or monitor the cloud environment.

Alerts To complete the assignment decision loop, S3B
servers are able to send feedback to the controller. Health alerts
allow S3B server to send performance metrics such as resource
consumption. Additionally servers are able to send specific
security alerts related to misbehaving clients, or detected
attacks (e.g., a honeypot link has been requested). Security
alerts may be sent on behalf of the S3B by security appliances
(e.g., application firewall, intrusion detection system (IDS)).
These alerts are essential for establishing optimal client-server
assignments.

D. Data Plane

The data plane consists of the S3B servers interfacing
directly with the client. In this section we describe the details
of each party member.

1) Client: In order for a client to access a website using
S3B their browser should allow cookies for optimal perfor-
mance. Cookies store the client’s registration information (i.e.,
IP address at time of registration, and AK) locally within the
clients browser, preventing the client from having to register
every time they visit a new page which could be an expensive
task.

2) Name Server: The name server is the one who ulti-
mately interfaces with the client to provide them with their
server assignment. To authenticate messages sent to the con-
troller the name server is configured with a public-private
key pair (pkns, skns). Normally DNS records resolved by the
controller are cached by the name server until the records time
to live (TTL) expires. To remove the cached record before this
time, the name server exposes the RevokeRecord command
to the controller (Table II).



(11) c.r.f.v

(1) foo.com?

(4) s.x.e.d
(2) UnknownClient: foo.com?

(3) s.x.e.d

(5) GET foo.com/honey

(6) 307 t1.foo.com Cookie: AK=X

(9) Allow: (q.a.z.w, X)
(10) 200

(12) c.r.f.v

(13) GET t1.foo.com/honey
(14) 200 (15) SecurityAlert:(q.a.z.w, X)

(16) Redirect: (q.a.z.w, X)

NEW CLIENT ASSIGNMENT

(17) GET foo.com/baz
(18) 307 t2.foo.com

(19) t2.foo.com?

(24) t.g.b.y

(20) ExistingClient: t2.foo.com?

(23) t.g.b.y

(21) Allow: (q.a.z.w, X)

(22) 200

UPDATE CLIENT ASSIGNMENT

(25) GET foo.com/baz

(26) 200

(7) t1.foo.com? (8) ExistingClient: t1.foo.com?

Web Server
s.x.e.d

Name Server Web Server
c.r.f.v

Honeypot
t.g.b.y 

Controller
 

Spider
q.a.z.w

Fig. 1: S3B example demonstrating client registration and re-assignment for a spider isolation application.

Component Command Arguments Return

S3Bware
UpdateConfig Config OK or error
ACAddRule Rule OK or error
ACRemoveRule Rule OK or error

Name Server RevokeRecord token OK or error

TABLE II: S3B Data Plane API

Similar to proxies providing multiple modes for TLS [16],
S3B offers two modes for handling tokens: passthrough and
offloading. In passthrough mode the name server does not have
knowledge of the cryptographic key k used to decrypt tokens.
This mode is useful in settings in which the name server is
not fully trusted (i.e., hosted by a third-party). On the contrary,
offloading mode trusts the name server with the key k, to
offload computation required for authentication, integrity and
decryption of the token. Invalid requests are rejected before
passed to the controller.

3) S3Bware: The majority of the heavy lifting is performed
by S3Bware. It in located in between the web server and
webapp in the software stack. This can be implemented as
a server module, middleware, or proxy just as long as it is
in-path and able to intercept and modify web traffic. Like the
name server it is configured with its own public-private key

pair for authenticated messages to the controller (pksvr, sksvr).
Additionally it also contains the symmetric key k for token
encryption.

To remain synchronized with the controller, when S3Bware
is started, it sends a Join message to the controller includ-
ing its public key pksvr and receives its configuration in
response. The S3Bware’s API exposes an UpdateConfig
command (Table II) if the configuration changes in the future.
S3Bware is primarily responsible for registering new clients
and enforcing server assignments made by the controller. If
assigned as a registrar, S3Bware will generate AK’s and create
tokens for clients. Next we will describe the token creation
process.

Token Creation A S3B token is an encapsulation of
a clients IP address and AK for transport between HTTP
and DNS. The token is appended as a domain label to the
applications domain, thus binding the AK between the name
server and web server. The AK allows the client possessing it
access to the server it has been assigned. It must remain secret
and protected the same as a session token. Because UDP DNS
queries are sent unencrypted 1, the token must protect the AK

1Although DNS queries can be sent over TCP with TLS this is hardly
deployed.
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Fig. 2: Overview of S3B. S3B components are shaded gray.
Direction of arrow indicates who initiates message exchange.
Dashed lines are optional messages.

from adversaries monitoring the network.

There is a size constraint of the token since it must be
transported via DNS. Each domain label can have a max of
63 characters such that the first character is a letter, the last
character is a letter or digit, and the interior characters may be
letters, digits or hyphens [17]. Practically speaking, a token
should ideally fit in a single domain label to take advantage
of wildcard SSL/TLS certificates. The token is computed by
the following equations,

T, c = AEk,IV (IP ||AK) (1)
token = IV ||T ||c (2)

= S3BwareID||b36(S3BwareC||T ||c)

The concatenation of the clients IP address and AK is en-
crypted with an authenticated encryption (AE) scheme using
a symmetric key k and an initialization vector IV to produce
an authentication tag T and ciphertext c. AE provides both
authentication and integrity of the token. The AE scheme must
allow for unique (but not necessarily random) IVs and should
be length preserving to minimize its size, for example AES
in Galois/Counter Mode (GCM) [18]. The AK is randomly
generated and provides enough bits of entropy to resist brute-
force attacks [19]. To minimize the length of the IV and sup-
port a distributed environment a deterministic IV construction
is used [18]. In this construction, the IV is formed by the
concatenation of two fields: a fixed field and an invocation

field. The fixed field is a unique identifier for each S3Bware
(S3BwareID) generating the IV and the invocation field is
an incremented counter for each invocation of the encryption
function for that particular S3Bware (S3BwareC). To abide by
the domain name label naming convention, the fixed field must
begin with a letter.

A token supports both IPv4 and IPv6 addresses however
the lengths of the AK, IV and tag must be adjusted for the
increased IPv6 length. This must be done in a way to not
sacrifice security of the token for example by decreasing the
size of the IV’s invocation field. However by decreasing the
size of the invocation field, the key k must be rotated more
frequently because the IV can never be used more than once
for a given key or its security is compromised. The counter
S3BwareC, and the encryption output are in bytes. To be
formatted for a domain label these values are concatenated
together and base 36 encoded (i.e. lower-case letters and
numbers). The S3BwareID is then appended to the front of
base 36 encoding to form the token. In Section V we discuss
specific instances of the token format.

Assignment Enforcement S3Bware acts as a dynamic
firewall, remote controlled by the controller. Each S3Bware
maintains an ACL and each rule in the ACL consists of a target,
an AK, and an IP address. The target defines what will happen
with the request and must be one of ACCEPT, REDIRECT,
BLOCK or CHALLENGE. An ACL rule with an (AK, IP) pair
is mutually exclusive and cannot exist in more than one list.
The ACCEPT target will accept a request with the given (AK,
IP) pair. The BLOCK target explicitly blocks an (AK, IP) pair
or alternatively just by the IP address while the CHALLENGE
target will prompt the user to solve a challenge (i.e. to log into
the application or solve a CAPTCHA). The REDIRECT target
blocks the request, generates a new token for the client and
issues a redirect. The controller populates the ACL by the API
summarized in Table II.

Algorithm 1 describes the access control process when
receiving a client request. First an attempt is made to extract
the AK, IP address and a signature (σ) from the cookies.
If these cookies are absent the clients source IP address is
checked if in the BLOCK or CHALLENGE ACL as a way
to control abuse and limit the churn rate. Otherwise the client
is registered. For requests including an AK and IP address
their integrity is verified with the supplied signature using the
symmetric key k. If the signature does not verify a security
alert is sent to the controller with the clients IP address and
the default response policy is returned. The default policy
is specified in S3Bware’s configuration returned when the
S3Bware joins S3B. It may be to either block the request or
redirect.

If the AK and IP address are valid, the BLOCK and
CHALLENGE ACL are first checked for the specific pair. If
the pair is in the ALLOW ACL the request is accepted and
sent upstream. If the pair has yet to match, the clients AK is
checked for any matching IP address pair (as specified by the
wildcard “*”) in the ALLOW ACL. An AK, IP address mis-
match could indicate a mobile client who switched networks
from the time its original application server assignment was
made. In this situation, the client is redirected using a token
recomputed using the current source IP address and original
AK. Additionally if the client exists in the REDIRECT ACL



it is handled the same way. Finally if the client does not exist
in any of the S3Bware ACLs it is handled by a default policy.

Algorithm 1 Access control for client request r and source IP
address reqSrcIP returning action for request.

1: AK = getCookieValue(‘AK’)
2: IP = getCookieValue(‘IP’)
3: σ = getCookieValue(‘signature’)
4: if not AK and not IP then
5: if (∅, reqSrcIP) in ACL[BLOCK] then
6: return block(r)
7: else if (∅,reqSrcIP) in ACL[CHALLENGE] then
8: return redirectToChallenge(r)
9: else

10: return register(r)
11: end if
12: end if
13: if not verified (AK, IP, σ, k) then
14: sendAlert(reqSrcIP, ALERT VERIFY FAIL)
15: return defaultPolicy(r)
16: end if
17: if (AK,IP) in ACL[BLOCK] then
18: return block(r)
19: else if (AK,IP) in ACL[CHALLENGE] then
20: return redirectToChallenge(r)
21: else if (AK, IP) in ACL[ALLOW] then
22: return allow(r)
23: else if (AK, *) in ACL[ALLOW] or
24: (AK, IP) in ACL[REDIRECT] then
25: newToken = createToken(AK, reqSrcIP)
26: return redirect(newToken, AK)
27: else
28: return defaultPolicy(r)
29: end if

V. IMPLEMENTATION

We have developed an open source S3B implementa-
tion [20] consisting of several ready to use S3B apps, a
standalone controller written in Go, a CoreDNS [21] module,
and an S3Bware Nginx [22] module.

A. Applications

Our implementation provides two applications to support
basic operation and a spider isolation app to demonstrate its
ability to be used as a security appliance. For basic operation,
S3B must be able to provide client-server assignments for
registration and to the webapp server. At least one server must
join S3B who supports these corresponding roles.

RRRegistration Client registration requests are han-
dled by the RRRegistration app which uses a round-
robin algorithm for server selection. This application registers
a handler for the Join, and UnknownClient callbacks.
When the app’s Join handler is called, the S3Bware’s pro-
file (including the server’s IP address, unique domain name,
public key, and preferred role) is added to an availability list
indicating all servers that will perform client registrations. The
UnknownClient handler is called every time a DNS query
is made from an unknown client, and the app selects from the
availability list using a round robin algorithm returning the

DNS answer with the selected servers IP address. Periodically
the app makes a web request to each S3Bware in the avail-
ability list to confirm it is still reachable. If not, it is removed
from the list.

RRAssignment Assignments to webapp servers are done
by the RRAssignment app which registers handlers for the
Join and ExistingClient callback. This app maintains a
separate availability list as the conditions for a joined S3Bware
being assigned to the role of a webapp server may differ than
one set as a registration server. DNS queries made by existing
clients are answered the same way as the RRRegistration
app, using a round-robin algorithm. S3Bware availability
checks are also done the same.

SpiderTrap To isolate web spiders to a honeypot server
we have developed the SpiderTrap app. This app requires
at least one S3Bware to have the role of a honeypot server
and a supporting S3Bware plugin which is discussed in Sec-
tion V-D. This application registers a handler for the Join,
ExistingClient as well as SecurityAlert callbacks.
As S3Bware join S3B, the Join handler checks the preferred
role and for those set as a honeypot role their profile is added
to a honeypot server list. SpiderTrap isolates spiders in two
stages: (1) detection and labeling of AKs as spiders, and (2)
reassignment to the honeypot server.

Detection and labeling occur by the SecurityAlert
handler reading the alert messages to identify honeypot link
requests. The tuple (IP address, AK) identifying the spider
included in the SecurityAlert, is added to a spider list.
The app responds to the SecurityAlert that the server
should redirect all future requests with the matching AK.

Spider reassignment is initiated when then the spider issues
a subsequent request to the webapp, which in turn causes a
redirect and an ExistingClient message to be sent to
the controller. When an ExistingClient DNS query is
received, the clients AK and IP address are obtained from the
token and then matched against the spider list. If a match is
found, SpiderTrap overwrites the DNS answer provided by
RRAssignment and replaces the answer with the IP address
of a honeypot server. SpiderTrap’s ExistingClient is
inserted into the callback chain with a higher priority than
RRAssignment’s handler allowing the DNS answer to be
overwritten.

B. Controller

Our controller is implemented as a standalone web appli-
cation written in Go. The API discussed in Section IV-C is
exposed through a RESTful web API. The controller is based
on a chained middleware model to allow for the inclusion of
the S3B apps previously discussed. Each app is able to register
to specific messages received through the API.

C. Name Server

We use the CoreDNS [21] DNS server with custom mid-
dleware. The implementation provides a cache for DNS query
QNames and if there is a miss in the cache the controller is
queried to provide an answer. The module communicates with
the controller through its RESTful web API and messages are
signed with ECDSA using the modules private key. CoreDNS



performs the majority of the heavy lifting, handling the basic
DNS server functionality and providing an API for working
with DNS records.

D. S3Bware

The core functionality of S3B is provided by S3Bware.
Our S3Bware is written as an Nginx module, providing full
transparency to upstream servers and applications. The module
is able to intercept both requests and responses. Crypto-
graphic operations are preformed by OpenSSL[23] including
AK generation, token encryption and inter-system message
authentication. Furthermore as an Nginx module, as demand
increases S3Bware is able to horizontally scale with its web
server.

Assignment Enforcement Our Nginx module uses the
Origin HTTP header to determine if the request originated
from the controller. If the value is equal to the controllers host
name it is processed as a controller message, otherwise as a
request from a web client. Each message from the controller
contains a signature stored in a cookie. If the signature is
verified S3Bware processes the message. Otherwise a security
alert is sent to the controller and the request is rejected. The
S3Bware enforces the client-server assignments through an
in memory ACL updated by the control messages defined in
Table II.

Registration If the request appears to be from a web client,
the S3Bware follows Algorithm 1. To register the client, the
S3Bware generates a unique token. Our implementation sup-
ports both IPv4 and IPv6 address however due to the increased
length of the IPv6 address, the formats differ. The default
token formats are illustrated in Table III specifying the number
of bits and characters each field occupies. The administrator
additionally has the ability to create their own formats to meet
their specific needs since there is some flexibility. For example,
the S3BwareC could be decreased while increasing the AK.
Two functions are helpful for constructing token formats when
working with bit fields that must be base 36 encoded (i.e., all
fields other than the S3BwareID which must start with a letter),

len(chars) = db/ log2(36)e (3)
len(b) = bchars× log2(36)c (4)

Equation 3 converts the number of bits to the number of base
36 characters, and Equation 4 preforms in the inverse.

The AK must be at least a 64-bits which is minimally
recommend by OWASP [19]. This is randomly sampled
from OpenSSL’s secure pseudo-random generator. The IV’s
deterministic construction supports up to 26 S3Bware in-
stances to perform encryption as defined by the identifier field
(S3BwareID). The AK and IP address are padded to to their
full length (i.e., (32+64) bits and (128-64) bits for IPv4 and
IPv6 addresses respectively) and then encrypted using AES-
256 in GCM mode with the IV and configured key k. The
token is formed by appending the S3BwareID with the base
36 encoding of the S3BwareC, tag, and ciphertext. The IV’s
invocation field S3BwareC is then incremented and saved to
the file system.

Once the token has been created, the clients IP address
and generated AK is then signed using an HMAC-SHA256

S3BwareID S3BwareC T IP AK Total

IPv4 b 5 93 128 32 64 322
chars 1 18 44 63

IPv6 b 5 31 96 128 64 324
chars 1 6 56 63

TABLE III: IPv4 and IPv6 token formats specifying the bit
length (b) and character count (chars) for each field.

signature with a configured symmetric key k. The AK, IP
address, and signature are then set as a cookie with the
HttpOnly and Secure flags enabled. Finally, the S3Bware
responds with a temporary redirect (i.e., 307) with the HTTP
Location header set to the domain with the token appended as
an additional domain label.

SpiderTrapMod To support the SpiderTrap app, an
S3Bware plugin to detect a spider is used to maintain trans-
parency. This plugin is another Nginx module that intercepts
request and responses. Responses are injected with honeypot
links in the webpage, while requests are monitored to detect
if a honeypot link is made. Honeypot links are relative URLs,
randomly generated with a pre-configurable prefix that cannot
be fingerprinted. Thus as the plugin monitors requests it can
identify if the requested link is a honeypot link it created.
If a honeypot link is requested, the plugin will redirect the
request to a configurable location (e.g., an arbitrary URL in
the webapp) and send a security alert to the controller including
the clients AK and IP address.

VI. EVALUATION

In this section we evaluate our S3B implementation to
identify performance impacts on the client and assess how
effective SpiderTrap is at isolating spiders. In the following
experiments S3B was deployed across three Amazon Ubuntu
16.04 EC2 micro instances in the us-east-1 region. Two web
servers ran S3Bware, one of which was configured as the hon-
eypot server, and the second as the webapp. The third server
ran the name server and controller. Inter-region deployments
can expect additional latencies [24].

A. Registration Overhead

Client registration requires an additional HTTP and DNS
request. To evaluate the overhead imposed by the registra-
tion process we compare the page request time for when
a website is enabled with S3B, and when it is disabled.
We took measurements from within AWS as well as from
three servers geographically dispersed across the United States
using GENI [25]. When running the experiment with S3B
disabled we configured CoreDNS to use a static zone file
with a wildcard DNS record for our website domain to
allow us to generate a unique subdomain for each request to
bypass any possibility of DNS caching. When enabled, the
RRRegistration app was similarly configured to allow
arbitrary subdomains. Additionally, Nginx was configured to
add HTTP headers to prevent caching. Pages were filled with
dummy data incremented by 500KB in size to 4MB which
includes the current average page size of 2.6MB [26]. A page
size of 0 bytes is a response without a body (i.e. equivalent to
a HEAD response). We performed 1,000 trials of each page
size.



Fig. 3 reports the mean time and 95% confidence interval
for each page size at each location. We have separated the
registration time (suffix on reg) from the overall page request
time (suffix on) when S3B is enabled to clearly see the over-
head. Results show registration time is constant as a function
of the page size which is consistent with the design. The HTTP
redirects are constant in size, thus the only increase in request
time is due to the growing size of the page. For a page size of
2.5MB, there was on average a 23.80% increase in overhead,
or 155.71ms which is just about at the limit (100ms) in which
a human cannot discern any additional overhead [27]. As page
sizes increases, overhead decreases. Due to registration being a
one-time event we find this overhead to be negligible for most
services. For services where this overhead is unacceptable,
solutions such as Akamia web security [28] may be more
appropriate which is better suited to handle large scale network
traffic, however this does come at a cost.

B. SpiderTrap Evaluation

In this section we evaluate how effective SpiderTrap
is at isolating spiders to a honeypot server. First, we conduct
experiments to establish the assignment change reaction time
of S3B with SpiderTrap installed in our deployed envi-
ronment. This measurement allows us to establish a baseline
to predict the number of requests a spider can make with a
given bandwidth before being isolated. More specifically we
measure,

t = tSpiderTrapMod→Ctrl + tCtrl↔SpiderTrap+

tCtrl→Honey + tHoney→ACL

where tSpiderTrapMod→Ctrl is the time it takes the
SpiderTrapMod to send a SecurityAlert to the
controller specifying a honeypot link has been requested,
tCtrl↔SpiderTrap is the processing time SpiderTrap takes
to establish the new assignment, tCtrl→Honey is the time it
takes to send the ACAddRule message to S3Bware residing
on the honeypot server, and tHoney→ACL is the time it takes
the honeypot S3Bware to update it’s ACL and enforce the
new assignment. From the webapp server we generated 1,000
SecurityAlerts and found the mean reaction time t to
be 3.79± 0.21ms with 95% confidence.

Next we deployed a sample webapp using S3B and
SpiderTrap. The SpiderTrapMod is installed as an Ng-
inx module on the web server hosting the webapp. The webapp
serves pages consisting of a honeypot link followed by 1,000
randomly generated links to simulate the limit of links found
on a typical webpage [29].

To evaluate SpiderTrap we created a spider based on
the popular Scrapy framework [30]. We measure the spiders
effectiveness as the number of pages crawled from the webapp
after the honeypot link is requested. We refer to this metric as
damage. For each experiment the spider crawls the webpage by
depth-first-search as fast as it can until it is isolated. We adjust
the number of requests the crawler can make in parallel from
1 to 32, with the default set by Scrapy at 16. The spider is run
from the same locations as Section VI-A. For each location
we also report the average bandwidth.

Results in Fig. 4 show SpiderTrap to be an effective
security appliance for isolating spiders. Isolation occurred
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Fig. 3: Time comparison for page request of a new client
with S3B off, and on. When S3B is on, the specific client
registration time is reported.

in just a single round of requests and when requests are
sequential, on average no damage is inflicted. To increase
damage a spider would require a network connection capable
of crawling the target pages faster than S3B’s reaction time of
3.79± 0.21ms.

The spiders optimal strategy is to make as many re-
quests in parallel as possible. However the server can counter
this strategy by forcing requests to be made sequentially
(e.g., Nginx’s module ngx_http_limit_conn_module)
thereby decreasing damage back to zero. Advanced spiders
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may attempt to detect they have been isolated by S3B (e.g.,
monitoring the IP address of current server, or the number
of 307 responses received), clear their cookies to re-register
and continue crawling the webpage. In the case of continued
abuse, SpiderTrap can temporarily challenge, or block new
registrations from the spider’s IP addresses while still allow-
ing previously registered user to continue using the website
without degrading their service.

VII. RELATED WORK

There has been a significant amount of research involved
in establishing client-server assignments. Previous work has
primarily been motivated by improving quality of service and
decreasing request latency. These techniques known as request-
routing, route (or assign) a client to a particular server based
on a defined policy or set of metrics [6]. The majority of
these techniques are either DNS-based or application-layer
mechanisms.

DNS-based server assignments traditionally use the loca-
tion of the local recursive name server to decide which server
will be assigned to the client [1]. It is assumed the client is
in close proximity to the name server however is has been
found that this is not always the case [1][2]. MyXDNS [31]
introduces dynamic DNS client-server assignments separating
the data and control plane and exposing an API to allow
users to specify their own selection policy. S3B has taken a
similar approach to allow the customer to specify assignments
through an applications, which provides the greatest degree of
freedom. However the MyXDNS architecture only considers
the IP address of the client for server selection. DONAR [32]
introduces additional metrics to improve client-server assign-
ments in addition to location such as server workload and
bandwidth costs. DONAR is more restrictive than MyXDNS.
Users of DONAR are not free to write their own algorithms.
Instead, users specify selection policies based on the perfor-
mance metrics which is then used by DONAR to solve an
optimization algorithm to determine server assignments. To
provide more precise mappings, end-user mapping [2] allows
a local recursive name server to forward additional information
about the client (e.g., the clients IP address prefixed to a certain
number of bits) to the authoritative name server. The inclusion
of additionally information is made possible to the Internet
draft, EDNS0 [33].

There are a number of application-layer server assignment
techniques, specifically for HTTP [6][34]. HTTP-based assign-
ment mechanisms provide a greater degree of control due to
the knowledge of the client and their request. Assignments
decisions are based off HTTP header values and routed using
various methods such as URL rewriting and redirection [35].
Additionally a software defined network (SDN) approach
called Plug-n-Serve [36] has been proposed providing load-
balancing for web traffic using customized routes established
based on feedback from the network.

Client-server assignment mechanisms have also been moti-
vated with security in mind. A shuffling mechanism presented
by [37] and [38] repeatedly shuffle client-server assignments
to separate benign clients from bots involved in a denial
of service (DoS) attack. IP hopping mechanisms have been
proposed to prevent worms from conducting reconnaissance
by rapidly changing the client-server IP mapping [39] [40]. By
frequently changing the mapping, the information gathered by
hit-list based worms is stale by the next stage of the attack. A
variant of IP hopping known as fast fluxing [41] is a technique
used by botnets to frequently change the IP addresses of a
layer of proxy nodes. This additional layer of indirection adds
resiliency to the botnet making it much harder to disrupt.

VIII. FUTURE WORK AND CONCLUSION

In future work we will continue to evolve S3B to improve
the control administrators have over how their webapps are
accessed. We plan to increase the expressiveness of the ACL
rules such as adding support for rate limiting requests and
limiting the number of connections per IP address. Addition-
ally we will explore S3B’s ability to be used for other security
related applications such as a defense for application layer (L7)
DDoS attacks.

To conclude, this paper introduced S3B (Software-defined
Secure Server Bindings). S3B solves two problems that exist
in traditional request-routing mechanisms: (1) imprecise client-
server assignments and (2) a lack of enforcement of these
assignments. Although these issues may not be a concern
for performance-centric purposes, from a security standpoint
they are critical. Our prototype performance evaluation sug-
gests there is no discernible overhead for client requests.
Furthermore we have shown S3B to be an effective security
appliance for isolating spiders, capable of virtually immediate
containment once detected.
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