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Abstract

Traditionally, the goal of load management protocols for
distributed systems has been to ensure that nodes are
equally loaded. In this paper, we show that for real-
time systems, load balancing is not desirable since it re-
sults in the available bandwidth being distributed equally
amongst all nodes—in effect making all nodes in the
system capable of offering almost the same bandwidth
(e.g., in cycles per second) to incoming tasks. We show
that this “one size fits all” practice leads to a higher
rate of missed deadlines as incoming tasks may be de-
nied service because they require bandwidth that can-
not be granted at any single node—while plenty of frag-
mented bandwidth is collectively available in the system.
We propose a new load-profiling strategy that allows the
nodes of a distributed system to be unequally loaded so
as to mazimize the chances of finding a node that would
satisfy the computational needs of incoming real-time
tasks. The performance of the proposed protocol is eval-
uated via simulation, and is contrasted to other dynamic
scheduling protocols for real-time distributed systems.

1. Introduction

Loosely coupled, time-critical distributed systems are
used to control physical processes in complex applica-
tions, such as controllers in aviation systems and nu-
clear power plants. If missing a task’s deadline is catas-
trophic, then the task’s deadline is considered to be
hard, and the task is categorized as critical, otherwise
the task’s deadline is considered to be firm or soft, and
the task is categorized as essential. If missing a dead-
line implies that the task can/must be discarded, then
the dealdine is termed firm. However, if a task must
be executed even after its deadline is missed, then the
deadline is called soft. Finishing the execution of a task

*This work has been partially supported by the NSF (grant
CCR-9308344).

past its soft deadline is necessary to avoid incuring a
penalty. In this paper, we consider only hard and firm
deadlines for critical and essential tasks, respectively.

To guarantee that critical tasks will never miss their
deadlines, their characteristics must be known in ad-
vance and accordingly, their resource requirements must
be preallocated in advance. To allow such preallocation,
critical tasks are treated as periodic processes, where
the period of the process is related to the maximum
frequency with which the execution of this process is
requested. This assumption of periodicity is wasteful
of system’s resources, since it is based on a worst case
that may rarely materialize. Fortunately, most tasks in
a real-time system are essential (i.e. not critical); and
since meeting the deadlines of these tasks does not have
to be guaranteed a priori, real-time systems often use
a best-effort scheduling approach for essential tasks. In
particular, the characteristics of these tasks are not as-
sumed to be known a priori, and requests for executing
these tasks are not assumed to be periodic in nature,
but rather sporadic.

For a distributed, multiprocessor environment,
scheduling is an NP-hard problem [5] and requires a
priori knowledge of task deadlines, computation times
and start times [3]. The difficulty of scheduling in a
real-time multiprocessor system is further exacerbated
by the synchronization problems of loosely coupled dis-
tributed systems. Accordingly, techniques devised for
such systems are best described as heuristics based on
load-shedding approaches that attempt to balance the
system load amongst the different nodes therein [6]. A
set of such heuristics, including focused addressing and
bidding, are described in [15, 10]. Using the focused
addressing heuristic, a sporadic task, whose deadline
cannot be met by executing it locally, is sent to an-
other node, called the focused node, that is estimated
to have sufficient surplus of cycles to complete the task
before its deadline. Using the bidding heuristic, when



a node fails to schedule a sporadic task locally, it asks
for “bids” from the rest of the nodes in the system, and
depending on the received bids it selects one of them
as the target node. In [10], a flexible heuristic that
combines focused addressing and bidding is also pro-
posed. Using that heuristic, if a node cannot be found
via focused addressing, the bidding scheme is invoked
(in fact, the bidding scheme is invoked while commu-
nication with the focused node is in progress). Spring
[11, 16] is an example of a multi-processor system that
supports scheduling for real-time sporadic tasks.

In [18], load balancing was found to reduce signifi-
cantly the mean and standard deviation of job response
times, especially under heavy or unbalanced workload.
For non-real-time systems, reducing the mean and stan-
dard deviation of job response times is an appropriate
measure of performance. However, for real-time sys-
tems, such a measure may be completely misleading. To
explain this dichotomy, it suffices to point out that in
real-time systems, the metric of interest is not response
time, but the percentage of tasks that are completed
before their deadlines.

In this paper, we present and evaluate a decentralized
algorithm for scheduling sporadic tasks on a loosely-
coupled distributed system in the presence of other crit-
ical, periodic tasks. The main contribution of our work
is the introduction of the load-profiling concept and the
establishment of its superiority for real-time systems.

2. Load Profiling

System Model and Assumptions: We model a dis-
tributed real-time system as a set of nodes connected via
a communication network. Each node consists of two
processors: one is dedicated to the execution of critical
and essential tasks and the other is dedicated to the ex-
ecution of system tasks, such as admission control pro-
tocols, scheduling protocols, communication functions,
among others. The allocation of system and application
tasks to two (or more) separate processors is typical in
real-time environments because it prevents the unpre-
dictability associated with system management func-
tions (e.g., interrupts from I/O devices) from affecting
the execution of time-critical tasks.

Each node in the system is associated with a (possi-
bly empty) set of critical, periodic tasks, which possess
hard execution deadlines. We assume that the dead-
line of a periodic task is the beginning of the next pe-
riod. Thus, a periodic task can be described by the
pair (C;, P;), where C; is the required execution time
each period P;. The characteristics of periodic tasks
are known a priori. This enables them to be sched-
uled off-line during system startup using algorithms for
scheduling periodic tasks, such as RMS [7].

In addition to periodic tasks, sporadic tasks with firm
deadlines may be submitted to the system dynamically.
We describe a sporadic task by the triplet (A4;,C;, D;),
where A; is the arrival time of the task (i.e. the time
at which the task was submitted for execution), C; is
the execution time necessary to complete the task, and
Dj is the deadline of the task. The characteristics of
a sporadic task are not known a priori; they become
known when the task is submitted for execution. Upon
submission, the node tries to schedule the sporadic task
locally using algorithms for scheduling sporadic tasks
on a single processor [12, 2, 17]. If not successful, the
task is forwarded for remote execution on a different
node.

For a given sporadic task, we define the time-to-live
for a sporadic task as the difference between its deadline
and its arrival time. The ratio between a task’s execu-
tion time and its time-to-live defines the utilization re-
quirement (p;) for that task, where p; = C;/(D; — A;).
A p; value close to 1 is indicative of a task that requires
almost 100% of the CPU cycles available at anode. A p;
value close to 0 is indicative of a task that requires only a
small percentage of the CPU cycles available at a node.
The difference between the time-to-live and the execu-
tion time of a task define its lazity. We define the lazity
(D; 7377074) = (1291)_ The char-
acteristics of individual spo]radic tasks Jzaure not known
until these tasks are submitted for execution. However,
we assume that the distribution of p; is known a priori,
or else it could be estimated dynamically.

ratio to be the ratio

Local Scheduling Algorithms: For scheduling pe-
riodic tasks, we use the Earliest Deadline First (EDF)
algorithm—a dynamic, preemptive scheduling algo-
rithm. For a given task set 7, with n periodic tasks, a
necessary and sufficient condition for the EDF to feasi-
bly schedule the task set, is U = > i, & < 1. Since
the characteristics of the periodic tasks are known a
priori, we can guarantee their schedulability by simply
computing the wutilization factor U, during the system
setup.

For scheduling sporadic tasks locally, we use the re-
sults obtained in [1]. Two implementations of the EDF,
called EDS and EDL, are possible such that tasks are
processed as soon as possible and as late as possible, re-
spectively. Following the notation in [1], we introduce
the availability function f{(t), with respect to a task
set Y, scheduled according to the scheduling algorithm
z in the time interval [0, ], to be:

FE(t) = 1 if the processor is idle at ¢
Y71 0 otherwise.

For any time instances t; and %2, the integral
O (t1,t2) = ttlz fE(t)dt gives the total number of units



of time the processor is idle in the interval [t;,¢2]. Be-
cause of the cyclicity property of earliest-deadline proto-
cols, for a periodic task set T consisting of n tasks, and
for any instant ¢ we have fEP(t) = fEP(t+kP),k > 1,
where P =lem(Py, P2, -+, P,), and P; is the period of
task i € 7. So, over the time interval [0, P], and con-
sequently any window of time thereafter, the remaining
processor idle time is known, by computing the pre-
vious function. For a sporadic task set S, with D as
the maximum deadline of the sporadic tasks in S, it
holds that for any instant ¢ < D, Q55(0,¢) < Q%(0,¢),
and Q¥PL(0,¢) > Q%(0,t), where z is any preemptive
scheduling algorithm. Thus, scheduling tasks by EDL
will provide us with the largest number of idle processor
cycles over the interval [0, ¢].

In order to check the schedulability of a sporadic task
on a local node, we have implemented an algorithm,
LSCHED, that utilizes the above results. LSCHED is in-
voked whenever a sporadic task arrives at a node. It
looks ahead in time and decides whether the sporadic
task can be accepted locally using EDL and be guaran-
teed enough cycles to finish before its deadline. LSCHED
runs in time linear with respect to the number of tasks
accepted locally.

Remote Scheduling of Sporadic Tasks: Follow-
ing the terminology in [4], our algorithm for schedul-
ing aperiodic tasks is composed of two components: a
transfer policy and a location policy. Our transfer pol-
icy is to forward a sporadic task to another node if the
amount of idle processor time until the task’s deadline
is less than the task computational requirements (i.e. if
scheduling the sporadic task locally fails). Otherwise,
the task is guaranteed execution on the node to which
it was initially assigned. The task transfer decision is
made dynamically and is based on the current state of
the node and the characteristics of the task. The loca-
tion policy dictates the way the target node is selected.
This selection is made in such a way so as to maxi-
mize the probability that the chosen target will indeed
be capable of honoring the execution requirements of
the transferred sporadic task. This is done through the
introduction of load profiling, which we discuss next.

Load Profiling vs Load Balancing: Consider a
system with N identical nodes. Let f(u) denote the
probability that the utilization requirement of a sub-
mitted sporadic task will be u, where 0 <u < 1. Let W
denote the overall load of the system, expressed as the
sum of the utilization over all nodes (i.e. N > W > 0).
A load-balanced system would tend to distribute this
load equally amongst all nodes, making the utilization
at each node as close as possible W/N. A load-profiled
system would tend to distribute this load in such a way

that the probability of satisfying the utilization require-
ments of incoming tasks is maximized.

Let S denote the set of nodes in the system. For
distributed scheduling purposes, we assume the avail-
ability of a location policy [4] that allows a scheduler to
select a subset of nodes from S that are believed to be
be capable of satisfying the utilization requirement u of
an incoming sporadic task. We denote this candidate
set by C. Let l¢(u) denote the fraction of nodes in C,
whose available (i.e. unused) utilization is equal to u.
Thus, Le(u) = [ le(u)du could be thought of as the
(cumulative) probability that the available utilization
at a node selected at random from C will be less than or
equal to u. Thus, the probability that a sporadic task
will be schedulable at a node selected randomly out of
C is given by

P = / F)(1 = Le(u))du (1)

In a perfectly load-balanced system, any candidate
set of nodes will be identical in terms of its utilization
profile to the set of all nodes in the system. Thus,
in a load-balanced system L¢(u) = Ls(u) = L(u).
Moreover, L(u) = 1 for 0 < u < (1 — W/N) and
L(u) = 0 for (1 — W/N) < w < 1. Thus, the proba-
bility that a sporadic task will be accepted is given by
P = "N pu)ldu = F(1 — W/N), where F(u)
is the cumulative probability function corresponding to
f(u). Moreover, the probability that a sporadic task
will be schedulable after k trials is given by

P, = 1-(1-Pk=1-FQ-W/N)* (2
A load-profiling algorithm would attempt to shape
the distribution of available utilization in the system
Ls(u) in such a way that the choice of a candidate set
C would result in minimizing the value of L¢(u), thus
maximizing the value of P in equation 1 subject to the
boundary constraint fol uls(u)du = (1 — W/N). One
solution to this optimization problem is for Is(u) to be
chosen as Is(u) = (W/N)ug(0) + (1 —W/N)uo(1) where
v.ug(z) is an impulse function of magnitude v applied
at v = x. This solution corresponds to a system that
schedules its load using the minimal possible number
of nodes. Thus, a fraction W/N of the nodes in the
system are 100% utilized, and thus have no extra cycles
to spare, whereas a fraction (1 — W/N) of the nodes
in the system are 100% idle, and thus able to service
sporadic tasks with any utilization requirements. The
choice of any candidate set C from the set of idle nodes
would result in L¢(u) being a step function given by:

0 fo<ux<l1
LC(U) = {1 1fu;1 (3)



Plugging these values into equation 1, we get P =
fol f(u)(1 = 0)du = 1, which is obviously optimal.

Since the perfect fit implied in equation 3 is known to
be NP-hard, heuristics such as first-fit or best-fit are usu-
ally employed for on-line scheduling. Asymptotically,
both the first-fit and best-fit heuristics are known to be
optimal [8]. However, for a small value of N—which is
likely to be the case in most distributed systems—best-
fit outperforms first-fit.

To quantify the benefits of load profiling versus load
balancing, we performed a number of simulations to
compare the schedulability of sporadic tasks under two
task allocation strategies. The first is a load-balancing
strategy, whereby a task is assigned to the least utilized
node out of all the nodes capable of satisfying the uti-
lization requirements of that task. If none exist, then
the task is deemed unschedulable in a load-balanced sys-
tem. The second is a load-profiling strategy, whereby a
task is assigned to the most utilized node (i.e. the node
that provides the best fit) out of all nodes capable of
satisfying the utilization requirements of that task. If
none exist, then the task is deemed unschedulable in a
load-profiled system. Sporadic tasks were continually
generated so as to keep the overall utilization of the
system (W) at a constant level. For each one of these
strategies, the percentage of sporadic tasks successfully
scheduled—and consequently successfully meeting their
deadlines—is computed. We call this metric the Guar-
antee Ratio (G).

Figure 1 shows example results from our simulations.
These results suggest that as the utilization of the sys-
tem increases, the performance of both load balancing
and load profiling degrades as evidenced by the lower
guarantee ratio. However, the degradation for load bal-
ancing starts much earlier than for load profiling. This
is to be expected, since the availability profile in a load-
balanced system is not as diverse as that in a load-
profiled system. Figure 1 also shows that the advan-
tage from using load profiling is much more pronounced
when the size of the system is small.

Distributed Load-Profiling: The simulations in
figure 1 assumed the existence of an oracle—a central-
ized scheduler possessing perfect knowledge about the
utilization of all the nodes in the system. In a dis-
tributed system, the function of such an oracle must
be approximated using a distributed protocol that al-
lows nodes to exchange information about their local
utilization in order to enable them to construct a global
(albeit approximate) view of the overall system profile.
In that respect, the most important information a node
must exchange with other nodes is the localization and
duration of the node’s idle times and the time interval
for which this information was computed. The informa-

Load Profiling Load Balancing

- PN —— -e0---
n=05 n=10 n=05 n=

<}
N
o

Guarantee Ratio
[} o
3 8
/

o

N

S
/

0.00 0.20 0.40 0.60 0.80 1.00
System Utilization

Figure 1. Profiling vs Balancing

tion about idle times changes whenever a sporadic task
arrives at a node and is accepted for execution. In this
case, by invoking algorithm LSCHED the node is able to
compute the new localization and duration of the idle
times.

Changes in the workload of a node are signaled to
other nodes based on changes in the utilization factor
p. We define three threshold values for p, namely p;, pm
and pp, corresponding to four states: [lightly-loaded,
moderately-loaded, heavily-loaded, and overloaded sys-
tems. When the utilization of a node crosses one of
these thresholds, the node sends out the localization and
duration of the node’s idle times and the time interval
for which this information was computed to a small sub-
set of nodes. To ensure that this information eventually
propagates to all nodes in the system, we introduce a
gossiping protocol. Using that protocol, when a certain
period of time ellapses without a significant change in
the load condition of a node, the node is required to
initiate a gossip session with its neighbors. During this
session, it exchanges information about its own work-
load and about the workload of all the other nodes in
the system with its neighbors. A node that receives in-
formation about another node checks if the information
received is newer than the one already kept. If this is
the case, it updates its information table.

To implement the above exchange of load informa-
tion, we associate with every node in the system three
tasks: PROFILE, MULTICAST, and GOSSIP. PROFILE is in-
voked whenever the workload on the node is to be eval-
uated, which is typically the case when a new sporadic
task is accepted or an already accepted sporadic task
is completed. PROFILE computes the workload on the
node and stores that information in appropriate data
structures. GOSSIP is invoked whenever the workload
at the node changes (e.g., after PROFILE is invoked).
Otherwise, it is invoked at least once every GossipDe-



lay units of time. GOSSIP sends the most up-to-date
local and global workload information only to neighbor-
ing nodes. MULTICAST is invoked whenever the workload
at the node changes considerably (i.e. the utilization
threshold is crossed), in which case the local workload
profile at the node is sent to a subset MulticastSet of
all the nodes in the system. GossipDelay and Multicas-
tSet are chosen in such a way that the dissemination
of major workload changes is guaranteed to propagate
fast enough using both MULTICAST and GOSSIP. This is
necessary to ensure stability [13]. Generally speaking,
by reducing the value of GossipDelay (i.e. by gossiping
frequently), the size of MulticastSet is reduced.

Location Policy: When a node has to select a target
for a sporadic task that it cannot accomodate, it does
so based on its view of the workload information at
other nodes in the system. First, a set (CandidateSet)
of target nodes that are likely to accept that task is
identified. This identification is based on a prediction
scheme used by the sender of the task to estimate the
idle cycles (at the target) until the task’s deadline. If
CandidateSet is empty, then the task is kept for a later
re-submission. Next, one node from CandidateSet is
chosen and the task is transferred to that node.

In a distributed environment, the performance of
best-fit is severely affected by the inaccuracy of the
workload information. The inadequacy of best-fit in
a distributed environment could be explained by noting
that the best-fit heuristic is the most susceptible of all
heuristics to even minor inaccuracies in workload infor-
mation. This is due to best-fit’s minimization of the
slack at the target node—a minimal slack translates to
a minimal tolerance for imprecision. Thus, in our pro-
tocol, the process of choosing a target node out of the
CandidateSet is carried out by a task LOCATE so as to
maximize the probability of the transferred task being
accepted, while maintaining the desired variability in
utilization.

The probability of picking a node from CandidateSet
is adjusted in such a way that the availability profile—
the spectrum of available free cycles in the system—is
maintained as close as possible to the expected profile
of incoming time-constrained sporadic tasks. Figure 2
illustrates this idea. It shows two availability profile
distributions. The first is the current availability pro-
file of the system, which is constructed by computing
the percentage of nodes in the system with available
(i.e. unused) utilization larger than a particular range.
The second is the desired availability profile, which is
constructed by matching the characteristics of sporadic
tasks—namely, the distribution of average number of
CPU cycles per second needed by a sporadic task to
meet its deadline. From these two availability profiles, a

probability density function is constructed for the Can-
didateSet, and a node from that set is probabilistically
chosen according to that density function.
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Figure 2. Maintaining a load profile

Summary of Protocol Components: Based on the
above presentation, the various tasks involved in our
protocol on each node in the system—as well as the
flow of information between these tasks—are shown in
figure 3.
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Figure 3. Protocol information/control flow

3. Performance Evaluation

Simulation Model and Metrics: We evaluated our
Load Profiling Algorithm (LPA) on a system with six
nodes. Each one of the nodes in the system is assigned
a set of critical, periodic tasks. In addition to these
critical, periodic tasks, the system is required to sched-
ule essential, sporadic tasks, which are submitted to the
individual nodes in the system. For each node in the
system, the arrivals of these sporadic tasks is a Poisson



process, with a mean interarrival time of )\;. The ser-
vice (execution) time for the sporadic tasks follows an
exponential distribution, with a mean of y;. The dead-
line of each sporadic tasks is chosen so as to make the
task laxity (D; — A; — C;) follow a normal distribution,
with a mean of avg; and a standard deviation of o;.

The baseline model for our simulations is summa-
rized in figure 4. To model the overhead of task transfer
between nodes, we introduced a task transfer delay of
5 units of time, incurred every time a task is forwarded
from one node to another node. Furthermore, we in-
troduced a communication overhead of 1 unit of time,
incurred every time a message is communicated in the
system.

Periodic Tasks Sporadic Tasks
Node Total Util. Laxity

N vazl %’_ A Hi avg; o
0 3 0.700 0.01 | 0.02 | 100 50
1 2 0.417 0.01 | 0.02 | 100 50
2 2 0.500 0.01 | 0.02 | 100 50
3 3 0.783 0.01 | 0.02 | 100 50
4 2 0.350 0.01 | 0.02 | 100 50
5 3 0.250 0.01 | 0.02 | 100 50

Figure 4. Baseline task characteristics

To measure the network-wide load due to the arrival
of sporadic tasks we define the demand ratio W. For
a simulation of ¢ time units, if I is the total number of
idle cycles during that period on all the nodes—in the
absence of any sporadic tasks—and S is the number of
execution cycles requested by all the sporadic tasks oc-
curing on every node during ¢, then the demand ratio
is defined as W = S/I. In all the subsequent graphs,
the horizontal (X) axis corresponds to the demand ra-
tio. To measure the efficiency of scheduling, we use the
guarantee ratio G. Since the periodic tasks are always
guaranteed, G is defined as the total number of sporadic
tasks guaranteed network-wide over the total number of
sporadic tasks submitted network-wide. In all the sub-
sequent graphs, the vertical (Y") axis corresponds to the
guarantee ratio. Each data point in the following graphs
is the average of enough simulation runs to guarantee a
90% confidence interval.

The middle curve in figure 5 shows the baseline sim-
ulation results. As expected, the percentage of sporadic
tasks that are scheduled successfully declines as the de-
mand ratio increases. Notably, when the demand on
the system is twice as much as there are cycles to spare,
the guarantee ratio drops down only to about 70%. This
“higher-than-50%" ratio indicates that when the system
is overloaded, sporadic tasks with smaller utilization re-
quirements are preferred over others.

Effect of Task Execution Time: Figure 5 also
shows the guarantee ratio for two more experiments.
For the first experiment (the top curve), the mean ex-
ecution time is set to 25 units of time (p = 0.04), thus
making the laxity ratio equal to 4. This very large laxity
ratio is the reason the algorithm achieves a high guar-
antee ratio, even under overloaded conditions. For the
second experiment (the bottom curve), the mean exe-
cution time is set to 100 units of time (x = 0.01), thus
making the laxity ratio equal to 1. This means that
most tasks do not get any chances for reconsideration,
once the first attempt to find a candidate target node
fails. Also, the fact that the execution requirements are
demanding, decreases the number of candidate target
nodes. However, because of the load-profiling scheme
being used, the nodes are not equally balanced, and
thus the algorithm is still able to find some nodes to
transfer sporadic tasks and guarantee some of them.

Effect of Task Laxity: Figure 8 shows the guaran-
tee ratio for four experiments that were conducted to
study the task laxity effect. The first experiment con-
siders small laxities with a distribution of N(30,15%)
(i.e. laxity ratio = 0.6). The second experiment consid-
ers moderate laxities with a distribution of N(60,30?)
(i.e. laxity ratio = 1.2). The third experiment considers
large laxities with a distribution of N (100,50?) (i.e. lax-
ity ratio = 2). Finally, the fourth experiment considers
very large laxities with a distribution of N(300,1002)
(i.e. laxity ratio = 6).

Figure 8 shows that when the laxity increases the
number of sporadic tasks guaranteed to meet their dead-
lines increases. For a moderate load of W = 0.5, and a
laxity ratio of 0.6, the guarantee ratio is 84%, while for
a laxity ratio of 6, this guarantee ratio is almost 100%.
This increase in the guarantee ratio is only achievable
under light or moderate loads. When the system be-
comes overloaded, this improvement is significantly di-
minished. For example, when W = 2.0, increasing the
laxity ratio from 0.6 to 1.2, increases the guarantee ra-
tio from 63% to 68%; increasing the laxity ratio from
1.2 to 2, increases G from 68% to 71%, while increasing
the laxity ratio from 2 to 6, increases G from 71% to
73% only.

One can also see that when the system becomes ex-
cessively overloaded, increasing the task laxity does not
benefit the guarantee ratio. This is also true for medium
and heavy loads. After a certain threshold value, the
increase in the task laxity does not result in more spo-
radic tasks being guaranteed.

Comparison with Other Algorithms: Figure 6
shows the results of another set of experiments under
the baseline parameters. Figure 6 shows that the per-



formance of our LPA protocol is much better than that
of a protocol that utilizes a Local Scheduling Algorithm
(LSA), and that it approaches the performance of an
Oracle Algorithm (OA). The LSA and OA protocols can
be thought of as defining lower and upper bounds on
the attainable performance of our LPA protocol. Using
the LSA protocol, if a sporadic task cannot be guar-
anteed timely execution locally, no attempts are made
to forward it to a remote node. The OA protocol, on
the other hand, works exactly like our algorithm, ex-
cept that perfect information about node workloads is
available at no overhead cost.

Figure 6 also shows the performance of two versions
of our LPA protocol. These two versions differ in their
reforwarding policies. The LPA protocol we considered
so far allows multiple forwardings. Another possible
scenario would be an LPA protocol without reforward-
ing; it enables the forwarding of sporadic tasks only
once. Figure 6 shows that LPA with reforwarding per-
forms better than LPA without reforwarding. This is
expected since LPA with reforwarding would give “ex-
tra chances” for the successful scheduling of a sporadic
task when inaccurate workload information is used to
forward that task to a node that is incapable of grant-
ing its execution needs. However, Figure 6 shows that
the difference between LPA with reforwarding and LPA
without reforwarding is small, especially under moder-
ate and heavy system loads.

The fact that LPA without reforwarding delivers
most of the performance gains achievable using LPA
with reforwarding could be thought of as a general-
ization of the Markovian analysis of Mitzenmacher [9],
which considers a dynamic scheduling policy that ran-
domly selects d out of n servers in a distributed system
and then chooses one of these d servers based on some
performance metric (e.g., queue length). The analysis
and simulations in [9] show that a d value of 2 seems to
deliver most of the possible performance gains. LPA
without reforwarding is a scheduling policy that ex-
amines exactly 2 servers for possibly executing an in-
coming sporadic task. The first server is the server to
which the sporadic task is submitted, and the second
server is the one that is chosen (and to which the task
is forwarded) through the location policy. LPA with re-
forwarding could be thought of as a scheduling policy
that examines d servers through successive forwarding,
where 2 < d < n. While the results in [9] were only
targetted at systems that attempt to balance their load,
our simulations illustrated in figure 6 suggest that these
results also hold for systems that attempt to profile their
load.

Figure 7 shows a baseline comparison of our LPA
protocol to other load-cognizant algorithms, namely

the focused addressing and bidding mechanisms [14], as
well as to load-incognizant algorithms, namely a ran-
dom forwarding mechanism and a no-forwarding (local
scheduling only) mechanism. Our LPA protocol per-
forms demonstrably better than all others, especially
under moderate and heavy loads. For example, under
a moderate-to-heavy load (e.g., a demand ratio of 1),
LPA offers a 20% improvement over the no-forwarding
mechanism, an 18% improvement over the random for-
warding mechanism, a 10% improvement over the fo-
cussed addressing mechanism, and a 5% improvement
over the bidding mechanism. When the system becomes
overloaded (e.g., a demand ratio of 2 or more), the
performance of load-cognizant techniques tend to co-
incide with one another. This happens because in an
overloaded system load-profiling degenerates into load-
balancing, since all nodes become “equally” overloaded.
It is interesting to note that in an overloaded sys-
tem, the distinction between load-cognizant techniques
and load-incognizant techniques is still manifest. For
a demand ratio of 2, load-cognizant techniques seem
to offer an 8% improvement in performance over load-
incognizant techniques. Another interesting observa-
tion is that in a lightly-loaded system, the signifi-
cance of the forwarding policy being used—whether ran-
dom forwarding, focussed addressing, bidding, or load-
profiling—is diminished significantly. For example, in
a lightly-loaded system with a demand ration of 0.25,
LPA outperforms random forwarding by only 2.5%.

4. Summary

Load Profiling—a concept that stands in sharp contrast
to the traditional load balancing concept, often used for
load management in distributed systems—is an effec-
tive technique to schedule sporadic tasks in a real-time
distributed system. Our current work involves applying
the load-profiling ideas presented here to other resource
management problems in real-time systems.
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