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Abstract
Traditionally� the goal of load management protocols for
distributed systems has been to ensure that nodes are
equally loaded� In this paper� we show that for real�
time systems� load balancing is not desirable since it re�
sults in the available bandwidth being distributed equally
amongst all nodes�in e�ect making all nodes in the
system capable of o�ering almost the same bandwidth
�e�g�� in cycles per second� to incoming tasks� We show
that this �one size �ts all	 practice leads to a higher
rate of missed deadlines as incoming tasks may be de�
nied service because they require bandwidth that can�
not be granted at any single node�while plenty of frag�
mented bandwidth is collectively available in the system�
We propose a new load�pro�ling strategy that allows the
nodes of a distributed system to be unequally loaded so
as to maximize the chances of �nding a node that would
satisfy the computational needs of incoming real�time
tasks� The performance of the proposed protocol is eval�
uated via simulation� and is contrasted to other dynamic
scheduling protocols for real�time distributed systems�

�� Introduction
Loosely coupled� time�critical distributed systems are
used to control physical processes in complex applica�
tions� such as controllers in aviation systems and nu�
clear power plants� If missing a task�s deadline is catas�
trophic� then the task�s deadline is considered to be
hard� and the task is categorized as critical� otherwise
the task�s deadline is considered to be �rm or soft� and
the task is categorized as essential� If missing a dead�
line implies that the task can�must be discarded� then
the dealdine is termed �rm� However� if a task must
be executed even after its deadline is missed� then the
deadline is called soft� Finishing the execution of a task
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past its soft deadline is necessary to avoid incuring a
penalty� In this paper� we consider only hard and �rm
deadlines for critical and essential tasks� respectively�

To guarantee that critical tasks will never miss their
deadlines� their characteristics must be known in ad�
vance and accordingly� their resource requirements must
be preallocated in advance� To allow such preallocation�
critical tasks are treated as periodic processes� where
the period of the process is related to the maximum
frequency with which the execution of this process is
requested� This assumption of periodicity is wasteful
of system�s resources� since it is based on a worst case
that may rarely materialize� Fortunately� most tasks in
a real�time system are essential �i�e� not critical�� and
since meeting the deadlines of these tasks does not have
to be guaranteed a priori� real�time systems often use
a best�e�ort scheduling approach for essential tasks� In
particular� the characteristics of these tasks are not as�
sumed to be known a priori� and requests for executing
these tasks are not assumed to be periodic in nature�
but rather sporadic�

For a distributed� multiprocessor environment�
scheduling is an NP�hard problem 	
� and requires a
priori knowledge of task deadlines� computation times
and start times 	��� The diculty of scheduling in a
real�time multiprocessor system is further exacerbated
by the synchronization problems of loosely coupled dis�
tributed systems� Accordingly� techniques devised for
such systems are best described as heuristics based on
load�shedding approaches that attempt to balance the
system load amongst the di�erent nodes therein 	��� A
set of such heuristics� including focused addressing and
bidding� are described in 	�
� ���� Using the focused
addressing heuristic� a sporadic task� whose deadline
cannot be met by executing it locally� is sent to an�
other node� called the focused node� that is estimated
to have sucient surplus of cycles to complete the task
before its deadline� Using the bidding heuristic� when
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a node fails to schedule a sporadic task locally� it asks
for �bids	 from the rest of the nodes in the system� and
depending on the received bids it selects one of them
as the target node� In 	���� a 
exible heuristic that
combines focused addressing and bidding is also pro�
posed� Using that heuristic� if a node cannot be found
via focused addressing� the bidding scheme is invoked
�in fact� the bidding scheme is invoked while commu�
nication with the focused node is in progress�� Spring
	��� ��� is an example of a multi�processor system that
supports scheduling for real�time sporadic tasks�

In 	���� load balancing was found to reduce signi��
cantly the mean and standard deviation of job response
times� especially under heavy or unbalanced workload�
For non�real�time systems� reducing the mean and stan�
dard deviation of job response times is an appropriate
measure of performance� However� for real�time sys�
tems� such a measure may be completely misleading� To
explain this dichotomy� it suces to point out that in
real�time systems� the metric of interest is not response
time� but the percentage of tasks that are completed
before their deadlines�

In this paper� we present and evaluate a decentralized
algorithm for scheduling sporadic tasks on a loosely�
coupled distributed system in the presence of other crit�
ical� periodic tasks� The main contribution of our work
is the introduction of the load�pro�ling concept and the
establishment of its superiority for real�time systems�

�� Load Pro�ling

SystemModel and Assumptions� We model a dis�
tributed real�time system as a set of nodes connected via
a communication network� Each node consists of two
processors� one is dedicated to the execution of critical
and essential tasks and the other is dedicated to the ex�
ecution of system tasks� such as admission control pro�
tocols� scheduling protocols� communication functions�
among others� The allocation of system and application
tasks to two �or more� separate processors is typical in
real�time environments because it prevents the unpre�
dictability associated with system management func�
tions �e�g�� interrupts from I�O devices� from a�ecting
the execution of time�critical tasks�

Each node in the system is associated with a �possi�
bly empty� set of critical� periodic tasks� which possess
hard execution deadlines� We assume that the dead�
line of a periodic task is the beginning of the next pe�
riod� Thus� a periodic task can be described by the
pair �Ci� Pi�� where Ci is the required execution time
each period Pi� The characteristics of periodic tasks
are known a priori� This enables them to be sched�
uled o��line during system startup using algorithms for
scheduling periodic tasks� such as RMS 	���

In addition to periodic tasks� sporadic tasks with �rm
deadlines may be submitted to the system dynamically�
We describe a sporadic task by the triplet �Aj � Cj � Dj��
where Aj is the arrival time of the task �i�e� the time
at which the task was submitted for execution�� Cj is
the execution time necessary to complete the task� and
Dj is the deadline of the task� The characteristics of
a sporadic task are not known a priori� they become
known when the task is submitted for execution� Upon
submission� the node tries to schedule the sporadic task
locally using algorithms for scheduling sporadic tasks
on a single processor 	��� �� ���� If not successful� the
task is forwarded for remote execution on a di�erent
node�

For a given sporadic task� we de�ne the time�to�live
for a sporadic task as the di�erence between its deadline
and its arrival time� The ratio between a task�s execu�
tion time and its time�to�live de�nes the utilization re�
quirement ��j� for that task� where �j � Cj��Dj �Aj��
A �j value close to � is indicative of a task that requires
almost ���� of the CPU cycles available at a node� A �j
value close to � is indicative of a task that requires only a
small percentage of the CPU cycles available at a node�
The di�erence between the time�to�live and the execu�
tion time of a task de�ne its laxity� We de�ne the laxity

ratio to be the ratio
�Dj�Aj�Cj�

Cj
�

����j�
�j

� The char�

acteristics of individual sporadic tasks are not known
until these tasks are submitted for execution� However�
we assume that the distribution of �j is known a priori�
or else it could be estimated dynamically�

Local Scheduling Algorithms� For scheduling pe�
riodic tasks� we use the Earliest Deadline First �EDF�
algorithm�a dynamic� preemptive scheduling algo�
rithm� For a given task set T � with n periodic tasks� a
necessary and sucient condition for the EDF to feasi�
bly schedule the task set� is U �

Pn
i��

Ci

Pi
� �� Since

the characteristics of the periodic tasks are known a
priori� we can guarantee their schedulability by simply
computing the utilization factor U � during the system
setup�

For scheduling sporadic tasks locally� we use the re�
sults obtained in 	��� Two implementations of the EDF�
called EDS and EDL� are possible such that tasks are
processed as soon as possible and as late as possible� re�
spectively� Following the notation in 	��� we introduce
the availability function fxY �t�� with respect to a task
set Y � scheduled according to the scheduling algorithm
x in the time interval 	�� t�� to be�

fxY �t� �

�
� if the processor is idle at t
� otherwise�

For any time instances t� and t�� the integral
�xY �t�� t�� �

R t�
t�
fxY �t�dt gives the total number of units
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of time the processor is idle in the interval 	t�� t��� Be�
cause of the cyclicity property of earliest�deadline proto�
cols� for a periodic task set T consisting of n tasks� and
for any instant t we have fEDT �t� � fEDT �t�kP �� k � ��
where P � lcm�P�� P�� � � � � Pn�� and Pi is the period of
task i � T � So� over the time interval 	�� P �� and con�
sequently any window of time thereafter� the remaining
processor idle time is known� by computing the pre�
vious function� For a sporadic task set S� with D as
the maximum deadline of the sporadic tasks in S� it
holds that for any instant t � D� �EDS

T
��� t� � �x

T
��� t��

and �EDL
T

��� t� � �x
T
��� t�� where x is any preemptive

scheduling algorithm� Thus� scheduling tasks by EDL
will provide us with the largest number of idle processor
cycles over the interval 	�� t��

In order to check the schedulability of a sporadic task
on a local node� we have implemented an algorithm�
LSCHED� that utilizes the above results� LSCHED is in�
voked whenever a sporadic task arrives at a node� It
looks ahead in time and decides whether the sporadic
task can be accepted locally using EDL and be guaran�
teed enough cycles to �nish before its deadline� LSCHED
runs in time linear with respect to the number of tasks
accepted locally�

Remote Scheduling of Sporadic Tasks� Follow�
ing the terminology in 	��� our algorithm for schedul�
ing aperiodic tasks is composed of two components� a
transfer policy and a location policy� Our transfer pol�
icy is to forward a sporadic task to another node if the
amount of idle processor time until the task�s deadline
is less than the task computational requirements �i�e� if
scheduling the sporadic task locally fails�� Otherwise�
the task is guaranteed execution on the node to which
it was initially assigned� The task transfer decision is
made dynamically and is based on the current state of
the node and the characteristics of the task� The loca�
tion policy dictates the way the target node is selected�
This selection is made in such a way so as to maxi�
mize the probability that the chosen target will indeed
be capable of honoring the execution requirements of
the transferred sporadic task� This is done through the
introduction of load pro�ling� which we discuss next�

Load Pro�ling vs Load Balancing� Consider a
system with N identical nodes� Let f�u� denote the
probability that the utilization requirement of a sub�
mitted sporadic task will be u� where � � u � �� LetW
denote the overall load of the system� expressed as the
sum of the utilization over all nodes �i�e� N �W � ���
A load�balanced system would tend to distribute this
load equally amongst all nodes� making the utilization
at each node as close as possible W�N � A load�pro�led
system would tend to distribute this load in such a way

that the probability of satisfying the utilization require�
ments of incoming tasks is maximized�

Let S denote the set of nodes in the system� For
distributed scheduling purposes� we assume the avail�
ability of a location policy 	�� that allows a scheduler to
select a subset of nodes from S that are believed to be
be capable of satisfying the utilization requirement u of
an incoming sporadic task� We denote this candidate
set by C� Let lC�u� denote the fraction of nodes in C�
whose available �i�e� unused� utilization is equal to u�
Thus� LC�u� �

R u
� lC�u�du could be thought of as the

�cumulative� probability that the available utilization
at a node selected at random from C will be less than or
equal to u� Thus� the probability that a sporadic task
will be schedulable at a node selected randomly out of
C is given by

P �

Z �

�

f�u���� LC�u��du ���

In a perfectly load�balanced system� any candidate
set of nodes will be identical in terms of its utilization
pro�le to the set of all nodes in the system� Thus�
in a load�balanced system LC�u� � LS�u� � L�u��
Moreover� L�u� � � for � � u � �� � W�N� and
L�u� � � for �� �W�N� � u � �� Thus� the proba�
bility that a sporadic task will be accepted is given by

P �
R ���W�N�

� f�u���du � F �� � W�N�� where F �u�
is the cumulative probability function corresponding to
f�u�� Moreover� the probability that a sporadic task
will be schedulable after k trials is given by

Pk � �� ��� P �k � �� F ���W�N�k ���

A load�pro�ling algorithm would attempt to shape
the distribution of available utilization in the system
LS�u� in such a way that the choice of a candidate set
C would result in minimizing the value of LC�u�� thus
maximizing the value of P in equation � subject to the

boundary constraint
R �
�
ulS�u�du � �� � W�N�� One

solution to this optimization problem is for lS�u� to be
chosen as lS�u� � �W�N�u��������W�N�u���� where
v�u��x� is an impulse function of magnitude v applied
at u � x� This solution corresponds to a system that
schedules its load using the minimal possible number
of nodes� Thus� a fraction W�N of the nodes in the
system are ���� utilized� and thus have no extra cycles
to spare� whereas a fraction �� � W�N� of the nodes
in the system are ���� idle� and thus able to service
sporadic tasks with any utilization requirements� The
choice of any candidate set C from the set of idle nodes
would result in LC�u� being a step function given by�

LC�u� �

�
� if � � u � �
� if u � �

���
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Plugging these values into equation �� we get P �R �
� f�u���� ��du � �� which is obviously optimal�
Since the perfect �t implied in equation � is known to

be NP�hard� heuristics such as �rst��t or best��t are usu�
ally employed for on�line scheduling� Asymptotically�
both the �rst��t and best��t heuristics are known to be
optimal 	��� However� for a small value of N�which is
likely to be the case in most distributed systems�best�
�t outperforms �rst��t�

To quantify the bene�ts of load pro�ling versus load
balancing� we performed a number of simulations to
compare the schedulability of sporadic tasks under two
task allocation strategies� The �rst is a load�balancing
strategy� whereby a task is assigned to the least utilized
node out of all the nodes capable of satisfying the uti�
lization requirements of that task� If none exist� then
the task is deemed unschedulable in a load�balanced sys�
tem� The second is a load�pro�ling strategy� whereby a
task is assigned to the most utilized node �i�e� the node
that provides the best �t� out of all nodes capable of
satisfying the utilization requirements of that task� If
none exist� then the task is deemed unschedulable in a
load�pro�led system� Sporadic tasks were continually
generated so as to keep the overall utilization of the
system �W � at a constant level� For each one of these
strategies� the percentage of sporadic tasks successfully
scheduled�and consequently successfully meeting their
deadlines�is computed� We call this metric the Guar�
antee Ratio �G��

Figure � shows example results from our simulations�
These results suggest that as the utilization of the sys�
tem increases� the performance of both load balancing
and load pro�ling degrades as evidenced by the lower
guarantee ratio� However� the degradation for load bal�
ancing starts much earlier than for load pro�ling� This
is to be expected� since the availability pro�le in a load�
balanced system is not as diverse as that in a load�
pro�led system� Figure � also shows that the advan�
tage from using load pro�ling is much more pronounced
when the size of the system is small�

Distributed Load�Pro�ling� The simulations in
�gure � assumed the existence of an oracle�a central�
ized scheduler possessing perfect knowledge about the
utilization of all the nodes in the system� In a dis�
tributed system� the function of such an oracle must
be approximated using a distributed protocol that al�
lows nodes to exchange information about their local
utilization in order to enable them to construct a global
�albeit approximate� view of the overall system pro�le�
In that respect� the most important information a node
must exchange with other nodes is the localization and
duration of the node�s idle times and the time interval
for which this information was computed� The informa�
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Figure 1. Profiling vs Balancing

tion about idle times changes whenever a sporadic task
arrives at a node and is accepted for execution� In this
case� by invoking algorithm LSCHED the node is able to
compute the new localization and duration of the idle
times�

Changes in the workload of a node are signaled to
other nodes based on changes in the utilization factor
�� We de�ne three threshold values for �� namely �l� �m
and �h� corresponding to four states� lightly�loaded�
moderately�loaded� heavily�loaded� and overloaded sys�
tems� When the utilization of a node crosses one of
these thresholds� the node sends out the localization and
duration of the node�s idle times and the time interval
for which this information was computed to a small sub�
set of nodes� To ensure that this information eventually
propagates to all nodes in the system� we introduce a
gossiping protocol� Using that protocol� when a certain
period of time ellapses without a signi�cant change in
the load condition of a node� the node is required to
initiate a gossip session with its neighbors� During this
session� it exchanges information about its own work�
load and about the workload of all the other nodes in
the system with its neighbors� A node that receives in�
formation about another node checks if the information
received is newer than the one already kept� If this is
the case� it updates its information table�

To implement the above exchange of load informa�
tion� we associate with every node in the system three
tasks� PROFILE� MULTICAST� and GOSSIP� PROFILE is in�
voked whenever the workload on the node is to be eval�
uated� which is typically the case when a new sporadic
task is accepted or an already accepted sporadic task
is completed� PROFILE computes the workload on the
node and stores that information in appropriate data
structures� GOSSIP is invoked whenever the workload
at the node changes �e�g�� after PROFILE is invoked��
Otherwise� it is invoked at least once every GossipDe�
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lay units of time� GOSSIP sends the most up�to�date
local and global workload information only to neighbor�
ing nodes� MULTICAST is invoked whenever the workload
at the node changes considerably �i�e� the utilization
threshold is crossed�� in which case the local workload
pro�le at the node is sent to a subset MulticastSet of
all the nodes in the system� GossipDelay and Multicas�
tSet are chosen in such a way that the dissemination
of major workload changes is guaranteed to propagate
fast enough using both MULTICAST and GOSSIP� This is
necessary to ensure stability 	���� Generally speaking�
by reducing the value of GossipDelay �i�e� by gossiping
frequently�� the size of MulticastSet is reduced�

Location Policy� When a node has to select a target
for a sporadic task that it cannot accomodate� it does
so based on its view of the workload information at
other nodes in the system� First� a set �CandidateSet�
of target nodes that are likely to accept that task is
identi�ed� This identi�cation is based on a prediction
scheme used by the sender of the task to estimate the
idle cycles �at the target� until the task�s deadline� If
CandidateSet is empty� then the task is kept for a later
re�submission� Next� one node from CandidateSet is
chosen and the task is transferred to that node�

In a distributed environment� the performance of
best��t is severely a�ected by the inaccuracy of the
workload information� The inadequacy of best��t in
a distributed environment could be explained by noting
that the best��t heuristic is the most susceptible of all
heuristics to even minor inaccuracies in workload infor�
mation� This is due to best��t�s minimization of the
slack at the target node�a minimal slack translates to
a minimal tolerance for imprecision� Thus� in our pro�
tocol� the process of choosing a target node out of the
CandidateSet is carried out by a task LOCATE so as to
maximize the probability of the transferred task being
accepted� while maintaining the desired variability in
utilization�

The probability of picking a node from CandidateSet
is adjusted in such a way that the availability pro�le�
the spectrum of available free cycles in the system�is
maintained as close as possible to the expected pro�le
of incoming time�constrained sporadic tasks� Figure �
illustrates this idea� It shows two availability pro�le
distributions� The �rst is the current availability pro�
�le of the system� which is constructed by computing
the percentage of nodes in the system with available
�i�e� unused� utilization larger than a particular range�
The second is the desired availability pro�le� which is
constructed by matching the characteristics of sporadic
tasks�namely� the distribution of average number of
CPU cycles per second needed by a sporadic task to
meet its deadline� From these two availability pro�les� a

probability density function is constructed for the Can�
didateSet� and a node from that set is probabilistically
chosen according to that density function�
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Figure 2. Maintaining a load profile

Summary of Protocol Components� Based on the
above presentation� the various tasks involved in our
protocol on each node in the system�as well as the
�ow of information between these tasks�are shown in
�gure ��

GOSSIP

Threshold
 Crossed

MULTICAST

PROFILE
Workload Info

LSCHED

Accept

Reject

LOCATE

Schedule

Transfer

Submit

Threshold Not
Crossed

Sporadic 

Workload

Workload

GossipDelay

CPU
Success

Preempt

Fail

Sporadic 
Task Queue

P
e
r
i
o
d
i
c

T
a
s
k
 
Q
u
e
u
e

Sporadic 

Sporadic 

Remote Nodes Local Scheduling Node Local Computing Node

N
et

w
or

k

Information Flow

Control Flow

Figure 3. Protocol information/control flow

�� Performance Evaluation

Simulation Model and Metrics� We evaluated our
Load Pro�ling Algorithm �LPA� on a system with six
nodes� Each one of the nodes in the system is assigned
a set of critical� periodic tasks� In addition to these
critical� periodic tasks� the system is required to sched�
ule essential� sporadic tasks� which are submitted to the
individual nodes in the system� For each node in the
system� the arrivals of these sporadic tasks is a Poisson






process� with a mean interarrival time of �i� The ser�
vice �execution� time for the sporadic tasks follows an
exponential distribution� with a mean of �i� The dead�
line of each sporadic tasks is chosen so as to make the
task laxity �Dj �Aj�Cj� follow a normal distribution�
with a mean of avgi and a standard deviation of �i�

The baseline model for our simulations is summa�
rized in �gure �� To model the overhead of task transfer
between nodes� we introduced a task transfer delay of

 units of time� incurred every time a task is forwarded
from one node to another node� Furthermore� we in�
troduced a communication overhead of � unit of time�
incurred every time a message is communicated in the
system�
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Figure 4. Baseline task characteristics

To measure the network�wide load due to the arrival
of sporadic tasks we de�ne the demand ratio W � For
a simulation of t time units� if I is the total number of
idle cycles during that period on all the nodes�in the
absence of any sporadic tasks�and S is the number of
execution cycles requested by all the sporadic tasks oc�
curing on every node during t� then the demand ratio
is de�ned as W � S�I � In all the subsequent graphs�
the horizontal �X� axis corresponds to the demand ra�
tio� To measure the e�ciency of scheduling� we use the
guarantee ratio G� Since the periodic tasks are always
guaranteed� G is de�ned as the total number of sporadic
tasks guaranteed network�wide over the total number of
sporadic tasks submitted network�wide� In all the sub�
sequent graphs� the vertical �Y � axis corresponds to the
guarantee ratio� Each data point in the following graphs
is the average of enough simulation runs to guarantee a
��� con�dence interval�

The middle curve in �gure 
 shows the baseline sim�
ulation results� As expected� the percentage of sporadic
tasks that are scheduled successfully declines as the de�
mand ratio increases� Notably� when the demand on
the system is twice as much as there are cycles to spare�
the guarantee ratio drops down only to about ���� This
�higher�than���	 ratio indicates that when the system
is overloaded� sporadic tasks with smaller utilization re�
quirements are preferred over others�

E�ect of Task Execution Time� Figure 
 also
shows the guarantee ratio for two more experiments�
For the �rst experiment �the top curve�� the mean ex�
ecution time is set to �
 units of time �� � ������ thus
making the laxity ratio equal to �� This very large laxity
ratio is the reason the algorithm achieves a high guar�
antee ratio� even under overloaded conditions� For the
second experiment �the bottom curve�� the mean exe�
cution time is set to ��� units of time �� � ������ thus
making the laxity ratio equal to �� This means that
most tasks do not get any chances for reconsideration�
once the �rst attempt to �nd a candidate target node
fails� Also� the fact that the execution requirements are
demanding� decreases the number of candidate target
nodes� However� because of the load�pro�ling scheme
being used� the nodes are not equally balanced� and
thus the algorithm is still able to �nd some nodes to
transfer sporadic tasks and guarantee some of them�

E�ect of Task Laxity� Figure � shows the guaran�
tee ratio for four experiments that were conducted to
study the task laxity e�ect� The �rst experiment con�
siders small laxities with a distribution of N���� �
��
�i�e� laxity ratio � ����� The second experiment consid�
ers moderate laxities with a distribution of N���� ����
�i�e� laxity ratio � ����� The third experiment considers
large laxities with a distribution ofN����� 
��� �i�e� lax�
ity ratio � ��� Finally� the fourth experiment considers
very large laxities with a distribution of N����� �����
�i�e� laxity ratio � ���

Figure � shows that when the laxity increases the
number of sporadic tasks guaranteed to meet their dead�
lines increases� For a moderate load of W � ��
� and a
laxity ratio of ���� the guarantee ratio is ���� while for
a laxity ratio of �� this guarantee ratio is almost �����
This increase in the guarantee ratio is only achievable
under light or moderate loads� When the system be�
comes overloaded� this improvement is signi�cantly di�
minished� For example� when W � ���� increasing the
laxity ratio from ��� to ���� increases the guarantee ra�
tio from ��� to ���� increasing the laxity ratio from
��� to �� increases G from ��� to ���� while increasing
the laxity ratio from � to �� increases G from ��� to
��� only�

One can also see that when the system becomes ex�
cessively overloaded� increasing the task laxity does not
bene�t the guarantee ratio� This is also true for medium
and heavy loads� After a certain threshold value� the
increase in the task laxity does not result in more spo�
radic tasks being guaranteed�

Comparison with Other Algorithms� Figure �
shows the results of another set of experiments under
the baseline parameters� Figure � shows that the per�
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formance of our LPA protocol is much better than that
of a protocol that utilizes a Local Scheduling Algorithm
�LSA�� and that it approaches the performance of an
Oracle Algorithm �OA�� The LSA and OA protocols can
be thought of as de�ning lower and upper bounds on
the attainable performance of our LPA protocol� Using
the LSA protocol� if a sporadic task cannot be guar�
anteed timely execution locally� no attempts are made
to forward it to a remote node� The OA protocol� on
the other hand� works exactly like our algorithm� ex�
cept that perfect information about node workloads is
available at no overhead cost�

Figure � also shows the performance of two versions
of our LPA protocol� These two versions di�er in their
reforwarding policies� The LPA protocol we considered
so far allows multiple forwardings� Another possible
scenario would be an LPA protocol without reforward�
ing� it enables the forwarding of sporadic tasks only
once� Figure � shows that LPA with reforwarding per�
forms better than LPA without reforwarding� This is
expected since LPA with reforwarding would give �ex�
tra chances	 for the successful scheduling of a sporadic
task when inaccurate workload information is used to
forward that task to a node that is incapable of grant�
ing its execution needs� However� Figure � shows that
the di�erence between LPA with reforwarding and LPA
without reforwarding is small� especially under moder�
ate and heavy system loads�

The fact that LPA without reforwarding delivers
most of the performance gains achievable using LPA
with reforwarding could be thought of as a general�
ization of the Markovian analysis of Mitzenmacher 	���
which considers a dynamic scheduling policy that ran�
domly selects d out of n servers in a distributed system
and then chooses one of these d servers based on some
performance metric �e�g�� queue length�� The analysis
and simulations in 	�� show that a d value of � seems to
deliver most of the possible performance gains� LPA
without reforwarding is a scheduling policy that ex�
amines exactly � servers for possibly executing an in�
coming sporadic task� The �rst server is the server to
which the sporadic task is submitted� and the second
server is the one that is chosen �and to which the task
is forwarded� through the location policy� LPA with re�
forwarding could be thought of as a scheduling policy
that examines d servers through successive forwarding�
where � � d � n� While the results in 	�� were only
targetted at systems that attempt to balance their load�
our simulations illustrated in �gure � suggest that these
results also hold for systems that attempt to pro�le their
load�

Figure � shows a baseline comparison of our LPA
protocol to other load�cognizant algorithms� namely

the focused addressing and bidding mechanisms 	���� as
well as to load�incognizant algorithms� namely a ran�
dom forwarding mechanism and a no�forwarding �local
scheduling only� mechanism� Our LPA protocol per�
forms demonstrably better than all others� especially
under moderate and heavy loads� For example� under
a moderate�to�heavy load �e�g�� a demand ratio of ���
LPA o�ers a ��� improvement over the no�forwarding
mechanism� an ��� improvement over the random for�
warding mechanism� a ��� improvement over the fo�
cussed addressing mechanism� and a 
� improvement
over the bidding mechanism� When the system becomes
overloaded �e�g�� a demand ratio of � or more�� the
performance of load�cognizant techniques tend to co�
incide with one another� This happens because in an
overloaded system load�pro�ling degenerates into load�
balancing� since all nodes become �equally	 overloaded�

It is interesting to note that in an overloaded sys�
tem� the distinction between load�cognizant techniques
and load�incognizant techniques is still manifest� For
a demand ratio of �� load�cognizant techniques seem
to o�er an �� improvement in performance over load�
incognizant techniques� Another interesting observa�
tion is that in a lightly�loaded system� the signi��
cance of the forwarding policy being used�whether ran�
dom forwarding� focussed addressing� bidding� or load�
pro�ling�is diminished signi�cantly� For example� in
a lightly�loaded system with a demand ration of ���
�
LPA outperforms random forwarding by only ��
��

�� Summary
Load Pro�ling�a concept that stands in sharp contrast
to the traditional load balancing concept� often used for
load management in distributed systems�is an e�ec�
tive technique to schedule sporadic tasks in a real�time
distributed system� Our current work involves applying
the load�pro�ling ideas presented here to other resource
management problems in real�time systems�
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