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Abstract

In this paper, we investigate a new approach to pro-
cess queries in data stream applications. We show that
reference locality characteristics of data streams could
be exploited in the design of superior and flexible data
stream query processing techniques. We identify two dif-
ferent causes of reference locality: popularity over long
time scales and temporal correlations over shorter time
scales. An elegant mathematical model is shown to pre-
cisely quantify the degree of those sources of locality. Fur-
thermore, we analyze the impact of locality-awareness
on achievable performance gains over traditional algo-
rithms on applications such as MAX-subset approximate
sliding window join and approximate count estimation.
In a comprehensive experimental study, we compare sev-
eral existing algorithms against our locality-aware algo-
rithms over a number of real datasets. The results vali-
date the usefulness and efficiency of our approach.

1. Introduction

Stream database systems have attracted quite a bit
of interest recently due to the mushrooming number
of applications that require on-line data management
on very fast changing data. Sample applications in-
clude network monitoring, sensor networks, and finan-
cial applications. The main difference between a tra-
ditional database and a data stream management sys-
tem (DSMS) is that instead of relations, we have un-
bounded data streams and relational operations are ap-
plied over these streams [5].

Hence, since the data streams are potentially un-
bounded, the storage that is required to evaluate com-
plex relational operations, such as joins, is also un-
bounded [2]. There are two approaches to address this
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issue. One is to allow for approximations that can guar-
antee high-quality results. The other, is to define new
versions of the relational operations based on sliding
windows. In that case, the operation is applied only
to the most recent window of each data stream. How-
ever, there are still many cases where the full contents
of the tuples of interest cannot be stored in memory.
In these cases, it is desirable that the use of the avail-
able memory space be optimized so as to produce the
best possible approximate results.

In this paper, we identify a very important prop-
erty of many data streams that can be used in order
to reduce the cost of stream operators and/or improve
the quality of their results. First, we observe that many
problems in data stream query processing with mem-
ory constraints can be casted as caching (or buffering)
problems. An example is approximate sliding window
join [12, 27, 29]. Furthermore, it is well known that lo-
cality of reference properties are important determi-
nants of caching performance—specifically the poten-
tial for a small cache size to incur a very high hit rate.
Denning and Schwartz [14] established the fundamen-
tal properties that characterize locality (and hence a
baseline for achievable hit rates) in memory access pat-
terns. Similar characterizations have also been docu-
mented for many other “reference” streams, most no-
tably for Web access [4].

Therefore, we believe that many problems in data
stream query processing can be solved more efficiently
if the system can detect that the input streams exhibit
locality of reference. In that respect, we identify two
different causes of reference locality (popularity over
long time scales and temporal correlations over shorter
time scales). An elegant mathematical model is shown
to precisely quantify the degree of those sources of lo-
cality in many real data streams. The advantage of the
proposed model is that it is very simple and easy to es-
timate. At the same time, it captures some very essen-
tial properties that can be used to improve query pro-
cessing in data stream systems and applications. We
show how we can achieve that in the case of approxi-



mate sliding window joins. Also, we demonstrate how
the knowledge of reference locality can be used in or-
der to reduce the cost of some stream algorithms, such
as approximate frequency estimation.

The rest of the paper is organized as follows: In
section 2, we characterize the two causes of reference
locality in data streams and then provide an elegant
mathematical model in section 3 to quantify the de-
gree of different contributors to the reference locality.
We demonstrate the importance of locality awareness
in designing algorithms for three specific applications in
section 4 where significant performance gains are shown
theoretically. Lastly, we present an empirical study in
section 5 on real data sets to validate our analytical re-
sults.

2. Reference Locality: Sources and Met-
rics

A data stream is said to exhibit reference locality if re-
cently appearing tuples have a high probability of ap-
pearing again in the near future. One approach to mea-
sure reference locality in a stream is to characterize the
inter-arrival distance (IAD) of references.

Definition 1. We define the inter-arrival distance
for a given data stream as a random variable that corre-
sponds to the number of tuples separating consecutive ap-
pearances of the same tuple in the data stream.

In the above definition and in the rest of the pa-
per, we use the term ”tuple” to refer to the value(s) of
the attribute(s) related to a particular operation (e.g.,
if the operation is a stream join, then we refer to the
values of the joining attributes). Therefore, when we
say that two tuples are the “same”, we mean that the
attributes of interest have the same values. Mathemat-
ically, if xn is the tuple at the position n, we define
di(k) as follows:

di(k) = Prob(xn+k = i, xn+j �= i, for j = 1 . . . k − 1|xn = i)

where di(k) is the probability that the tuple appears
at time n with value i will be referenced again after
k tuples. Let d(k) denote the average over all tuples,
i.e. d(k) =

∑
i pidi(k), where pi is the frequency (i.e.,

popularity) of tuple i in this data stream.

While IAD characterization enables us to mea-
sure the degree of reference locality that exists in a
data stream, it is not able to delineate the causes of
such locality—namely, whether it is due to popular-
ity over long time scales or correlations over short time
scales. One way of quantifying the causes of reference
locality is to compare the IAD distribution for a refer-
ence stream with that of a randomly permuted version
of that same stream. By randomly permuting the ref-

erence stream, we effectively force that stream to fol-
low the Independent Reference Model (IRM), or equiv-
alently, the independent, identically-distributed (IID)
tuple arrival model. In that case, d(k) could be calcu-
lated as follows:

d(k) =
N∑

i=1

pidi(k) =
N∑

i=1

(pi)2(1− pi)k−1 (1)

Notice that, by definition, IRM only captures local-
ity due to a skewed popularity profile. Specifically, if
N is the total number of unique tuples and all tuples
are equally popular (i.e., pi = 1

N ), then di(k) = d(k) =
1
N (1 − 1

N )
k−1. For large N, this is independent of k

(≈ 1
N ). On the other hand, when the tuple space ex-

hibits a highly skewed popularity profile the above is
not true. Actually, we can prove the following in the
case of Zipf popularity distribution:

Theorem 1. If the popularity distribution of tuples in
a data stream follows a Zipf distribution with parameter
z = 1, then the IAD distribution in a random permuta-
tion of this data stream can be characterized by d(k) ∼ 1

k .

The above discussion leads us to the following two
concise statements: (1) Locality in a reference stream
due to long-term popularity is captured well by the
IAD distribution of a random permutation of that
stream, and (2) Locality in a reference stream due to
short-term correlations is captured well by the differ-
ence between the IAD distribution of the stream and
that of a randomly permuted version thereof.

To validate this in real streaming datasets, we ob-
tained traces from a number of different sources and
computed the distribution of the popularity of different
values as well as the CDF 1 of the IAD for the original
and a randomly permuted instance of the trace. Next,
we show the results for two of these traces: a stock
dataset that was created using multiple days of real
stock transaction data from [20] and a large network
dataset that consists of traces of Origin-Destination
(OD) flows in two major networks (US Abilene and
Sprint-Europe) provided to us by the authors of [22].
The stock dataset contained about a million records per
day, where the network dataset was in the order of hun-
dred of millions of OD flow records. In the graph that
we show here we used the trace collected at a particu-
lar Abilene router and consists of 76 millions OD flow
records. The attribute of interest for the stock dataset
was the stock name and for the network dataset was
the destination address.

1 CDF: Cumulative Distribution Function.
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Figure 1: Causes of reference locality in real streams

Figure 1(a) shows the highly-skewed popularity
profile of stocks in the trace for one of the days. The re-
lationship between frequency and rank (a straight line
on a log-log scale) is consistent with a Zipf-like distri-
bution. Figure 1(b) shows the CDF of the IAD for the
stock trading trace, and for a randomly permuted ver-
sion of that trace. The two distributions are quite dif-
ferent where more than 40% of the original trace ex-
hibits short inter-arrival distance. This indicates that
a significant source of reference locality is due to cor-
relations over short time scales—correlations that are
not captured using long-term frequency measures, or
IRM assumptions. The same is true for the network
dataset as it is shown in Figures 1(c) and 1(d). Simi-
lar results were obtained for other attributes in the net-
work dataset and for other real datasets that include
web traces, weather, and sensory data.

3. Locality-Aware Stream Model

In this section we present our first contribution: an el-
egant and succinct mathematical model that captures
the reference locality caused by popularity over long
time scales and correlations over shorter time scales.

3.1. Model Definition and Computation

Consider a data stream S and let P be the probabil-
ity distribution of the popularity over long time scales
of tuples in S. Let xn be the tuple that appears at po-
sition n in S.

The model we propose mirrors our hypothesis that lo-
cality of reference is the result of some weighted super-
imposition of two very different causes: one that pro-
duces references over a domain with a skewed popu-
larity profile P , and one that produces references that
appeared in the most recent h units of time, i.e., at po-
sitions n-1, n-2, . . . , n-h. Specifically, we propose:

xn =


xn−i with probability ai;
y with probability b.

where 1 ≤ i ≤ h and b +
∑h

i=1 ai = 1. y is a ran-
dom variable that is independent and identically dis-
tributed according to P . Now, for a given tuple c, the
probability that it will appear at position n is given by,

Prob(xn = c|xn−1, . . . , xn−h) = bP (c) +
hX

j=1

ajδ(xn−j , c)

where δ(xk, c) = 1 if xk = c, and it is 0 otherwise.

Therefore, the modelM can be described by two com-
ponents, the locality parameters �a = (a1, a2, . . . , ah)
and the popularity distribution P . In this model, the
value of b could be seen as a determinant of the ex-
tent to which the locality of reference is due to an IID
sampling from some popularity distribution P , whereas
the value of 1 − b could be seen as a determinant of
the extent to which locality of reference is due to tem-
poral correlations of references within some short time
frame–namely h. Our empirical characterization of real
data sets has demonstrated the existence of both fac-
tors. This model represents a more complete dynamics
of the data stream and the conventional IID assump-
tion can be reduced to our model by assigning b = 1.

Given a history of the data stream S, it is easy to infer
P from the empirical distribution using histograms [18,
16]. The value of h is related to the degree of reference
locality of the data stream and should be set accord-
ing to the application. The most interesting part is to
estimate ai. Our approach is to use the least-squares
method [25]. Suppose the data stream S has been ob-
served for the past N tuples. Given a segment of length
h in S, the expected value for xn can be estimated us-
ing our model as:

�
xn =

∑h
j=1 ajxn−j + b

∑D
i=1 iP (i),

where we assume tuples are taking integer values in the
range of [1, D]. Therefore, we should find the parame-



ters that minimize the total error of the model:

minimize over a1, . . . , ah, b :
N∑

i=h+1

[xi − �
xi)]2 (2)

By definition, b = 1 − ∑h
i=1 ai. Let ah+1 = b and

Y =
∑D

i=1 iP (i).
�
xi is the prediction of xi based on

the model. Taking the derivative of equation 2 with re-
spect to parameters ak, we get:

0 =
∂{∑N

i=h+1[xi − �
xi)]2}

∂ak
, k = 1, . . . , h+ 1

This in turn yields the following h+ 1 equations:{ ∑N
i=h+1 2[xi − �

xi]xi−k = 0 k=1,. . . ,h;∑N
i=h+1 2[xi − �

xi]
∑D

i=1 iP (i) = 0 k=h+1.

Using the model definition and the observed actual val-
ues, we can rewrite the above equations as follows: (the
first one represents h equations where j = 1, . . . , h)

8>>>><
>>>>:

hX
k=1

ak

N−jX
i=h+1−j

xixi+j−k + bY

N−jX
i=h+1−j

xi =

N−jX
i=h+1−j

xixi+j

hX
k=1

ak

N−kX
i=h+1−k

xi + bY (N − h) =
NX

i=h+1

xi

Thus, we have h+1 independent equations and we can
solve for the h + 1 variables, hence we estimate ai, b.
The next lemma bounds the space and time complex-
ity of inferring the parameters of a1, . . . , ah, b for a data
stream.

Lemma 1. The space requirement for inferring the pa-
rameters of {a1, . . . , ah} for a data stream is O(h2) and
the time complexity is O(h3).

To construct the model, we monitor each stream for a
short period of time and we update the coefficients of
the h+ 1 linear equations. After observing N data tu-
ples, we use a linear solver to estimate the parameters
of the locality based model M for each data stream.
The total space needed to compute the model is O(h2)
and the running time of the solver is O(h3).

To validate our model, we test it against both the stock
data traces and network OD flow traces. We plotted the
relationship between b and h. The results are shown in
figure 2. In both cases, for the original data streams,
as the value of h (the characteristic time scale of short-
term correlations) increases, the value of b converges
to 0.1. In the randomly permuted version of the same
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Figure 2: Applying the Locality Model to Stock and
Network Data Streams

stream, the value of b stays very close to 1. Notice
that the rapid decrease in the value of b as h increases
suggests that the impact of short-term correlations is
most pronounced by considering only a short period of
time. These results demonstrate the correctness of our
model: it successfully captures two causes of reference
locality in different data streams and is able to provide
the concise measurements for the degree of two con-
tributors. Based on this model, we can set the h value
to the extent of reference locality we wish to capture.
For example, from figure 2, we can see that h ∼ 50−80
is a sufficient setting for these datasets.

3.2. Utilizing the Model for Prediction

Suppose that the model MS={�a, P} for a given data
stream S has been estimated. We would like to use the
model to predict the future tuples of the stream. Since
the model is probabilistic, we can use a Monte Carlo ap-
proach and estimate the probability that a given tuple
will appear in the next position of the stream. How-
ever, this approach can be expensive, since we need
to sample from a large space of possible future val-
ues and then take avergares. Next, we discuss a sim-
pler method that pre-computes parts of the computa-
tion off-line and makes the prediction easier.

Given a prediction window T and stream S, we define
the locality characteristic matrix M(T+1)×(T+1) for S
as follows:

M =




a1 · · · ah

⇀
0 (T−1−h)×1 0 b

⇀

I (T−1)×(T−1)

⇀
0 1×(T−1)

⇀
0 1×(T−1)

⇀
0 (T−1)×1 0 1




(3)

Let vector
⇀

Xn denote [xn, xn−1, . . . , xn−T+1, Y ]T . It is

easy to check that:
⇀

Xn = M ×
⇀

Xn−1. By applying this
equation recursively, we get:

⇀

Xn+T−1 =MT ×
⇀

Xn−1 (4)



Therefore, the expected values for tuples in a future
time period T could be obtained by multiplying MT

with the last T tuples in the data stream. Given the
model, MT can be computed by simple matrix mul-
tiplications. Let cij represent an entry in MT where
i, j ∈[1,T+1]. The following lemma summarizes the ex-
pected number of occurrences for a given tuple during
a period of length T.

Lemma 2. The expected number of occurrences
ET(xn−j) for a tuple xn−j in a future period of T tu-
ples is given by the following formula:

ET(xn−j) =
T∑

i=1

cij +
T∑

i=1

ci(T+1) ∗ P (xn−j)

Now, consider a tuple e. Using Lemma 2, we can com-
pute ET(e) as follows:

Lemma 3. Given the operator S over vector ⇀
xn−1 and

e as S(⇀xn−1, e) = {k, k ∈ [1, T ], s.t. xn−k = e}, then
ET (e) is:

∑
k∈S(

⇀
x n−1,x)

ET(xn−k) =
∑

k

T∑
i=1

cik +
T∑

i=1

ci(T+1) ∗ P (e)

4. Application of the Locality-Aware
Model

In this section, we show the applicability of our
locality-aware model for three very important stream
applications: (1) approximate sliding window joins, (2)
approximate frequency counting and (3) information
measures for data streams.

4.1. Approximate Sliding Window Join

The sliding window join is defined as follows: given
two streams R and S and a sliding window W , a new
tuple r in R that arrives at time t, can be joined
with any tuple s in S that arrived between t-W and
t+W. r expires beyond time t+W and can be safely re-
moved from the memory. The windowW can be defined
as time based, tuple based, or landmark based, and
each stream may have a different sliding window size.
When the memory size is insufficient to store the en-
tire sliding window, buffer management optimization is
essential to produce the best possible approximate re-
sult [12, 27, 29]. Previous work mainly focus on the
MAX-subset metric where the goal is to produce the
largest subset of the exact answer. This paper focuses
on this metric as well, however our discussion can eas-
ily extend to other metrics.

Previous Approaches. The simplest approach to

computing sliding window stream joins with limited
memory is to use random load shedding, which drops tu-
ples with a rate proportional to the rate of the stream
over the size of the buffer [21]. A better approach is
to adopt a model for the stream and drop tuples se-
lectively using that model. This approach is called se-
mantic load shedding. The first model-based approach
is the frequency-based stream model [12], which makes
an IID assumption for the tuples in the data streams
and hence drops tuples based on their popularity; this
algorithm is known as PROB Heuristic. Two other
model-based approaches were proposed recently: the
age-based data stream model [27] and the stochastic
model [29].

In the age-based model, every tuple in the data
stream is confined to follow a special aging process de-
fined such that the expected join multiplicity of a tu-
ple is independent of the value of the join attribute
and dependent only on the arrival time. This model
is appropriate for only a specific set of applications,
namely on-line auctions, which were shown to produce
data streams that follow the proposed model. More-
over, even for such applications, the assumption that
all tuples follow the same aging process can be very
limiting. We argue that in many real data streams the
above model is unlikely to hold, making its usefulness
quite limited. Indeed, in all our real datasets, the per-
formance of this aging heuristic was indistinguishable
from the simple random load shedding [9].

In the stochastic model, the system is assumed to
observe the stochastic properties of the data streams
and makes cache replacement decisions by exploiting
the statistical information of these properties. The
main problem of this approach is the complexity for
representing and computing the model on-line. That
makes this approach to have limited practicality and
applicability. In contrary, our model is much simpler,
easy to estimate, and likely to hold (albeit with vary-
ing parameterization) independently of the application
or processes underlying the data streams. Furthermore,
the model we advocate leverages a fundamental prop-
erty of data streams—namely locality of reference—
that can be used to improve data stream query pro-
cessing as we will see next.

Locality-Aware Approach. Consider two streams
R and S and the sliding window join R[W ] ��A S[W ]
(i.e. equi-join on a common attribute A). We assume
equal window size W , a constant arrival rates 1 for all
streams, and discrete values for the joining attribute
A. Our discussion can be extended to varying arrival
rates, window sizes, and other join conditions as shown
in the experiments. Also, we assume that the memory
is full and new tuples are arriving from both streams.



Therefore, we must have a method to chose some of the
tuples already in memory and replace them with the
new tuples (or decide to drop some of the new tuples).

We define the marginal utility of a tuple x in
stream R to represent the expected number of results
produced by this tuple by joining it with the other
stream S over the time period [n, n+T], i.e. the num-
ber of tuples in the other stream XS

k that satisfy the
join condition during the next T time instants. For-
mally, we represent marginal utility for a tuple X as a
function U(X) as follows:

Definition 2. Given a tuple X=x in stream R and a
time period T, the marginal utility of X at time n is:
Un

XR(T) =
∑n+T

k=n P{XS
k = x}

In the above definition, T is the remaining life-
time of tuple x. If we had no memory constraints, the
lifetime of a tuple would be equal to W. However, due
to the space constraint, tuples may be evicted before
they expire. The choice of eviction depends on many
factors (such as buffer size constraints, competing tu-
ples in the same stream, and correlated marginal utility
with tuples in the other streams) that complicates the
analysis and makes it hard to predict the actual life-
time of a tuple. [29] has given a detailed discussion on
this issue and suggested heuristics to approximate tu-
ples lifetime. However, for the simplicity of our analy-
sis, we assume a constant value T as the global lifetime
for each tuple.

Using the model proposed in Section 3, we can es-
timate the expected marginal utility of any tuple x in
the data stream R and thereupon make replacement
decisions. Suppose that there are k tuples in stream S
that have the same value with x during [n − h, n − 1].
Let those tuples be xc1 , . . . , xck

. The probability that
the next tuple arriving at S has the same join attribute
with x is P1 = bP (x) +

∑k
j=1 an−cj . Recursively ap-

plying the model in a similar fashion, we get that the
probability that x will appear at the time i, 1 ≤ i ≤ T,
is:

Pi = bP (x) +
k∑

j=1

aΘ(n+i,cj) +
min(h,i−1)∑

j=1

Pi−jaj

Θ(n + i, cj) is an indicator function which equals to
n+ i− cj if n+ i− cj ≤ h (i.e. within the h range) and
0 otherwise. Also a0 = 0. Pi is an h order linear recur-
sive sequence (that depends on P (x), a1, . . . , ah, b). We
can solve the hth order characteristic equation to get
Pi. The marginal utility of x in stream R is then cal-
culated as:

U t
xR(T) =

T∑
i=1

Pi = TbP (x) + F (a1, . . . , ah, b, P (x))

Algorithm 1 LBA(Stream S,R; Predict Window T)
(M, P ) =Warmup(S)
Compute characteristic matricesM andMT

�cs= column sum ofMT

Insert P and �cs into histogramH
whileNew tuple arrives in R at time instance t do

if R’s Buffer is full then
For tuples in R’s Buffer apply lemma 3 to compute

U t
xR , get necessary column sum and P (x) from

H
Evict tuple with minimum U t

xR(T)
Insert the new tuple into the buffer

This formula shows that the marginal utility of a tu-
ple depends on both its long-time popularity and short-
term correlations. When T is large enough to span mul-
tiple locality epochs, P (x) dominates the marginal util-
ity which complies with the frequency-based model. In
that case, P (x) alone can constitute a good approxi-
mation of U t

xR . However, if T is small enough to em-
body dispersed locality, both terms govern the stream,
and both should be considered in order to make an in-
formed caching decision. We denote this way of calcu-
lating marginal utility and hence making caching deci-
sions as exact locality based algorithm (ELBA).

To estimate the marginal utility with ELBA, we
have to perform O(BT) operations for every eviction,
where B is the buffer size, since we have to recompute
Pi for every tuple in the cache. However, given that T
is fixed 2, we present a more efficient approximation
of the marginal utility of each tuple. Recall that from
lemma 3, given the sum of the columns of MT of S,∑T

i=1 cij , for j ∈ [1,T+1], and the popularity distribu-
tion P of S, we could compute the marginal utility for
any tuple in R at any given time instant. Based on this
observation, we present a simpler locality-aware buffer
replacement algorithm (LBA) for MAX-subset opti-
mization. The pseudo-code is shown in Algorithm 1.
Note that when more than one tuples have the same
minimum marginal utility, the tie is broken by choos-
ing the tuple that will expire sooner.

Next, we discuss the complexity of LBA against
other existing algorithms. First, notice that both
PROB and LBA construct similar storage struc-
tures (e.g. histogram) to gather their statistical
information during the initial setup. Given a his-
togram of N items, we define the space usage of
such storage structure as f(N) 3 and the time com-
plexity for querying the structure as Q. The space
complexity of PROB is O(f(D)) where D is the do-
main size of the stream and it is O(f(D + T)) for

2 In our experiments we set T = W .

3 Recent work, for example [16], has shown that f can be
poly(log(N)).



LBA as it requires additional storage for the each col-
umn sum of the matrix MT. Normally D > T (or
even D >> T ) and f is a logarithmic function, so
the space overhead of PROB and LBA is compa-
rable. In terms of time complexity, the operations
of interest in our analysis are insertions and evic-
tions. When a new tuple arrives at the stream, it
takes LBA constant time to insert it into the mem-
ory and a time complexity of O(B ∗ Q) 4 to select a
tuple to evict. PROB incurs similar time complex-
ity if implemented in the same manner. However, an-
other approach PROB could adopt is to maintain
the buffer as a priority queue and associate each tu-
ple its popularity value computed on the fly during the
insertion phrase. This method has an insertion com-
plexity of O(Q + logB) and a constant time eviction.
Finally, for the other existing methods, the stochas-
tic model is at least as expensive as the PROB ap-
proach and in practice is expected to be much more
expensive.

4.2. Approximate Count Estimation

Lossy Counting [24] is a well-known algorithm for
approximate frequency counting over data streams. In
this algorithm (shown as Algorithm 2), the incoming
data stream is divided into buckets with width w = 1

ε .
Buckets are labeled with bucket IDs, starting from 1.
The current bucket is denoted as bcurrent and its value
is N

ε � (where N is the current length of the data
stream). For an element e, its true frequency is de-
noted as fe. The algorithm keeps a data structure D
that contains entries of the form (e, f,�), where e is
an element in the stream, f is an integer represent-
ing its estimated frequency, and � is the maximum
possible error in f . [24] proved that the space bound
for Lossy Counting is 1

ε log(εN). This is a very gen-
eral bound as it makes no assumptions about the data
stream ( popularity distribution or temporal correla-
tions). However it is also a very loose bound (as al-
ready shown in [24]) and furthermore, not a very use-
ful one as N is included in it. Next, we provide a better
estimation for the space requirement for Lossy Count-
ing taking into account the reference locality that may
exist in the stream.

First, we give a general formula to estimate the
space requirements of Lossy Counting. For an element
e, let pe be the probability that e will be the next ele-
ment in the stream. Let B = bcurrent be the current
bucket id. For i = 2, ..., B, let di denote the num-
ber of entries in D with � = B − i. Consider the

4 The actual time complexity should be O(b*Q) where b ≤ B
represents the number of tuples having unique join attributes
in the buffer. With skewed distribution, b << B.

Algorithm 2 LossyCounting(Stream S; Error ε;
Frequency s; Structure D)
InitializeN=0 w = 1

ε

while new tuple s arrives in S do
if s is inD then

Increase its frequency by one
else

Insert a new entry (e, 1, bcurrent − 1) toD
IncreaseN by one
if N%w == 0 then

Delete entries inD if f +� ≤ bcurrent

if require outputs then
Outputs entries from D if f ≥ (s − ε)N

case that e contributes to di. The arrival of the re-
maining elements in the buckets B − i + 1 through
B can be viewed as a sequence of Bernoulli trials,
where each trial succeeds with probability pe and fails
with probability 1 − pe. If the random variable X de-
notes the number of successful trials, then X follows
the binomial distribution. Thus, given N trials, the
probability to have exactly n successful trials is cal-
culated as: PX(n|N) =

(
N
n

)
pn

e (1− pe)N−n. In this case
N = w(i − 1). In order for e to contribute to di, it re-
quires X ≥ i − 1 (otherwise it will be deleted at some
point). For any given bucket, the expected number of
appearances of e is given by pew = pe

ε . So the expected
value for di is:

E(di) =
∑

e

pe

ε

N= i−1
ε∑

k=i−1

(
N

k

)
pk

e(1− pe)N−k (5)

and the overall space requirement is simply given by∑B
i=2 E(di). The only question left is how to compute

pe. If we assume IID, then pe is simply the popularity
of element e in the long term popularity distribution of
this data stream. However, when the data stream ex-
hibits reference locality due to short time correlations,
we should compute pe based on the analysis of the ref-
erence locality of this data stream. Using our local-
ity model and following the discussion in section 3.1,
we could compute Pr(xN = e) =

∑h
i=1 aiδ(xN−i, e) +

bP (e).

Assuming IID and that the values in the stream
come from a general fixed distribution, [24] showed that
the expected size of the data structure is 7

ε . However,
both in their and our experiments, this space bound
is still very pessimistic, especially for skewed distribu-
tions (Zipf-like). This indicates that for data stream
with higher degree of reference locality, either caused
by skewness in long term popularity or correlations in
short time scales, tighter space bound might exist.

Effect of Reference Locality by Skewness.When
the popularity of the values appearing in the stream



follows a skewed distribution, the space bound can be
improved. Here, we discuss the case of Zipf distribu-
tion, since it is a very common distribution in practice.
We have shown already in section 2 that the Zipf dis-
tribution creates reference locality in the stream.

Formally, a Zipf distribution with parameter z has
the property that fi, the relative frequency of the ith
most frequent item is given by fi = cz

iz , where cz is an
appropriate scaling constant. Consider a Zipf distribu-
tion with range [1 . . . U ] and 1 < z ≤ 2. The following
observations were shown in [11]:

• Fact 1. 1− 1
z ≤ cz ≤ z − 1

• Fact 2. czk1−z

z−1 ≤ ∑U
i=k fi ≤ cz(k−1)1−z

z−1

Based on the previous results, we can show the fol-
lowing:

Theorem 2. For Lossy Counting, if stream elements
are drawn independently from a Zipf distribution with
1 < z ≤ 2, then E[|D|] < 2

ε +
4

2z−1ε2−z .

Proof. Our proof follows the one in [24]. Separate the
elements in the stream into two parts. The first part
contains elements with pe ≥ ε

2 . There are at most k =
2
ε number of such elements. The second part contains
elements with pe < ε

2 . Following the analysis in last
section, let X denote the number of successful trials of
an element e from the first part. Then, we have that
E(X) = peN = pe(i−1)

ε < i−1
2 . Using Chernoff bounds,

we can show that Pr[X ≥ i − 1] ≤ ( e
4 )

i
2 (already shown

in [24]). Thus, by equation 5,

E(di) ≤ (e4)
i
2

∑
e

pe

ε
= (

e

4
)

i
2

U∑
j=k

pj

ε

Using Facts 1 and 2 above, we get

E(di) ≤ (e4)
i
2
1
ε
(k − 1)1−z ≈ (e

4
)

i
2
1
ε
k1−z

The overall space contributed by the second part is:

B∑
i=2

E(di) ≤ 1
ε
k1−z

B∑
i=2

(
e

4
)

i
2 ≤ 1

ε
k1−z e/4

1− √
e/4

≤ 4
ε
k1−z

Since k = 2
ε and 2 ≥ z > 1, we have

∑B
i=2 E(di) ≤

4
2z−1ε2−z . This completes the proof.

To compare the new bound against the previous
one (7ε ), we list their values for different Zipf distribu-
tions (varying z) and ε = 0.1% in table 1. As we can
see, our bound is much tighter than the previous one.
Furthermore, it is able to capture the important fact

z value old bound our bound
z = 1.1 7000 3869
z = 1.3 7000 2409
z = 1.5 7000 2089

Table 1: Space Bound Comparison With ε = 0.1%

Algorithm 3 MtoEpsilon(Error ε; Frequency s;
Memory B; Threshold b)
Initialize ε = s, e1 = s, e2 = 0, B′ = 0
while |B − B′| > b do

B′ = EpsilontoM(ε)
if thenB′ < B

ε = ε − (e1− e2)/2, e1 = ε
else

e2 = ε, ε = ε+ (e1− e2)/2, e1 = ε

that the skewer the distribution is, the less the space is
used by Lossy Counting. In fact, when z = 1.5, the sec-
ond term in our bound is only 89 and its value is mainly
dominated by 2

ε .

Effect of Reference Locality by Both Causes.
Based on the locality model, we can derive an even
tighter space bound for Lossy Counting. Using lemma 3
in section 3.2, we can compute the accumulative expec-
tation for an element e to appear in a future period of
length T . To calculate the expected space usage for the
first bucket, we set T = w and count the number of el-
ements who have an accumulative expectation greater
than one. To extend this idea to more buckets, we com-
pute the accumulative expectation of each element e by
adjusting T to a greater value. Using the characteristic
matrixM(w+1)×(w+1), we generateMw,M2w, . . . ,Mkw

and define U i = M (i+1)w − M iw, for i ∈ [0, k − 1].
We can see that U i summarizes the expectation in the
range of [iw, (i+1)w]. Thus, if we apply lemma 3 with
U i, we get the accumulative expectation of any ele-
ment in the ith bucket. Then for each bucket, we can
count the number of elements that are expected to ap-
pear at least once and occupy a space in that bucket
which give us the estimated maximum space bound.
Note that, k is an input parameter to be decided by
the system. Assuming that the reference locality prop-
erties of the data stream are stationary or changing
slowly, even a small value for k is sufficient.

Practical Implications. Given the previous discus-
sion, if we have the reference locality model for a data
stream and a given ε, we can accurately estimate the
expected space that will be occupied by the Lossy
Counting algorithm and therefore, optimize memory al-
location. On the other hand, given a limit on the avail-
able memory M , we can find the smallest ε that must
be used with Lossy Counting in order to stay inside



the memory limit (see Algorithm 3). The main advan-
tage of this, is that smaller ε means smaller number
of false positives and therefore better estimation of the
frequencies.

4.3. Information Measures of Data
Streams

Many data stream applications require summa-
rization of some stream characteristics. However, de-
spite the extensive work in this area, it seems that
still there is consensus on a general metric to measure
the amount of information existing in a data stream.
In this section, we propose a new approach to mea-
sure that using the notion of entropy. For a random
variable X , the entropy is a well-known measure for
the amount of information (or uncertainty) underly-
ing knowledge of X . In particular, the entropy of X
is defined as H(X) = −∑

i pilogpi, where pi is the
(discrete) probability distribution of X . A straightfor-
ward approach to extend the notion of entropy to a
data stream S, is to view the whole data stream as sin-
gle random variable and generate each tuple in S by
drawing samples from this random variable. Thus, the
defined entropy is simply the measure of randomness
in the long term popularity distribution of S. However,
this definition fails to capture locality of reference char-
acteristics that may exist in the data stream. To clar-
ify, let S′ be a randomly permuted version of S. Then,
the entropy of S′ is always equal to the entropy of S.

A more comprehensive approach is to view the
data stream S as a vector of N random variables where
N is the length of the stream, i.e., represent S as
S = [X1, X2, . . . , XN ] where each Xi is a random vari-
able. In this case, we define the entropy of the data
stream as the average entropy for all these random vari-
ables.

Definition 3. Given a data stream S represented
as a vector of N random variables, its entropy
is defined as the average entropy over all ran-
dom variables, i.e. H(S) = 1

N

∑N
i=1 H(Xi), where

H(Xi) = H(Xi|Xi−1, Xi−2, . . . , X1) is the correspond-
ing entropy of random variable Xi in S.

For a data stream under the IID assumption,
each random variable in S is identically distributed,
as with a random variable X . In this case, ∀i,H(Xi) =
H(X) and H(S) = H(X). However, this is not the
case when the data stream exhibits a certain de-
gree of reference locality due to short time correla-
tions. Then, even though every tuple in S is still
drawn from a fixed distribution represented by the
random variable X, each one of them is not inde-
pendent from the previous ones. Let us model the

entropy of each tuple as a conditional variable that
depends on k previous random variables. This leads
to the expression H(XN) = H(XN |XN−1, . . . , X1) =
H(XN |XN−1, . . . , XN−k). Now, it is possible to com-
pute H(S) based on the locality model. The basic idea
is to condition the entropy measure by obtaining the
probability distribution for each random variable xN

given the locality model that we defined in 3.1. By
defining the entropy in data stream in this way, we can
show the next lemma, the proof of which follows from
the well-known fact that the conditional entropy is al-
ways not greater than the unconditional entropy:

Lemma 4. Let S’ denotes the randomly permuted ver-
sion of data stream S. Then H(S) ≤ H(S′) where the
equal sign only holds when S has no reference locality due
to short time correlations.

5. Performance Evaluation

In this section, we present results from an exten-
sive experimental evaluation of the methods presented
in the previous sections. The experiments were con-
ducted using two real datasets: the stock data [20]
and the OD flow streams [22]. Similar results were ob-
tained from other real and synthetic datasets. Each
stock transaction contains the stock name, time of sale,
matched price, matched volume, and trading type. Ev-
ery transaction for each of the top 500 most actively
traded stocks, by volume, is extracted, which sums up
to about one million transactions throughout the trad-
ing hours of a day. The network dataset was collected
from Abilene routers, where the system sampled pack-
ets during the collection process (one out of every 100
packets is measured and recorded). However, it still
exhibits a significant amount of reference locality as
we show earlier. Each OD flow tuple contains a times-
tamp, source and destination address, number of pack-
ets, bytes transfer, and other information. We selected
the destination address as the join attribute.

5.1. Approximate Sliding Window Joins

We implemented both the exact (ELBA) and ap-
proximate locality-based (LBA) algorithm. We
compared LBA and ELBA against random evic-
tion (RAND) and the frequency-based eviction
(PROB) [12] approaches. We measured the qual-
ity of the results using the MAX-subset metric. In ad-
dition, as a baseline, we compute the exact results
by supplying memory enough to contain the full win-
dows (FULL). This allows us to present the results
of the other methods as fractions of the exact re-
sults produced by FULL. Each algorithm is setup to
utilize the same amount of memory. Our implemen-
tation on PROB and LBA demonstrate comparable
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Figure 3: Varying Buffer Size and Window Size
running time performance. RAND executes rela-
tively faster because it takes constant time for both
deletion and insertion.

The first set of experiments focused on the effect of
the buffer size as a percentage of the total memory re-
quirement. Note that, the buffer size that we report in
the experiments is calculated based on the average ar-
rival rates as opposed to instantaneous rates. Since the
arrival rates of our data streams are quite bursty, even
when a 100% buffer size is supplied, the buffer can-
not retain all tuples at times when the instantaneous
rate is higher than the average rate.

Figure 3(a) and 3(b) show that the locality-aware
algorithms outperform PROB and RAND in all of our
experiments on both stock and OD flow data sets. This
confirms our expectations from the previous analysis
that PROB does not capitalize on locality of refer-
ence stemming from correlations over short timescales
(Figure 1(b) and 1(d)). PROB assumes that the data
stream follows the IRM and only considers long term
popularity, but both our analysis and experiments indi-
cate that reference locality contributes to data stream
dynamics. Our results also show that the performance
of LBA is quite close to that of ELBA, which rein-
forces our argument of LBA being a practical approx-
imation of ELBA. Both algorithms outperform PROB
by a large margin. For some specific buffer sizes, they
produce close to 100% more result tuples than PROB.

To study the scalability of our algorithm, we ex-
ecute the same set of experiments using a wide range
of window sizes on a 50% buffer size. In Figure 3(c),
we show the actual number of join results produced
by different methods. Furthermore, the results as frac-
tions to the FULL results are almost constant w.r.t
different window sizes. The relative results for all algo-
rithms are remarkably invariant over different window
sizes. This is consistent with the observations and ex-
perimental results by Das et al [12]. Note that the re-
sults for OD flow are very similar and are omitted for
brevity.
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5.2. Approximate Count Estimation

Here we present results for Lossy Counting. Ex-
cept otherwise specified, we run Lossy Counting with
parameters s = 0.01 and N = 100, 000. Also, in our fig-
ures, ”Max” indicates the maximum memory consump-
tion across all buckets at any given time. ”Prune” rep-
resents the maximum memory usage after pruning at
the end of every bucket.

First, we study the space bound for data streams
with reference locality caused by skewness. We gener-
ated a set of data streams by varying the ”z” value of
the Zipf distribution and studied the effect of skewness
on the memory overhead of Lossy Counting. We set
the domain size to 3000 and ε = 0.001. For each data
stream, we run the Lossy Counting algorithm and we
computed the maximum space consumption. From fig-
ure 4(a), we observe that less memory is used as the
distribution becomes skewer. Then, we fix ”z” at 1.3
and vary the ε value as shown in figure 4(b). The re-
sults in both figures agrees with our upper bound anal-
ysis in Theorem 2.

Next, we present results on real data streams. We
designed a simple algorithm to estimate the memory
consumption of Lossy Counting using the locality based
model of the data stream.Figure 5(a) shows the results
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Figure 5: Approximate Count Estimation
of our space bound analysis and the actual space con-
sumption of Lossy Counting for the stock dataset and
varying ε. Similar results obtained for OD flow data
streams as well. As we can see, our algorithm produces
bounds that tightly match the actual space consump-
tion. This means that our model captures the essential
properties of the stream to estimate very good bounds
on the space consumption of Lossy Counting.

Finally, we investigated the effect of finding the
optimal ε value given a fixed memory size. In this ex-
periment we set s = 0.05 and used again the stock data
stream. Given a fixed memory size, we used the algo-
rithm 3 to estimate the ε value. Also, we used the pre-
vious best approach [24], that estimates ε = 7

B (where
B is the memory size in number of entries of D). The
value of ε is directly related to the number of false pos-
itives produced by the algorithm. Therefore, we plot
the percentage of false positives for different memory
sizes. As we can see in Figure 5(b) our approach pro-
duces much smaller number of false positives, especially
when the memory size increases.

5.3. Entropy

Finally, we performed a simple experiment to
study our proposed approach to quantify the entropy
of a data stream. We generated a data stream with uni-
formly distributed values and we computed its empir-
ical locality based entropy. Furthermore, we computed
the empirical entropy of the original stock data stream,
and a randomly permuted stock data stream. The re-
sults are shown in table 2. Note that the entropy of the
original stock data stream is much smaller that the per-
muted version. To show a practical implication of the
data stream entropy measure, we run Lossy Counting
on all three data streams. As we can observe from fig-
ure 5(c), the space consumption of Lossy Counting de-
pends on the entropy of the stream. A stream with
smaller entropy can be summarized with smaller space.
We found similar results on experiments using the OD

Data Streams Entropy
Uniform IID 6.19
Permuted Stock Stream 5.48
Original Stock Stream 3.32

Table 2: Entropy of Different Data Streams

flow data streams. We believe that these results are
very promising and we plan to investigate this issue
further.

6. Related Work

Stream data management has received a lot of interest
recently. General issues and architectures for stream
processing systems are discussed in [1]. Continuous
queries are studied in detail in [8, 23], where the au-
thors proposed methods to provide the best possible
query performance in continuously changing environ-
ments. Approaches to process sliding window joins and
provide exact results are discussed in [17, 19].

Most of related works to the applications we studied in
this paper have already been discussed. General load
shedding is used in [28, 6]. In [28] a QoS utility based
load shedding scheme is introduced which is similar to
our methods discussed here. However, their scheme is
not targeted to sliding window joins but to other Au-
rora operations. A load shedding approach for aggrega-
tion queries is presented in [6]. Approximate frequency
count is also studied in the context of sliding win-
dow [13, 3], where the problem becomes much harder
as one has to deal with deletions. We believe our dis-
cussion on the reference locality in data streams could
extend to these applications as well. A recent approach
to decrease the memory requirements of stream oper-
ators has been proposed in [7] that uses the notion of
k-contsraints. This approach is similar to ours since it
tries to exploit a form of short term temporal corre-
lations. However, as a stream model is much weaker
than ours, since it does not consider the correlations



over large time scales.

Model based approaches to improve query processing
in sensor networks discussed in [15]. The idea is to ex-
ploit temporal and spatial correlations in sensor net-
work generated data. Temporal locality in the con-
text of sensor networks has been exploited also in [26].
The importance of skewness to data summarization has
been studied in [11]. In particular, they showed how to
improve the performance of Count-Min sketch [10] un-
der skewed distributions. However, no connection be-
tween skewness and reference locality was made there.

7. Conclusion and Future Work

In this paper we propose a new approach to process
queries in data stream applications. A generic local-
ity model is discussed to identify and quantify the de-
gree of two causes of reference locality in data streams.
Based on this model, locality-aware algorithms for
buffer management in sliding window joins, approx-
imate frequency count, and data summarization are
proposed. In support of our claims, we have presented
experimental results using real traces, which confirmed
the superiority of locality-aware algorithms over other
existing algorithms. For our future work, we plan to ap-
ply locality-aware techniques discussed in this paper to
other metrics and other operations in data stream man-
agement systems. It is also possible to extend our lo-
cality model by augmenting our parameters to synthe-
size and combine other temporal patterns and to in-
clude a more comprehensive multi-criteria analysis in
a distributed setting.
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