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Abstract

The design of programs for broadcast disks which
incorporate real�time and fault�tolerance requirements
is considered� A generalized model for real�time fault�
tolerant broadcast disks is de�ned� It is shown that
designing programs for broadcast disks speci�ed in this
model is closely related to the scheduling of pinwheel
task systems� Some new results in pinwheel scheduling
theory are derived� which facilitate the e�cient genera�
tion of real�time fault�tolerant broadcast disk programs�

�� Introduction

Mobile computers are likely to play an important
role at the extremities of future large�scale distributed
real�time databases� One such example is the use of
on�board automotive navigational systems that inter�
act with the database of an Intelligent Vehicle High�
way System �IVHS�� IVHS systems allow for auto�
mated route guidance and automated rerouting around
tra�c incidents by allowing the mobile vehicle soft�
ware to query and react to changes in IVHS databases
���� 	
�� Other examples include wearable computers
for soldiers in the battle�eld and computerized cable
boxes for future interactive TV networks and video�
on�demand� Such systems are characterized by the sig�
ni�cant discrepancy between the downstream commu�
nication capacity from servers �e�g� IVHS backbone� to
clients �e�g� vehicles� and the upstream communication
capacity from clients to servers� This discrepancy is the
result of
 �	� the huge disparity between the transmis�
sion capabilities of clients and servers �e�g�� broadcast�
ing via satellite from IVHS backbone to vehicles as op�
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posed to cellular modem communication from vehicles
to IVHS backbone�� and ��� the scale of information
�ow �e�g�� thousands of clients may be connecting to
a single computer for service�� Moreover� the limited
power capacity of some mobile systems �e�g�� wearable
computers� requires them to have no secondary I�O
devices and to have only a small bu�er space �relative
to the size of the database� that acts as a cache for
the information system to which the mobile system is
attached�

Broadcast Disks� The concept of Broadcast Disks
�Bdisks� was introduced by Zdonik et al� ���� as a
mechanism that uses communication bandwidth to em�
ulate a storage device �or a memory hierarchy in gen�
eral� for mobile clients of a database system� The
basic idea �illustrated in Figure 	� is to exploit the
abundant bandwidth capacity available from a server
to its clients by continuously and repeatedly broadcast�
ing data to clients� thus in e�ect making the broadcast
channel act as a set of disks �hence the term �Broadcast
Disks�� from which clients could fetch data �as it goes
by�� Work on Bdisks is di�erent from previous work in
both wired and wireless networks �	�� 	�� in that sev�
eral sources of data are multiplexed and broadcast to
clients� thus creating a hierarchy of Bdisks with di�er�
ent sizes and speeds� On the server side� this hierarchy
gives rise to memory management issues �e�g�� alloca�
tion of data to Bdisks based on priority�urgency�� On
the client side� this hierarchy gives rise to cache man�
agement and prefetching issues �e�g�� cache replace�
ment strategies to improve the hit ratio or reduce miss
penalty�� In ���� Acharya� Franklin and Zdonik discuss
Bdisks organization issues� including client cache man�
agement �	�� client�initiated prefetching to improve the
communication latency for database access systems ����
and techniques for disseminating updates ����

Previous work in Bdisks technology was driven by
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Figure 1. The Concept of Broadcast Disks

wireless applications and has concentrated on solving
the problems associated with the limited number of
uplink channels shared amongst a multitude of clients�
or the problems associated with elective disconnection
�as an extreme case of asymmetric communication��
when a remote �e�g� mobile� client computer system
must pre�load its cache before disconnecting� Problems
that arise when timing and reliability constraints are
imposed on the system were not considered�

Real�time considerations� There are many rea�
sons for subjecting Bdisk data retrieval to timing con�
straints� Perhaps the most compelling is due to the ab�
solute temporal consistency constraints ���� that may
be imposed on data objects� For example� the data
item in an Airborne Warning and Control System
�AWACS� recording the position of an aircraft with
a velocity of 
�� km�hour may be subject to an ab�
solute temporal consistency constraint of ��� msecs�
in order to ensure a positional accuracy of 	�� meters
for client transactions �e�g� active transactions that
are �red up to warn soldiers to take shelter�� Notice
that not all database objects will have the same tempo�
ral consistency constraint� For example� the constraint
would only be �� ��� msecs for the data item recording
the position of a tank with a velocity of �� km�hour�
Other reasons for imposing timing constraints on data
retrieval from a Bdisk are due to the requirements
of database protocols for admission control �
�� con�
currency control� transaction scheduling ����� recovery
�	��� and bounded imprecision ���� ����

The real�time constraints imposed on Bdisks proto�
cols become even more pressing when issues of fault�
tolerance are to be considered� Current Bdisks pro�
tocols assume that the broadcast infrastructure is not
prone to failure� Therefore� when data is broadcast
from servers to clients� it is assumed that clients will
succeed in fetching that data as soon �as it goes by��
The result of an error in fetching data from a Bdisk is
that clients have to wait until this data is re�broadcast
by the server� For non�real�time applications� such a
mishap is tolerable and is translated to a longer�than�

usual latency� and thus deserves little consideration�
However� in a real�time environment� waiting for a
complete retransmission may imply missing a critical
deadline� and subjecting clients to possibly severe con�
sequences�

This research� The contributions of this paper are
twofold� First� we show that the problem of design�
ing real�time Bdisk programs is intimately linked to
the pinwheel scheduling problem �	��� and make use of
this link to �	� derive upper bounds on the bandwidth
requirements for real�time fault�tolerant Bdisks �corre�
sponding to the lower bounds in ����� and ��� obtain
e�cient algorithms for designing fault�tolerant real�
time Bdisk programs� Next� we present a more gen�
eral model for real�time fault�tolerant Bdisks that sub�
sumes the simple model presented in ���� We derive a
pinwheel algebra�some simple rules for manipulating
pinwheel conditions�and demonstrate through exam�
ples how these rules may be used to e�ciently construct
broadcast programs for generalized fault�tolerant real�
time Bdisks�

The rest of this paper is organized as follows� In Sec�
tion �� we discuss the basics of AIDA�based organiza�
tion of Bdisks for timeliness and fault tolerance as pro�
posed in ���� In Section �� we review pinwheel schedul�
ing theory� and describe how AIDA�based Bdisks are
related to pinwheel systems� In Section �� we intro�
duce the concept of generalized real�time fault�tolerant
Bdisks� and describe pinwheel�based procedures for or�
ganizing data on such disks�

�� AIDA�based Bdisks

We model a Bdisks system as being comprised of a
set of data items �or �les� that must be transmitted
continuously and periodically to the client population�
Each data item consists of a number of blocks� A block
is the basic� indivisible unit of broadcast �e�g�� page��
We assume that the retrieval of a data item by a client
is subject to a time constraint imposed by the real�time
process that needs that data item�

When an error occurs in the retrieval of one or more
blocks from a data item� then the client must wait for a
full broadcast period before being able to retrieve the
erroneous block� This broadcast period may be very
long since the broadcast disk may include thousands
of other blocks� which the server must transmit before
getting back to the block in question� For real�time
systems� such a delay may result in missing critical
timing constraints� In ���� Bestavros proposed the use
of AIDA to mask �or otherwise minimize� the impact



of such failures in a real�time environment� AIDA is
a technique for dynamic bandwidth allocation� which
makes use of minimal� controlled redundancy to guar�
antee timeliness and fault�tolerance up to any degree of
con�dence� AIDA is an elaboration on the Information
Dispersal Algorithm of Rabin �����

2.1. Information Dispersal and Retrieval

Let F represent the original data object �hereinafter
referred to as the �le� to be communicated �or re�
trieved�� Furthermore� assume that �le F is to be com�
municated by sending N independent transmissions�
Using Rabin�s IDA algorithm� the �le F can be pro�
cessed to obtain N distinct blocks in such a way that
recombining anym of these blocks� m � N � is su�cient
to retrieve F � The process of processing F is called the
dispersal of F � whereas the process of retrieving F by
collecting m of its pieces is called the reconstruction of
F � Both the dispersal and reconstruction operations
can be performed in real�time ����

The dispersal and reconstruction operations are sim�
ple linear transformations using irreducible polynomial
arithmetic�� The dispersal operation shown in Fig�
ure � amounts to a matrix multiplication �performed
in the domain of a particular irreducible polynomial�
that transforms data from m blocks of the original �le
into the N blocks to be dispersed� The N rows of the
transformation matrix �xij �N�m are chosen so that any
m of these rows are mutually independent� which im�
plies that the matrix consisting of any such m rows is
not singular� and thus invertible� This guarantees that
reconstructing the original �le from any m of its dis�
persed blocks is feasible� Indeed� upon receiving any
m of the dispersed blocks� it is possible to reconstruct
the original data through another matrix multiplica�
tion as shown in Figure �� The transformation matrix
�yij �m�m is the inverse of a matrix �x�ij �m�m� which is
obtained by removing N�m rows from �xij �N�m� The
removed rows correspond to dispersed blocks that were
not used in the reconstruction process� To reduce the
overhead of the algorithm� the inverse transformation
�yij �m�m could be precomputed for some or even all
possible subsets of m rows�

In this paper� we assume that broadcasted blocks
are self�identifying�� In particular� each block has two
identi�ers� The �rst speci�es the data item to which
the block belongs �e�g�� this is page � of object Z�� The

�For more details� we refer the reader to the papers by Rabin

	�� and Bestavros 
�� on IDA implementation�

�Another alternative is to broadcast a directory �or index 
���

at the beginning of each broadcast period� This approach is less
desirable because it does not lend itself to a clean fault�tolerant
organization�
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Figure 2. The Dispersal and Reconstruction
operations of IDA.

second speci�es the sequence number of the block rela�
tive to all blocks that make�up the data item �e�g�� this
is block � out of ��� This is necessary so that clients
could relate blocks to objects� and more importantly�
to allow clients to correctly choose the inverse trans�
formation �yij �m�m when using IDA�

2.2. Adaptive IDA

In most fault�tolerant redundancy�injecting commu�
nication protocols� redundancy is injected in the form
of parity blocks� which are only used for error detection
and�or correction purposes �	��� The IDA approach is
di�erent in that redundancy is added uniformly� there
is simply no distinction between data and parity� It is
this feature that makes it possible to scale the amount
of redundancy used in IDA� Indeed� this is the basis
for the adaptive IDA �AIDA� ���� Using AIDA� a band�
width allocation operation is inserted after the dispersal
operation but prior to transmission as shown in Figure
�� This bandwidth allocation step allows the system to
scale the amount of redundancy used in the transmis�
sion� In particular� the number of blocks to be trans�
mitted� namely n� is allowed to vary from m �i�e� no
redundancy� to N �i�e� maximum redundancy��

The reliability and accessibility requirements of var�
ious data objects in a distributed real�time application
depend on the system mode of operation� For exam�
ple� the fault�tolerant timely access of a data object
�e�g�� �location of nearby aircrafts�� could be critical
in a given mode of operation �e�g�� �combat��� but less
critical in a di�erent mode �e�g�� �landing��� and even
completely unimportant in others� Using the proposed
AIDA� it is possible to dynamically adjust the relia�
bility and accessibility pro�les for the various objects
��les� in the system by controlling their level of disper�
sal� In other words� given the requirements of a par�
ticular mode of operation� servers could use the band�
width allocation step of AIDA to scale down the re�
dundancy used with unimportant �e�g�� non�real�time�
data items� while boosting it for critical data items�
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2.3. AIDA-based Broadcast Programs

Figure � illustrates a simple example of a �at broad�
cast program in which two �les A and B are trans�
mitted periodically by scanning through their respec�
tive blocks� In particular� �le A consists of � blocks
A�� � � � � A� and �le B consists of � blocks B�� � � � � B��
The broadcast period for this broadcast disk is � �as�
suming one unit of time per block�� A single error
encountered when retrieving a block results in a delay
of � units of time� until the erroneous block is retrans�
mitted�

Lemma � If the broadcast period of a �at broadcast
program is � � then an upper bound on the worst�case
delay incurred when retrieving that �le is r� units of
time� where r is the number of block transmission er�
rors�
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Program Broadcast Period

Figure 4. A flat broadcast program

Now� consider the same scenario if �les A and B were
dispersed using AIDA such that �le A is dispersed into
	� blocks� of which any � blocks are enough to recon�
struct it� and �le B is dispersed into � blocks� of which
any � blocks are enough to reconstruct it� Figure �
shows a broadcast program in which �les A and B are
transmitted periodically by scanning through their re�
spective blocks� Notice that there are two �periods�
in that transmission� The �rst is the broadcast period�
which �as before� extends for � units of time� The
length of the broadcast period for a broadcast disk is
set so as to accomodate enough blocks from every �le
on that disk�enough to allow clients to reconstruct
these �les� In the example of Figure �� at least � di�er�
ent blocks and � di�erent blocks are needed from �les A
and B� respectively� While the broadcast period for the
broadcast disk is still �� the server transmits di�erent
blocks from A and B in subsequent broadcast periods�

This leads to the second �period� in the broadcast pro�
gram� which we call the program data cycle� The length
of the program data cycle for a broadcast disk is set to
accomodate all blocks from all the dispersed �les on
that disk� In the example of Figure �� all 	� blocks
and all � blocks from dispersed �les A and B exist in
the program� resulting in a program data cycle of 	��
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Figure 5. A flat broadcast program using IDA

Unlike the example of Figure �� a single error en�
countered when retrieving a block �say from �le A�
results in a delay of at most � units of time� until any
additional block from �le A is transmitted� For exam�
ple� assume that a client received the �rst � blocks�
A�� A�� A�� A� from �le A correctly� but failed to re�
ceive the �fth block� In the regime of Figure �� the
client must wait for � cycles until A� is transmitted
again� In the regime of Figure �� the client has to wait
only until A�� is transmitted� which implies a delay of
only 	 unit of time�

The value of AIDA�based broadcast programs is fur�
ther appreciated by comparing the delays that a client
may experience if errors clobber more than one block
during the retrieval of a particular �le


Lemma � If the maximum time between any two
blocks of a dispersed �le in an AIDA�based �at broad�
cast program is �� then an upper bound on the worst�
case delay incurred when retrieving that �le is r��
where r is the number of block transmission errors�

From lemmas 	 and �� an AIDA�based �at broadcast
program yields error recovery delays �

�
times shorter

than those of a simple �at broadcast program� To max�
imize the bene�t of AIDA�based organization in reduc�
ing error recovery delays� the various blocks of a given
�le should be �uniformly� distributed throughout the
broadcast period� In the remainder of this paper� we
discuss the use of pinwheel scheduling to achieve such



uniform distribution�

�� Pinwheel Task Systems

Pinwheel task systems were introduced by Holte et
al� �	��� in the context of o�ine scheduling for satellite�
based communication� Consider a shared resource
that is to be scheduled in accordance with the Inte�
gral Boundary Constraint 
 for each integer t � �� the
resource must be allocated to exactly one task �or re�
main unallocated� over the entire time interval �t� t�	��
�We refer to this time interval as time slot t�� For our
purposes� a pinwheel task i is characterized by two pos�
itive integer parameters � a computation requirement a
and a window size b � with the interpretation that the
task i needs to be allocated the shared resource for at
least a out of every b consecutive time slots� The task
may represent a real�time embedded process or a data�
transfer operation �between� for example� a sensor and
a CPU� that executes continually during the lifetime of
the embedded system� the parameter a typically rep�
resents the computation requirement of the process� or
the amount of data to be transferred� while the param�
eter b represents a real�time constraint � a deadline �
on the execution of the process� or for the completion
of the data transfer� Such a pinwheel task is repre�
sented by the ordered ��tuple �i� a� b�� A pinwheel task
system is a set of pinwheel tasks that share a single
resource� The following examples illustrate the notion
of pinwheel task systems


Example � The pinwheel task system f�	� 	� ���
��� 	� ��g consists of two tasks 	 one with a compu�
tation requirement 
 and window size �� and the other
with computation requirement 
 and window size �� A
schedule for this task system may be represented as fol�
lows
 	� �� 	� �� 	� �� 	� �� � � �� indicating that the shared
resource is allocated to tasks 	 and � on alternate slots�

The pinwheel task system f�	� �� ��� ��� 	� ��g consists
of two tasks 	 one with a computation requirement �
and window size �� and the other with computation re�
quirement 
 and window size �� A schedule for this
task system is
 	� �� 	� O� �� 	� �� 	� O� �� 	� �� 	� O� �� � � ��
where �O� indicates that the resource remains unallo�
cated during the corresponding time slot�

The pinwheel task system f�	� 	� ��� ��� 	� ��� ��� 	� n�g
consists of three tasks 	 one with a computation re�
quirement 
 and window size �� a second with compu�
tation requirement 
 and window size �� and a third
with computation requirement 
 and window size n� It
is not di�cult to see that this system cannot be sched�
uled for any �nite value of n�

The ratio of the computation requirement of a task
to its window size is referred to as the density of the
task� The density of a system of tasks is simply the sum
of the densities of all the tasks in the system� Observe
that� for a task system to be schedulable� it is neces�
sary �although not su�cient� as the third instance in
Example 	 shows� that the density of the system be at
most one�

The issue of designing e�cient scheduling algorithms
for pinwheel task systms has been the subject of much
research� Holte et al �	�� presented an algorithm which
schedules any pinwheel task system of two tasks with
density at most one� Lin � Lin ��	� have designed an
algorithm which schedules any pinwheel task system
of three tasks with a density at most �ve�sixth�s �this
algorithm is optimal in the sense that� as the third ex�
ample pinwheel task system in Example 	 shows� there
are three�task systems with density ��� � � that are
infeasible� for � arbitrarily small�� When the number
of tasks is not restricted� Holte et al �	�� have a sim�
ple and elegant algorithm for scheduling any pinwheel
task system with density at most one�half� Chan and
Chin �		� 	�� have signi�cantly improved this result�
designing a series of algorithms with successively bet�
ter density bounds� culminating �nally in one that can
schedule any pinwheel system with a density at most
��	� �	���

Pinwheel Scheduling for Bdisks Suppose that a
broadcast �le Fi is speci�ed by a size mi � N in blocks
and a latency Ti � N in seconds� Given F�� F�� � � � � Fn�
the problem of determining minimum bandwidth �in
blocks�sec� reduces to determining the smallest B � N
such that the system of pinwheel tasks �	��

f�	�m�� BT��� ���m�� BT��� � � � � �n�mn� BTn�g

can be scheduled� Since the algorithm of Chan and
Chin �	�� can schedule any pinwheel task system with
density at most ��	�� a bandwidth

B  

�
	�

�

nX
i��

mi

Ti

�
�	�

is su�cient for this purpose� since
Pn

i��
mi

Ti
is clearly

necessary� this represents a reasonably e�cient upper
bound� in that at most ��! extra bandwidth is being
required� Furthermore� this upper bound is easily and
e�ciently realised � given this much bandwidth� the
scheduling algorithm of Chan and Chin �	�� can be used
to determine the actual layout of blocks on the Bdisk�

The fault�tolerance case � when up to r faults must
be tolerated � is similarly handled� In this case� the



problem of determining minimum bandwidth reduces
to determining the smallest B � N such that the pin�
wheel task system f�	�m� � r� BT��� ���m� � r� BT���
� � � � �n�mn�r� BTn�g can be scheduled� By an analysis
similar to the one above� it follows that

B  

�
	�

�

nX
i��

mi � r

Ti

�

is su�cient� once again� this represents an e�cient so�
lution� with at most a ��! bandwidth overhead for
scheduling�

As a further generalization� suppose that each �le Fi
had a di�erent fault�tolerance requirement ri� There
could be several reasons for this
 First� some �les are
more important than others� and therefore less able to
tolerate errors� Second� consider a broadcast medium
model in which individual transmission errors occur in�
dependently of each other� and the occurrence of an
error during the transmission of a block renders the
entire block unreadable� Thus� larger �les �those with
greater mi� will need to tolerate a larger number of
faults �larger ri��

This generalization is easy to solve � as above� we
can derive

B  

�
	�

�

nX
i��

mi � ri
Ti

�
���

and argue that this is again e�cient with an at most
��! overhead cost�

�� Generalized Fault�tolerant Real�Time

Bdisks

In certain applications� it may be desirable to asso�
ciate with each �le several di�erent latencies depend�
ing upon the occurrence and severity of faults� Thus�
we may want very small latency under normal circum�
stances� but be willing to live with a certain degrada�
tion in performance when faults occur� This model is
examined below�

4.1. Model and Definitions

Let us assume that the available bandwidth is
known� A generalized fault�tolerant real�time broad�
cast �le Fi is speci�ed by a positive integer size

mi and a positive integer latency vector �di
def

 

�d
��	
i � d

��	
i � � � � � d

�ri	
i �� with the interpretation that it con�

sists of mi blocks� and the worst�case latency tolerable
in the presence of j faults is equal to the time required

to transmit d
�j	
i blocks� � � j � ri�

It is important to note that the generalized fault�
tolerant real�time Bdisks constitute a generalization of
the broadcast disk models studied in Section �� �Reg�
ular� real�time Bdisks � those with real�time but no
fault�tolerance constraints � are represented in this
model by setting ri to zero for each �le� �Regular�
fault�tolerant real�time Bdisks � those with both real�
time and fault�tolerance constraints � may be repre�
sented by setting all the latencies of a �le equal to each

other
 d
��	
i  d

��	
i  � � �  d

�ri	
i �

In the remainder of this section� we study the
design of broadcast programs for generalized fault�
tolerant real�time Bdisks�henceforth termed general�
ized Bdisks� As in Section �� we would like to map the
problem to related problems in pinwheel scheduling�

We start with some de�nitions


	� A broadcast program P for a system of n
�les F�� F�� � � � � Fn in a generalized Bdisks sys�
tem is a function from the positive integers to
f�� 	� � � � � ng� with the interpretation that P �t�  
i� 	 � i � n� i� a block of �le Fi is transmitted
during time�slot t� and P �t�  � i� nothing is
transmitted during time�slot t�

�� P�i is the sequence of integers t for which P �t�  
i�

�� Broadcast program P satis�es broadcast �le con�
dition bc�i�mi� �di� i� P�i contains at least mi� j

out of every d
�j	
i consecutive positive integers� for

all j � �� where �di
def

 �d
��	
i � d

��	
i � � � � � d

�ri	
i � is a vec�

tor of positive integers�

�� Broadcast program P satis�es pinwheel task con�
dition pc�i� a� b� i� P�i contains at least a out of
every b consecutive positive integers�

�� Broadcast program P satis�es a conjunct of �pin�
wheel task or broadcast �le� conditions i� it sat�
is�es each individual condition�

�� Let S� and S� be �broadcast� pinwheel� con�
junct� conditions� We say that S� � S� i� any
broadcast program satisfying S� also satis�es S��
We say S� � S� i� S� � S� and S� � S��

Observe that constructing a broadcast schedule for
a given set of �les F�� F�� � � � � Fn� with Fi characterized
by size mi and latency vector �di� is exactly equiva�
lent to determining a broadcast program that satis�esVn
i�� bc�i�mi� �di��

"From the de�nitions of broadcast �le condition and
pinwheel task condition �the bc�� and pc�� conditions
above�� we obtain

bc�i�mi� �di� �
�
j��

pc�i�mi � j� d
�j	
i � � ���



Lemma � follows as a direct consequence


Lemma � The problem of constructing a broadcast
schedule for F�� F�� � � � � Fn is equivalent to the follow�
ing pinwheel scheduling problem
 Determine a broad�
cast program that satis�es

n�
i��

�
��
j��

pc�i�mi � j� d
�j	
i �

�
A ���

4.2. Obtaining Broadcast Programs for Generalized
Bdisks

Recall that Chan and Chin �	�� have designed an
algorithm for scheduling any system of pinwheel tasks
that has a density of at most ���� In our notation� this
algorithm determines a P satisfying

pc�	� a�� b�� � pc��� a�� b�� � � � � � pc�n� an� bn��

provided �
Pn

i�� ai�bi� � ����

An important observation about this algorithm of
Chan and Chin �	�� is that it can only schedule pinwheel
task systems where each task is constrained by a single
pinwheel condition� That is� we do not have any i such
that both pc�i� a� b� and pc�i� a�� b�� must be satis�ed�

De�nition � A conjunct of pinwheel conditionsVn

i�� pc�ki� ai� bi� is nice if and only if kj � k� for
all j � ��

Since the Chan and Chin algorithm can only de�
termine schedules satisfying nice conjuncts of pinwheel
conditions� it is necessary that we reformulate the con�
straint ��� of Lemma � into a nice form if we are to
be able to use the Chan and Chin algorithm� In or�
der to do so� we must be able to convert a conjunct
of pinwheel conditions on a single task into either a
single pinwheel condition� or to a conjunct of pinwheel
conditions on several tasks� such that these new con�
ditions imply the original ones� Since the test of �	��
is density�based� we would like to be able to perform
such a conversion while causing the minimum possible
increase in the density of the system� That is� we are
attempting to solve the following problem

Conversion to nice pinwheel� Given a conjunct of
pinwheel conditions� determine a nice conjunct of pin�
wheel conditions of minimum density which implies the
given conjunct�

This seems to be a very di�cult problem� in the re�
mainder of this section� we present several heuristic

rules for obtaining a nice conjunct of pinwheel condi�
tions that implies a given conjunct of pinwheel condi�
tions� All these rules guarantee that the nice conjunct
will in fact imply the given conjunct� further� they all
attempt to obtain a minimal�density nice conjunct�

a� b� x� y� n are all non�negative integers�

R� pc�i� a� x� b� y�	 pc�i� a� b�

R� pc�i� na� nb�	 pc�i� a� b�

R� pc�i� a� x� b� x�	 pc�i� a� b�

R� pc�i� a� b�	 pc�i� 	� bb�ac�

R� pc�i� a� b� � pc�i� a � x� b � y� 	 pc�i� a� b� �
pc�i�� x� b� y� �map�i�� i��
where map�i�� i� indicates that tasks i� and i are
semantically indistinguishable �i�e�� although the
scheduler will schedule for the two tasks sepa�
rately� blocks from �le Fi are broadcast whenever
either task is scheduled��

R� pc�i� a� b� � pc�i� na� nb � x� 	 pc�i� a� b� �
pc�i�� x� nb� �map�i�� i�

Figure 6. Some pinwheel algebra rules
(Proofs may be found in [5])

In Figure �� we present some rules for manipulating
pinwheel conditions� In each� we have some condition
on the LHS that is implied by some �hopefully� more
useful� condition on the RHS� We may use these rules
to obtain some fairly useful generic transformations�
which are formally proved in ���


Transformation rule � 	TR�


bc�i�mi� �di�	 pc�i� 	�min
j��

f

�
d
�j	
i

mi � j

�
g�

Transformation rule � 	TR�


bc�i�mi� �di�	 pc�i�mi� d
��	
i �

� pc�i�� 	� d
��	
i � �map�i�� i�

� pc�i�� 	� d
��	
i � �map�i�� i�

� pc�i�� 	� d
��	
i � �map�i�� i�

� 
 
 


� pc�iri � 	� d
�ri	
i � �map�iri � i�



where ri is the dimension of �di� i�e�� di  

�d
�o	
i � d

��	
i � � � � � d

�ri	
i ��

Observe that maxj��f�mi � j��d
�j	
i g is a lower

bound on the density of any pinwheel condition �or
nice conjunct of pinwheel conditions� that may imply

bc�i�mi� �di�� �This bound may not be actually achiev�
able � for example� bc�i� �� ��� ��� is not implied by any
nice conjunct of pinwheel conditions of density � �����

We refer to maxj��f�mi�j��d
�j	
i g as the density lower

bound of broadcast �le condition bc�i�mi� �di��

By rule TR	� a broadcast �le with a density lower
bound in the range �	��k�	�� 	�k� gets transformed to
a pinwheel condition with density 	�k� In general� for
broadcast �les with a low density lower bound� this is
an adequate transformation �Examples � and � below��
for broadcast �les with higher density lower bounds�
however� rule TR�� along with a certain amount of ma�
nipulation using R��R�� may yield signi�cant savings
in density�

In general� then� the strategy should be as follows�
Given the speci�cations of a set of broadcast �les�

	� Use rule TR	 to determine a candidate transfor�
mation�

�� � Use Lemma � to obtain equivalent pinwheel
conditions� not necessarily in nice form�

� Use the rules R� � R� and R� to simplify� if
possible�

� Use rule R� on the simpli�ed pinwheel con�
ditions to obtain another candidate trans�
formation�

Choose the candidate transformation from among the
two above with the smaller density�

We conclude this section with some examples illus�
trating how these transformation rules may be used
to obtain nice pinwheel conjuncts that imply a given
broadcast �le speci�cation�

Example � Fi has mi  �� and �di  �	��� 	��� 		��
		�� 	���� This is represented by bc�i� �� �	���
	��� 		�� 		�� 	����� and has a density lower bound of
maxf����� �����	� ������� ����
�� �����g  ������ By
Rule TR
� this broadcast �le condition is implied by
pc�i� 	� 	��� which has a density of �����
 	 within
���! of the density lower bound�

Example � Fi has mi  �� and �di  �	��� 		��� This
is represented by bc�i� �� �	��� 		���� and has a density
lower bound of ������� By Rule TR
� this is implied by
pc�i� 	� 	��� which has a density of �������� By TR��
it is implied by pc�i� �� 	��� � pc�i�� 	� 		�� �map�i�� i��

in which case the density is ��	�� � 	�		�  �������
Hence� the latter transformation is selected� and the
actual density of the nice conjunct is within ��	! of
the lower bound�

The examples below illustrate how rules R��R� and
R� may be sometimes used to simplify the conjunct
of pinwheel conditions obtained by the application of
transformation rules TR	 and TR��

Example � Fi has mi  �� and �di  ��� 
�� This is
represented by bc�i� �� ��� 
��� and has a density lower
bound of ������� By Rule TR
� this is implied by
pc�i� 	� 	�� which has a density of 	��� By TR�� it is
implied by pc�i� �� �� � pc�i�� 	� 
� �map�i�� i�� in which
case the density is ��� � 	�
  ���			�

By observing that pc�i� �� �� 	 pc�i� 	� �� �by
R
�� and applying R� to conclude that pc�i� 	� �� �
pc�i� �� 
�	 pc�i� 	� ��� pc�i�� 	� 	���map�i�� i�� we ob�
tain a transformation that is even �better� 	 one with
density equal to 	�� � 	�	�  ������� i�e�� within �!
of the lower bound�

Example � When d
�j	
i  d

�j
�	
i � rule R� may be

used to rid of one conjunct� Thus� bc�i� �� ��� � ��� �
pc�i� �� �� � pc�i� �� �� � pc�i� �� ��� which simpli�es
to pc�i� �� �� � pc�i� �� ��� By R
� pc�i� �� �� �
pc�i� �� ��� by R�� pc�i� �� �� � pc�i� �� ��� Therefore�
bc�i� �� ��� �� ��� 	 pc�i� �� ��� Observe that this is an
optimal transformation� in that the density of this nice
pinwheel condition is equal to the density lower bound
of the broadcast condition�

Example � bc�i� 	� ��� ��� � pc�i� 	� �� � pc�i� �� ��� By
R�� pc�i� �� �� � pc�i� 	� ��� therefore� pc�i� �� ��� with
a density of ������� is an equivalent nice pinwheel con�
dition�

Applying TR� directly to bc�i� 	� ��� ��� would yield
the nice conjunct of pinwheel conditions pc�i� 	� �� �
pc�i�� �� �� � map�i� i��� which has a density of 	�� �
	��  �������

�� Summary

Previous work on broadcast disks did not deal ex�
plicitly with the fault�tolerance and timeliness con�
straints that may be imposed on the broadcasted data�
In this paper� we have de�ned a formal model for the
speci�cation of fault�tolerance and real�time require�
ments for broadcast disk �les� We have shown a close
link between the design of broadcast programs for such
disks and the previously studied problem of pinwheel



scheduling� and have proven some new results in pin�
wheel scheduling theory� These results enable us to de�
sign e�cient algorithms for organizing data on broad�
cast disks�
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