
Proceedings of ICDE’97: The IEEE International Conference on Data Engineering, April 1997, Birmingham, England.

Pinwheel Scheduling for Fault�tolerant Broadcast Disks

in Real�time Database Systems�

Sanjoy Baruah

The University of Vermont

Department of Computer Science

sanjoy�cs�uvm�edu

Azer Bestavros

Boston University

Computer Science Department

best�cs�bu�edu

Abstract

The design of programs for broadcast disks which
incorporate real�time and fault�tolerance requirements
is considered� A generalized model for real�time fault�
tolerant broadcast disks is de�ned� It is shown that
designing programs for broadcast disks speci�ed in this
model is closely related to the scheduling of pinwheel
task systems� Some new results in pinwheel scheduling
theory are derived� which facilitate the e�cient genera�
tion of real�time fault�tolerant broadcast disk programs�

�� Introduction

Mobile computers are likely to play an important
role at the extremities of future large�scale distributed
real�time databases� One such example is the use of
on�board automotive navigational systems that inter�
act with the database of an Intelligent Vehicle High�
way System �IVHS�� IVHS systems allow for auto�
mated route guidance and automated rerouting around
tra�c incidents by allowing the mobile vehicle soft�
ware to query and react to changes in IVHS databases
���� 	
�� Other examples include wearable computers
for soldiers in the battle�eld and computerized cable
boxes for future interactive TV networks and video�
on�demand� Such systems are characterized by the sig�
ni�cant discrepancy between the downstream commu�
nication capacity from servers �e�g� IVHS backbone� to
clients �e�g� vehicles� and the upstream communication
capacity from clients to servers� This discrepancy is the
result of
 �	� the huge disparity between the transmis�
sion capabilities of clients and servers �e�g�� broadcast�
ing via satellite from IVHS backbone to vehicles as op�

�This work has been partially supported by the NSF �grants
CCR�������� and CCR�����	�	
�

posed to cellular modem communication from vehicles
to IVHS backbone�� and ��� the scale of information
�ow �e�g�� thousands of clients may be connecting to
a single computer for service�� Moreover� the limited
power capacity of some mobile systems �e�g�� wearable
computers� requires them to have no secondary I�O
devices and to have only a small bu�er space �relative
to the size of the database� that acts as a cache for
the information system to which the mobile system is
attached�

Broadcast Disks� The concept of Broadcast Disks
�Bdisks� was introduced by Zdonik et al� ���� as a
mechanism that uses communication bandwidth to em�
ulate a storage device �or a memory hierarchy in gen�
eral� for mobile clients of a database system� The
basic idea �illustrated in Figure 	� is to exploit the
abundant bandwidth capacity available from a server
to its clients by continuously and repeatedly broadcast�
ing data to clients� thus in e�ect making the broadcast
channel act as a set of disks �hence the term �Broadcast
Disks�� from which clients could fetch data �as it goes
by�� Work on Bdisks is di�erent from previous work in
both wired and wireless networks �	�� 	�� in that sev�
eral sources of data are multiplexed and broadcast to
clients� thus creating a hierarchy of Bdisks with di�er�
ent sizes and speeds� On the server side� this hierarchy
gives rise to memory management issues �e�g�� alloca�
tion of data to Bdisks based on priority�urgency�� On
the client side� this hierarchy gives rise to cache man�
agement and prefetching issues �e�g�� cache replace�
ment strategies to improve the hit ratio or reduce miss
penalty�� In ���� Acharya� Franklin and Zdonik discuss
Bdisks organization issues� including client cache man�
agement �	�� client�initiated prefetching to improve the
communication latency for database access systems ����
and techniques for disseminating updates ����

Previous work in Bdisks technology was driven by

A1 A2 B1 A3 B2 A4 B3 A5 A1 A2 B1 A3 B2 A4 B3 A5

Program Broadcast Period

Figure 1. The Concept of Broadcast Disks

wireless applications and has concentrated on solving
the problems associated with the limited number of
uplink channels shared amongst a multitude of clients�
or the problems associated with elective disconnection
�as an extreme case of asymmetric communication��
when a remote �e�g� mobile� client computer system
must pre�load its cache before disconnecting� Problems
that arise when timing and reliability constraints are
imposed on the system were not considered�

Real�time considerations� There are many rea�
sons for subjecting Bdisk data retrieval to timing con�
straints� Perhaps the most compelling is due to the ab�
solute temporal consistency constraints ���� that may
be imposed on data objects� For example� the data
item in an Airborne Warning and Control System
�AWACS� recording the position of an aircraft with
a velocity of
�� km�hour may be subject to an ab�
solute temporal consistency constraint of ��� msecs�
in order to ensure a positional accuracy of 	�� meters
for client transactions �e�g� active transactions that
are �red up to warn soldiers to take shelter�� Notice
that not all database objects will have the same tempo�
ral consistency constraint� For example� the constraint
would only be �� ��� msecs for the data item recording
the position of a tank with a velocity of �� km�hour�
Other reasons for imposing timing constraints on data
retrieval from a Bdisk are due to the requirements
of database protocols for admission control �
�� con�
currency control� transaction scheduling ����� recovery
�	��� and bounded imprecision ���� ����

The real�time constraints imposed on Bdisks proto�
cols become even more pressing when issues of fault�
tolerance are to be considered� Current Bdisks pro�
tocols assume that the broadcast infrastructure is not
prone to failure� Therefore� when data is broadcast
from servers to clients� it is assumed that clients will
succeed in fetching that data as soon �as it goes by��
The result of an error in fetching data from a Bdisk is
that clients have to wait until this data is re�broadcast
by the server� For non�real�time applications� such a
mishap is tolerable and is translated to a longer�than�

usual latency� and thus deserves little consideration�
However� in a real�time environment� waiting for a
complete retransmission may imply missing a critical
deadline� and subjecting clients to possibly severe con�
sequences�

This research� The contributions of this paper are
twofold� First� we show that the problem of design�
ing real�time Bdisk programs is intimately linked to
the pinwheel scheduling problem �	��� and make use of
this link to �	� derive upper bounds on the bandwidth
requirements for real�time fault�tolerant Bdisks �corre�
sponding to the lower bounds in ����� and ��� obtain
e�cient algorithms for designing fault�tolerant real�
time Bdisk programs� Next� we present a more gen�
eral model for real�time fault�tolerant Bdisks that sub�
sumes the simple model presented in ���� We derive a
pinwheel algebra�some simple rules for manipulating
pinwheel conditions�and demonstrate through exam�
ples how these rules may be used to e�ciently construct
broadcast programs for generalized fault�tolerant real�
time Bdisks�

The rest of this paper is organized as follows� In Sec�
tion �� we discuss the basics of AIDA�based organiza�
tion of Bdisks for timeliness and fault tolerance as pro�
posed in ���� In Section �� we review pinwheel schedul�
ing theory� and describe how AIDA�based Bdisks are
related to pinwheel systems� In Section �� we intro�
duce the concept of generalized real�time fault�tolerant
Bdisks� and describe pinwheel�based procedures for or�
ganizing data on such disks�

�� AIDA�based Bdisks

We model a Bdisks system as being comprised of a
set of data items �or �les� that must be transmitted
continuously and periodically to the client population�
Each data item consists of a number of blocks� A block
is the basic� indivisible unit of broadcast �e�g�� page��
We assume that the retrieval of a data item by a client
is subject to a time constraint imposed by the real�time
process that needs that data item�

When an error occurs in the retrieval of one or more
blocks from a data item� then the client must wait for a
full broadcast period before being able to retrieve the
erroneous block� This broadcast period may be very
long since the broadcast disk may include thousands
of other blocks� which the server must transmit before
getting back to the block in question� For real�time
systems� such a delay may result in missing critical
timing constraints� In ���� Bestavros proposed the use
of AIDA to mask �or otherwise minimize� the impact

of such failures in a real�time environment� AIDA is
a technique for dynamic bandwidth allocation� which
makes use of minimal� controlled redundancy to guar�
antee timeliness and fault�tolerance up to any degree of
con�dence� AIDA is an elaboration on the Information
Dispersal Algorithm of Rabin �����

2.1. Information Dispersal and Retrieval

Let F represent the original data object �hereinafter
referred to as the �le� to be communicated �or re�
trieved�� Furthermore� assume that �le F is to be com�
municated by sending N independent transmissions�
Using Rabin�s IDA algorithm� the �le F can be pro�
cessed to obtain N distinct blocks in such a way that
recombining anym of these blocks� m � N � is su�cient
to retrieve F � The process of processing F is called the
dispersal of F � whereas the process of retrieving F by
collecting m of its pieces is called the reconstruction of
F � Both the dispersal and reconstruction operations
can be performed in real�time ����

The dispersal and reconstruction operations are sim�
ple linear transformations using irreducible polynomial
arithmetic�� The dispersal operation shown in Fig�
ure � amounts to a matrix multiplication �performed
in the domain of a particular irreducible polynomial�
that transforms data from m blocks of the original �le
into the N blocks to be dispersed� The N rows of the
transformation matrix �xij �N�m are chosen so that any
m of these rows are mutually independent� which im�
plies that the matrix consisting of any such m rows is
not singular� and thus invertible� This guarantees that
reconstructing the original �le from any m of its dis�
persed blocks is feasible� Indeed� upon receiving any
m of the dispersed blocks� it is possible to reconstruct
the original data through another matrix multiplica�
tion as shown in Figure �� The transformation matrix
�yij �m�m is the inverse of a matrix �x�ij �m�m� which is
obtained by removing N�m rows from �xij �N�m� The
removed rows correspond to dispersed blocks that were
not used in the reconstruction process� To reduce the
overhead of the algorithm� the inverse transformation
�yij �m�m could be precomputed for some or even all
possible subsets of m rows�

In this paper� we assume that broadcasted blocks
are self�identifying�� In particular� each block has two
identi�ers� The �rst speci�es the data item to which
the block belongs �e�g�� this is page � of object Z�� The

�For more details� we refer the reader to the papers by Rabin

	�� and Bestavros
�� on IDA implementation�

�Another alternative is to broadcast a directory �or index
���

at the beginning of each broadcast period� This approach is less
desirable because it does not lend itself to a clean fault�tolerant
organization�

X11

X21

XN1

X12

X22

XN2

X1m

X2m

XNm

A1

A2

Am

A’1

A’2

A’N

 Blocks of
Original File

 Blocks of
Dispersed File

 Dispersal
Transformation Matrix

Dispersal Operation

Y11

Y21

Ym1

Y12

Y22

Ym2

Y1m

Y2m

Ymm

A’1

A’2

A’m

A1

A2

Am

 Blocks of
Received File

 Blocks of
Reconstructed File

 Reconstruction
Transformation Matrix

Reconstruction Operation

Figure 2. The Dispersal and Reconstruction
operations of IDA.

second speci�es the sequence number of the block rela�
tive to all blocks that make�up the data item �e�g�� this
is block � out of ��� This is necessary so that clients
could relate blocks to objects� and more importantly�
to allow clients to correctly choose the inverse trans�
formation �yij �m�m when using IDA�

2.2. Adaptive IDA

In most fault�tolerant redundancy�injecting commu�
nication protocols� redundancy is injected in the form
of parity blocks� which are only used for error detection
and�or correction purposes �	��� The IDA approach is
di�erent in that redundancy is added uniformly� there
is simply no distinction between data and parity� It is
this feature that makes it possible to scale the amount
of redundancy used in IDA� Indeed� this is the basis
for the adaptive IDA �AIDA� ���� Using AIDA� a band�
width allocation operation is inserted after the dispersal
operation but prior to transmission as shown in Figure
�� This bandwidth allocation step allows the system to
scale the amount of redundancy used in the transmis�
sion� In particular� the number of blocks to be trans�
mitted� namely n� is allowed to vary from m �i�e� no
redundancy� to N �i�e� maximum redundancy��

The reliability and accessibility requirements of var�
ious data objects in a distributed real�time application
depend on the system mode of operation� For exam�
ple� the fault�tolerant timely access of a data object
�e�g�� �location of nearby aircrafts�� could be critical
in a given mode of operation �e�g�� �combat��� but less
critical in a di�erent mode �e�g�� �landing��� and even
completely unimportant in others� Using the proposed
AIDA� it is possible to dynamically adjust the relia�
bility and accessibility pro�les for the various objects
��les� in the system by controlling their level of disper�
sal� In other words� given the requirements of a par�
ticular mode of operation� servers could use the band�
width allocation step of AIDA to scale down the re�
dundancy used with unimportant �e�g�� non�real�time�
data items� while boosting it for critical data items�

A1

A2

Am

A’1

A’2

A’N

A’1

A’2

A’n

A’1

A’2

A’r

A1

A2

Am

Dispersal Bandwidth
 Allocation Transmission Reconstruction

(only if r >= m)

Figure 3. AIDA dispersal and reconstruction

2.3. AIDA-based Broadcast Programs

Figure � illustrates a simple example of a �at broad�
cast program in which two �les A and B are trans�
mitted periodically by scanning through their respec�
tive blocks� In particular� �le A consists of � blocks
A�� � � � � A� and �le B consists of � blocks B�� � � � � B��
The broadcast period for this broadcast disk is � �as�
suming one unit of time per block�� A single error
encountered when retrieving a block results in a delay
of � units of time� until the erroneous block is retrans�
mitted�

Lemma � If the broadcast period of a �at broadcast
program is � � then an upper bound on the worst�case
delay incurred when retrieving that �le is r� units of
time� where r is the number of block transmission er�
rors�

A1 A2 B1 A3 B2 A4 B3 A5 A1 A2 B1 A3 B2 A4 B3 A5

Program Broadcast Period

Figure 4. A flat broadcast program

Now� consider the same scenario if �les A and B were
dispersed using AIDA such that �le A is dispersed into
	� blocks� of which any � blocks are enough to recon�
struct it� and �le B is dispersed into � blocks� of which
any � blocks are enough to reconstruct it� Figure �
shows a broadcast program in which �les A and B are
transmitted periodically by scanning through their re�
spective blocks� Notice that there are two �periods�
in that transmission� The �rst is the broadcast period�
which �as before� extends for � units of time� The
length of the broadcast period for a broadcast disk is
set so as to accomodate enough blocks from every �le
on that disk�enough to allow clients to reconstruct
these �les� In the example of Figure �� at least � di�er�
ent blocks and � di�erent blocks are needed from �les A
and B� respectively� While the broadcast period for the
broadcast disk is still �� the server transmits di�erent
blocks from A and B in subsequent broadcast periods�

This leads to the second �period� in the broadcast pro�
gram� which we call the program data cycle� The length
of the program data cycle for a broadcast disk is set to
accomodate all blocks from all the dispersed �les on
that disk� In the example of Figure �� all 	� blocks
and all � blocks from dispersed �les A and B exist in
the program� resulting in a program data cycle of 	��

B1 A2 A3 B2 A4 B3 A5 A6 B4 A7 A8 B5 A9 B6 A10

Program Broadcast Period

’ ’ ’ ’ ’ ’ ’ ’

Program Data Cycle

A1
’ ’ ’ ’ ’ ’ ’ ’

A1

A2

A3

A4

A5

A1
’

A2
’

A3
’

A10
’

IDA

File A

Before Dispersal
 (5 blocks)

After Dispersal
 (10 blocks)

B1

B2

B3

B1
’

B2
’

B3
’

6B’

IDA

File B

Before Dispersal
 (3 blocks)

After Dispersal
 (6 blocks)

Figure 5. A flat broadcast program using IDA

Unlike the example of Figure �� a single error en�
countered when retrieving a block �say from �le A�
results in a delay of at most � units of time� until any
additional block from �le A is transmitted� For exam�
ple� assume that a client received the �rst � blocks�
A�� A�� A�� A� from �le A correctly� but failed to re�
ceive the �fth block� In the regime of Figure �� the
client must wait for � cycles until A� is transmitted
again� In the regime of Figure �� the client has to wait
only until A�� is transmitted� which implies a delay of
only 	 unit of time�

The value of AIDA�based broadcast programs is fur�
ther appreciated by comparing the delays that a client
may experience if errors clobber more than one block
during the retrieval of a particular �le

Lemma � If the maximum time between any two
blocks of a dispersed �le in an AIDA�based �at broad�
cast program is �� then an upper bound on the worst�
case delay incurred when retrieving that �le is r��
where r is the number of block transmission errors�

From lemmas 	 and �� an AIDA�based �at broadcast
program yields error recovery delays �

�
times shorter

than those of a simple �at broadcast program� To max�
imize the bene�t of AIDA�based organization in reduc�
ing error recovery delays� the various blocks of a given
�le should be �uniformly� distributed throughout the
broadcast period� In the remainder of this paper� we
discuss the use of pinwheel scheduling to achieve such

uniform distribution�

�� Pinwheel Task Systems

Pinwheel task systems were introduced by Holte et
al� �	��� in the context of o�ine scheduling for satellite�
based communication� Consider a shared resource
that is to be scheduled in accordance with the Inte�
gral Boundary Constraint
 for each integer t � �� the
resource must be allocated to exactly one task �or re�
main unallocated� over the entire time interval �t� t�	��
�We refer to this time interval as time slot t�� For our
purposes� a pinwheel task i is characterized by two pos�
itive integer parameters � a computation requirement a
and a window size b � with the interpretation that the
task i needs to be allocated the shared resource for at
least a out of every b consecutive time slots� The task
may represent a real�time embedded process or a data�
transfer operation �between� for example� a sensor and
a CPU� that executes continually during the lifetime of
the embedded system� the parameter a typically rep�
resents the computation requirement of the process� or
the amount of data to be transferred� while the param�
eter b represents a real�time constraint � a deadline �
on the execution of the process� or for the completion
of the data transfer� Such a pinwheel task is repre�
sented by the ordered ��tuple �i� a� b�� A pinwheel task
system is a set of pinwheel tasks that share a single
resource� The following examples illustrate the notion
of pinwheel task systems

Example � The pinwheel task system f�	� 	� ���
��� 	� ��g consists of two tasks 	 one with a compu�
tation requirement
 and window size �� and the other
with computation requirement
 and window size �� A
schedule for this task system may be represented as fol�
lows
 	� �� 	� �� 	� �� 	� �� � � �� indicating that the shared
resource is allocated to tasks 	 and � on alternate slots�

The pinwheel task system f�	� �� ��� ��� 	� ��g consists
of two tasks 	 one with a computation requirement �
and window size �� and the other with computation re�
quirement
 and window size �� A schedule for this
task system is
 	� �� 	� O� �� 	� �� 	� O� �� 	� �� 	� O� �� � � ��
where �O� indicates that the resource remains unallo�
cated during the corresponding time slot�

The pinwheel task system f�	� 	� ��� ��� 	� ��� ��� 	� n�g
consists of three tasks 	 one with a computation re�
quirement
 and window size �� a second with compu�
tation requirement
 and window size �� and a third
with computation requirement
 and window size n� It
is not di�cult to see that this system cannot be sched�
uled for any �nite value of n�

The ratio of the computation requirement of a task
to its window size is referred to as the density of the
task� The density of a system of tasks is simply the sum
of the densities of all the tasks in the system� Observe
that� for a task system to be schedulable� it is neces�
sary �although not su�cient� as the third instance in
Example 	 shows� that the density of the system be at
most one�

The issue of designing e�cient scheduling algorithms
for pinwheel task systms has been the subject of much
research� Holte et al �	�� presented an algorithm which
schedules any pinwheel task system of two tasks with
density at most one� Lin � Lin ��	� have designed an
algorithm which schedules any pinwheel task system
of three tasks with a density at most �ve�sixth�s �this
algorithm is optimal in the sense that� as the third ex�
ample pinwheel task system in Example 	 shows� there
are three�task systems with density ��� � � that are
infeasible� for � arbitrarily small�� When the number
of tasks is not restricted� Holte et al �	�� have a sim�
ple and elegant algorithm for scheduling any pinwheel
task system with density at most one�half� Chan and
Chin �		� 	�� have signi�cantly improved this result�
designing a series of algorithms with successively bet�
ter density bounds� culminating �nally in one that can
schedule any pinwheel system with a density at most
��	� �	���

Pinwheel Scheduling for Bdisks Suppose that a
broadcast �le Fi is speci�ed by a size mi � N in blocks
and a latency Ti � N in seconds� Given F�� F�� � � � � Fn�
the problem of determining minimum bandwidth �in
blocks�sec� reduces to determining the smallest B � N
such that the system of pinwheel tasks �	��

f�	�m�� BT��� ���m�� BT��� � � � � �n�mn� BTn�g

can be scheduled� Since the algorithm of Chan and
Chin �	�� can schedule any pinwheel task system with
density at most ��	�� a bandwidth

B

�
	�

�

nX
i��

mi

Ti

�
�	�

is su�cient for this purpose� since
Pn

i��
mi

Ti
is clearly

necessary� this represents a reasonably e�cient upper
bound� in that at most ��! extra bandwidth is being
required� Furthermore� this upper bound is easily and
e�ciently realised � given this much bandwidth� the
scheduling algorithm of Chan and Chin �	�� can be used
to determine the actual layout of blocks on the Bdisk�

The fault�tolerance case � when up to r faults must
be tolerated � is similarly handled� In this case� the

problem of determining minimum bandwidth reduces
to determining the smallest B � N such that the pin�
wheel task system f�	�m� � r� BT��� ���m� � r� BT���
� � � � �n�mn�r� BTn�g can be scheduled� By an analysis
similar to the one above� it follows that

B

�
	�

�

nX
i��

mi � r

Ti

�

is su�cient� once again� this represents an e�cient so�
lution� with at most a ��! bandwidth overhead for
scheduling�

As a further generalization� suppose that each �le Fi
had a di�erent fault�tolerance requirement ri� There
could be several reasons for this
 First� some �les are
more important than others� and therefore less able to
tolerate errors� Second� consider a broadcast medium
model in which individual transmission errors occur in�
dependently of each other� and the occurrence of an
error during the transmission of a block renders the
entire block unreadable� Thus� larger �les �those with
greater mi� will need to tolerate a larger number of
faults �larger ri��

This generalization is easy to solve � as above� we
can derive

B

�
	�

�

nX
i��

mi � ri
Ti

�
���

and argue that this is again e�cient with an at most
��! overhead cost�

�� Generalized Fault�tolerant Real�Time

Bdisks

In certain applications� it may be desirable to asso�
ciate with each �le several di�erent latencies depend�
ing upon the occurrence and severity of faults� Thus�
we may want very small latency under normal circum�
stances� but be willing to live with a certain degrada�
tion in performance when faults occur� This model is
examined below�

4.1. Model and Definitions

Let us assume that the available bandwidth is
known� A generalized fault�tolerant real�time broad�
cast �le Fi is speci�ed by a positive integer size

mi and a positive integer latency vector �di
def

�d
��	
i � d

��	
i � � � � � d

�ri	
i �� with the interpretation that it con�

sists of mi blocks� and the worst�case latency tolerable
in the presence of j faults is equal to the time required

to transmit d
�j	
i blocks� � � j � ri�

It is important to note that the generalized fault�
tolerant real�time Bdisks constitute a generalization of
the broadcast disk models studied in Section �� �Reg�
ular� real�time Bdisks � those with real�time but no
fault�tolerance constraints � are represented in this
model by setting ri to zero for each �le� �Regular�
fault�tolerant real�time Bdisks � those with both real�
time and fault�tolerance constraints � may be repre�
sented by setting all the latencies of a �le equal to each

other
 d
��	
i d

��	
i � � � d

�ri	
i �

In the remainder of this section� we study the
design of broadcast programs for generalized fault�
tolerant real�time Bdisks�henceforth termed general�
ized Bdisks� As in Section �� we would like to map the
problem to related problems in pinwheel scheduling�

We start with some de�nitions

	� A broadcast program P for a system of n
�les F�� F�� � � � � Fn in a generalized Bdisks sys�
tem is a function from the positive integers to
f�� 	� � � � � ng� with the interpretation that P �t�
i� 	 � i � n� i� a block of �le Fi is transmitted
during time�slot t� and P �t� � i� nothing is
transmitted during time�slot t�

�� P�i is the sequence of integers t for which P �t�
i�

�� Broadcast program P satis�es broadcast �le con�
dition bc�i�mi� �di� i� P�i contains at least mi� j

out of every d
�j	
i consecutive positive integers� for

all j � �� where �di
def

 �d
��	
i � d

��	
i � � � � � d

�ri	
i � is a vec�

tor of positive integers�

�� Broadcast program P satis�es pinwheel task con�
dition pc�i� a� b� i� P�i contains at least a out of
every b consecutive positive integers�

�� Broadcast program P satis�es a conjunct of �pin�
wheel task or broadcast �le� conditions i� it sat�
is�es each individual condition�

�� Let S� and S� be �broadcast� pinwheel� con�
junct� conditions� We say that S� � S� i� any
broadcast program satisfying S� also satis�es S��
We say S� � S� i� S� � S� and S� � S��

Observe that constructing a broadcast schedule for
a given set of �les F�� F�� � � � � Fn� with Fi characterized
by size mi and latency vector �di� is exactly equiva�
lent to determining a broadcast program that satis�esVn
i�� bc�i�mi� �di��

"From the de�nitions of broadcast �le condition and
pinwheel task condition �the bc�� and pc�� conditions
above�� we obtain

bc�i�mi� �di� �
�
j��

pc�i�mi � j� d
�j	
i � � ���

Lemma � follows as a direct consequence

Lemma � The problem of constructing a broadcast
schedule for F�� F�� � � � � Fn is equivalent to the follow�
ing pinwheel scheduling problem
 Determine a broad�
cast program that satis�es

n�
i��

�
��
j��

pc�i�mi � j� d
�j	
i �

�
A ���

4.2. Obtaining Broadcast Programs for Generalized
Bdisks

Recall that Chan and Chin �	�� have designed an
algorithm for scheduling any system of pinwheel tasks
that has a density of at most ���� In our notation� this
algorithm determines a P satisfying

pc�	� a�� b�� � pc��� a�� b�� � � � � � pc�n� an� bn��

provided �
Pn

i�� ai�bi� � ����

An important observation about this algorithm of
Chan and Chin �	�� is that it can only schedule pinwheel
task systems where each task is constrained by a single
pinwheel condition� That is� we do not have any i such
that both pc�i� a� b� and pc�i� a�� b�� must be satis�ed�

De�nition � A conjunct of pinwheel conditionsVn

i�� pc�ki� ai� bi� is nice if and only if kj � k� for
all j � ��

Since the Chan and Chin algorithm can only de�
termine schedules satisfying nice conjuncts of pinwheel
conditions� it is necessary that we reformulate the con�
straint ��� of Lemma � into a nice form if we are to
be able to use the Chan and Chin algorithm� In or�
der to do so� we must be able to convert a conjunct
of pinwheel conditions on a single task into either a
single pinwheel condition� or to a conjunct of pinwheel
conditions on several tasks� such that these new con�
ditions imply the original ones� Since the test of �	��
is density�based� we would like to be able to perform
such a conversion while causing the minimum possible
increase in the density of the system� That is� we are
attempting to solve the following problem

Conversion to nice pinwheel� Given a conjunct of
pinwheel conditions� determine a nice conjunct of pin�
wheel conditions of minimum density which implies the
given conjunct�

This seems to be a very di�cult problem� in the re�
mainder of this section� we present several heuristic

rules for obtaining a nice conjunct of pinwheel condi�
tions that implies a given conjunct of pinwheel condi�
tions� All these rules guarantee that the nice conjunct
will in fact imply the given conjunct� further� they all
attempt to obtain a minimal�density nice conjunct�

a� b� x� y� n are all non�negative integers�

R� pc�i� a� x� b� y�	 pc�i� a� b�

R� pc�i� na� nb�	 pc�i� a� b�

R� pc�i� a� x� b� x�	 pc�i� a� b�

R� pc�i� a� b�	 pc�i� 	� bb�ac�

R� pc�i� a� b� � pc�i� a � x� b � y� 	 pc�i� a� b� �
pc�i�� x� b� y� �map�i�� i��
where map�i�� i� indicates that tasks i� and i are
semantically indistinguishable �i�e�� although the
scheduler will schedule for the two tasks sepa�
rately� blocks from �le Fi are broadcast whenever
either task is scheduled��

R� pc�i� a� b� � pc�i� na� nb � x� 	 pc�i� a� b� �
pc�i�� x� nb� �map�i�� i�

Figure 6. Some pinwheel algebra rules
(Proofs may be found in [5])

In Figure �� we present some rules for manipulating
pinwheel conditions� In each� we have some condition
on the LHS that is implied by some �hopefully� more
useful� condition on the RHS� We may use these rules
to obtain some fairly useful generic transformations�
which are formally proved in ���

Transformation rule � 	TR�

bc�i�mi� �di�	 pc�i� 	�min
j��

f

�
d
�j	
i

mi � j

�
g�

Transformation rule � 	TR�

bc�i�mi� �di�	 pc�i�mi� d
��	
i �

� pc�i�� 	� d
��	
i � �map�i�� i�

� pc�i�� 	� d
��	
i � �map�i�� i�

� pc�i�� 	� d
��	
i � �map�i�� i�

�

� pc�iri � 	� d
�ri	
i � �map�iri � i�

where ri is the dimension of �di� i�e�� di

�d
�o	
i � d

��	
i � � � � � d

�ri	
i ��

Observe that maxj��f�mi � j��d
�j	
i g is a lower

bound on the density of any pinwheel condition �or
nice conjunct of pinwheel conditions� that may imply

bc�i�mi� �di�� �This bound may not be actually achiev�
able � for example� bc�i� �� ��� ��� is not implied by any
nice conjunct of pinwheel conditions of density � �����

We refer to maxj��f�mi�j��d
�j	
i g as the density lower

bound of broadcast �le condition bc�i�mi� �di��

By rule TR	� a broadcast �le with a density lower
bound in the range �	��k�	�� 	�k� gets transformed to
a pinwheel condition with density 	�k� In general� for
broadcast �les with a low density lower bound� this is
an adequate transformation �Examples � and � below��
for broadcast �les with higher density lower bounds�
however� rule TR�� along with a certain amount of ma�
nipulation using R��R�� may yield signi�cant savings
in density�

In general� then� the strategy should be as follows�
Given the speci�cations of a set of broadcast �les�

	� Use rule TR	 to determine a candidate transfor�
mation�

�� � Use Lemma � to obtain equivalent pinwheel
conditions� not necessarily in nice form�

� Use the rules R� � R� and R� to simplify� if
possible�

� Use rule R� on the simpli�ed pinwheel con�
ditions to obtain another candidate trans�
formation�

Choose the candidate transformation from among the
two above with the smaller density�

We conclude this section with some examples illus�
trating how these transformation rules may be used
to obtain nice pinwheel conjuncts that imply a given
broadcast �le speci�cation�

Example � Fi has mi �� and �di �	��� 	��� 		��
		�� 	���� This is represented by bc�i� �� �	���
	��� 		�� 		�� 	����� and has a density lower bound of
maxf����� �����	� ������� ����
�� �����g ������ By
Rule TR
� this broadcast �le condition is implied by
pc�i� 	� 	��� which has a density of �����
 	 within
���! of the density lower bound�

Example � Fi has mi �� and �di �	��� 		��� This
is represented by bc�i� �� �	��� 		���� and has a density
lower bound of ������� By Rule TR
� this is implied by
pc�i� 	� 	��� which has a density of �������� By TR��
it is implied by pc�i� �� 	��� � pc�i�� 	� 		�� �map�i�� i��

in which case the density is ��	�� � 	�		� �������
Hence� the latter transformation is selected� and the
actual density of the nice conjunct is within ��	! of
the lower bound�

The examples below illustrate how rules R��R� and
R� may be sometimes used to simplify the conjunct
of pinwheel conditions obtained by the application of
transformation rules TR	 and TR��

Example � Fi has mi �� and �di ���
�� This is
represented by bc�i� �� ���
��� and has a density lower
bound of ������� By Rule TR
� this is implied by
pc�i� 	� 	�� which has a density of 	��� By TR�� it is
implied by pc�i� �� �� � pc�i�� 	�
� �map�i�� i�� in which
case the density is ��� � 	�
 ���			�

By observing that pc�i� �� �� 	 pc�i� 	� �� �by
R
�� and applying R� to conclude that pc�i� 	� �� �
pc�i� ��
�	 pc�i� 	� ��� pc�i�� 	� 	���map�i�� i�� we ob�
tain a transformation that is even �better� 	 one with
density equal to 	�� � 	�	� ������� i�e�� within �!
of the lower bound�

Example � When d
�j	
i d

�j
�	
i � rule R� may be

used to rid of one conjunct� Thus� bc�i� �� ��� � ��� �
pc�i� �� �� � pc�i� �� �� � pc�i� �� ��� which simpli�es
to pc�i� �� �� � pc�i� �� ��� By R
� pc�i� �� �� �
pc�i� �� ��� by R�� pc�i� �� �� � pc�i� �� ��� Therefore�
bc�i� �� ��� �� ��� 	 pc�i� �� ��� Observe that this is an
optimal transformation� in that the density of this nice
pinwheel condition is equal to the density lower bound
of the broadcast condition�

Example � bc�i� 	� ��� ��� � pc�i� 	� �� � pc�i� �� ��� By
R�� pc�i� �� �� � pc�i� 	� ��� therefore� pc�i� �� ��� with
a density of ������� is an equivalent nice pinwheel con�
dition�

Applying TR� directly to bc�i� 	� ��� ��� would yield
the nice conjunct of pinwheel conditions pc�i� 	� �� �
pc�i�� �� �� � map�i� i��� which has a density of 	�� �
	�� �������

�� Summary

Previous work on broadcast disks did not deal ex�
plicitly with the fault�tolerance and timeliness con�
straints that may be imposed on the broadcasted data�
In this paper� we have de�ned a formal model for the
speci�cation of fault�tolerance and real�time require�
ments for broadcast disk �les� We have shown a close
link between the design of broadcast programs for such
disks and the previously studied problem of pinwheel

scheduling� and have proven some new results in pin�
wheel scheduling theory� These results enable us to de�
sign e�cient algorithms for organizing data on broad�
cast disks�

References

��� S� Acharya� R� Alonso� M� Franklin� and S� Zdonik�
Broadcast disks� Data management for asymmetric
communications environments� In Proceedings of ACM
SIGMOD conference� San Jose� CA� May �����

��� S� Acharya� M� Franklin�
and S� Zdonik� Dissemination	based data delivery us	
ing broadcast disks� IEEE Personal Communications�
�
��� December �����

�
� S� Acharya� M� Franklin� and S� Zdonik� Dissemi	
nating updates on broadcast disks� In Proceedings of

VLDB���� The ���� International Conference on Very

Large Databases� India� September �����
��� S� Acharya� M� Franklin� and S� Zdonik� Prefetching

from a broadcast disk� In Proceedings of ICDE���� The
���� International Conference on Data Engineering�
New Orleans� Louisiana� March �����

��� S� Baruah and A� Bestavros� Pinwheel scheduling
for fault	tolerant broadcast disks in real	time database
systems� Technical Report TR��������
� Computer
Science Department� Boston University� �����

��� A� Bestavros� SETH� A VLSI chip for the real	time in	
formation dispersal and retrieval for security and fault	
tolerance� In Proceedings of ICPP���� The ���� Inter�

national Conference on Parallel Processing� Chicago�
Illinois� August �����

��� A� Bestavros� An adaptive information dispersal al	
gorithm for time	critical reliable communication� In
I� Frisch� M� Malek� and S� Panwar� editors� Network
Management and Control� Volume II� Plenum Publish	
ing Corporation� New York� New York� �����

��� A� Bestavros� AIDA	based real	time fault	tolerant
broadcast disks� In Proceedings of RTAS���� The ����

IEEE Real�Time Technology and Applications Sympo�

sium� Boston� Massachusetts� May �����
��� A� Bestavros and S� Nagy� Value	cognizant admission

control for rtdbs� In Proceedings of RTSS���� The ��th

IEEE Real�Time System Symposium� Washington� DC�
December �����

���� M� Y� Chan and F� Chin� Schedulers for the pinwheel
problem based on double	integer reduction� IEEE

Transactions on Computers� ��
����������� June �����
���� M� Y� Chan and F� Chin� Schedulers for larger classes

of pinwheel instances� Algorithmica� ���������� ���
�
���� G� Gibson� L� Hellerstein� R� Karp� R� Katz� and

D� Patterson� Coding techniques for handling fail	
ures in large disk arrays� Technical Report UCB�CSD
������� Computer Science Division� University of Cal	
ifornia� July �����

��
� D� Gi�ord� Ploychannel systems for mass digital com	
munication� Communications of the ACM�

� Febru	
ary �����

���� R� Holte� A� Mok� L� Rosier� I� Tulchinsky� and
D� Varvel� The pinwheel� A real	time scheduling prob	
lem� In Proceedings of the ��nd Hawaii International

Conference on System Science� pages ��
����� Kailua	
Kona� January �����

���� R� Holte� L� Rosier� I� Tulchinsky� and D� Varvel� Pin	
wheel scheduling with two distinct numbers� Theoret�
ical Computer Science� ���
��������
�� �����

���� J� Huang and L� Gruenwald� An update	frequency	
valid	interval partition checkpoint technique for real	
time main memory databases� In Proceedings

of RTDB���� The ���� Workshop on Real�Time

Databases� pages �
����
� Newport Beach� California�
March �����

���� T� Imielinski and B� Badrinath� Mobile wireless com	
puting� Challenges in data management� Communica�
tions of the ACM�
�� October �����

���� T� Imielinski� S� Viswanathan� and B� Badrinath� En	
ergy e�cient indexing on air� In Proceedings of ACM

SIGMOD Conference� Minneapolis� MN� May �����
���� IVHS America� IVHS architecture development pro	

gram� Interim status report� April �����
���� R� Jurgen� Smart cars and highways go global� IEEE

Spectrum� pages ���
�� May �����
���� S� S� Lin and K� J� Lin� Pinwheel scheduling with

three distinct numbers� In Proceedings of the EuroMi�

cro Workshop on Real�Time Systems� Vaesteraas� Swe	
den� June �����

���� �Ozg�ur Ulusoy and A� Buchmann� Exploiting main
memory dbms features to improve real	time concur	
rency protocols� ACM SIGMOD Record� ��
��� March
�����

��
� M� O� Rabin� E�cient dispersal of information for
security� load balancing and fault tolerance� Journal of
the Association for Computing Machinery�
�
���

��

��� April �����

���� K� Ramamritham� Real	time databases� International
journal of Distributed and Parallel Databases� �
���
���
�

���� W�	K� Shih� J� Liu� and J�	Y� Chung� Algorithms for
scheduling imprecise computations with timing con	
straints� SIAM journal of Computing� July �����

���� V� F� Wolfe� L� C� DiPippo� and J� K� Black� Sup	
porting concurrency� timing constraints and impreci	
sion in objects� Technical Report TR��	�
�� Univer	
sity of Rhode Island� Computer Science Department�
December �����

���� S� Zdonik� M� Franklin� R� Alonso� and S� Acharya�
Are �disks in the air� just pie in the sky� In Proceedings
of the IEEE Workshop on Mobile Computing Systems

and Applications� Santa Cruz� CA� December �����

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

