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Abstract

Current Internet transport protocols make end-to-end
measurements and maintain per-connection state to reg-
ulate the use of shared network resources. When two
or more such connections share a common endpoint,
there is an opportunity to correlate the end-to-end mea-
surements made by these protocols to better diagnose
and control the use of shared resources. We develop
packet probing techniques to determine whether a pair
of connections experience shared congestion. Correct,
efficient diagnoses could enable new techniques for ag-
gregate congestion control, QoS admission control, con-
nection scheduling and mirror site selection. Our ex-
tensive simulation results demonstrate that the con-
ditional (Bayesian) probing approach we employ pro-
vides superior accuracy, converges faster, and tolerates
a wider range of network conditions than recently pro-
posed memoryless (Markovian) probing approaches.

1. Introduction

One of the defining principles of the network protocols

used in the Internet lies in their ability to manage and
share network resources fairly across competing connec-
tions. This is a notable engineering achievement, es-
pecially in light of the fact that individual connections
exert distributed control over their transmission rates.
But this fine-grained autonomy that connections exert
coupled with our limited understanding of the interac-
tions that multiple (TCP) connections impose limits the
degree to which network resources can be tightly con-
trolled. In our ongoing work as part of the Mass project
[27], we investigate circumstances in which better diag-
nosis of network resources can be obtained, which we
hope will lead to improved control mechanisms.

In this paper, we explore the effects of concurrency
on diagnosing network conditions. As an example, a
popular Internet server (e.g. Web server, proxy server,
content distribution outlet, streaming media server, etc.)
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may potentially command a large number of concur-
rent connections. While most of these connections are
likely to be to different clients, many may in fact be
traversing the same set of congested resources. If con-
nections sharing common congested resources can be
identified, then improved network resource usage can be
achieved through judicious allocation of bandwidth. In
particular, rather than controlling connections travers-
ing congested network resources independently, an Inter-
net server could apply an aggregate control mechanism
to such connections. Examples of such mechanisms in-
clude the aggregate congestion management technique
proposed under the Congestion Manager framework [2]
and the ATCP protocol [3]. Applications of this tech-
nique could extend well beyond the domain of conges-
tion control to QoS admission control, selecting multi-
ple mirror sites in parallel [5] and improved connection
scheduling at webservers. But in order for any such con-
trol strategies to be practical, an endpoint must be able
to quickly and accurately identify whether or not a set
of its connections to remote locations traverse the same
set of congested resources.

Helpfully, the end-to-end measurements made in the
course of normal operations by most transport proto-
cols provide a wealth of information about the end-to-
end characteristics of a path in the network. For exam-
ple, although the nodes comprising the path may not be
known, end-to-end bottleneck bandwidth rates, round-
trip times and packet loss statistics can all be inferred
from the dynamics of a TCP connection [1]. In this pa-
per, we show that in addition to the above connection-
specific parameters, end-to-end measurements from dif-
ferent connections can be correlated in order to iden-
tify connections that share similar network conditions.
What constitutes “similar conditions” depends on the
purpose of the identification process. For the purpose of
this paper, we specify two possible problem statements,
defined below.

In each of the problem domains, we consider a sce-
nario in which there is a single server, which has active
connections (e.g. TCP flows) to two distinct clients,



both experiencing steady-state packet loss rates of at
least €, for some constant € > 0. We assume that the
paths from server to the clients form a tree, which from
the server’s perspective consists of a sequence of shared
links followed by a sequence of disjoint links, in which
the shared portion of the sequence may be empty.

Loss Sharing: For these two connections, determine if
the incidence of packet loss on the shared portion of
the tree is at least 7, for a fixed constant k > 1.

Bottleneck Equivalence: For these two connections, de-
termine if the incidence of shared loss is greater than
the incidence of disjoint loss.

We have formulated these problem statements as yes-
no questions, but note that the techniques we develop ex-
tend to the related question of estimating the incidence
of shared loss. Also, it should be clear that while Bottle-
neck Equivalence implies Loss Equivalence, the converse
does not hold.

Paper Contributions: This paper proposes an analyt-
ical technique for the robust determination of both loss
and bottleneck equivalence for pairs of unicast connec-
tions emanating from the same server. Our technique
relies solely on end-to-end loss information available at
the server as a result of passive monitoring or of active
probing. We present extensive simulation results that
demonstrate the effectiveness of our approach as com-
pared with the recently proposed approach of Ruben-
stein, Kurose, and Towsley [26] and the robustness of
our technique to a wider variety of network and cross-
traffic characteristics than previous work considered.

2. Related Work

Inference and prediction of network conditions is of fun-
damental importance to a range of network-aware appli-
cations, so it is no surprise that numerous research ef-
forts are underway in this space. We classify and survey
these research efforts in the context of our current work.

One widely adopted strategy is to mine the data col-
lected by network-internal resources, such as BGP rout-
ing tables, to generate performance reports [12, 15, 18, 9,
16]. This approach is best applied over long-time scales
to produce aggregated analyses such as Internet weather
reports, but does not lend itself well to providing answers
to the fine-grained questions we propose here.

Another approach is statistical inference of network
internal characteristics based on end-to-end measure-
ments of point-to-point traffic [4, 8, 28, 17, 24, 23, 20].
We adopt this general approach because information
is gathered at the appropriate granularity (on a per-
connection basis) and at the appropriate time scale to
address the questions we study. These approaches can be
further classified as active approaches, which introduce

additional probe traffic into the network, and passive ap-
proaches, which make inferences only from existing net-
work traffic. The benefit of the former approach is flex-
ibility: one can make measurements at those locations
and times which are most valuable; while the benefit of
the latter approach is that no additional bandwidth and
network resources are consumed solely for the purpose
of data collection.

Cutting across other dimensions, one can also clas-
sify approaches as either receiver-oriented or sender-
oriented, depending on where inferences are made; and
multicast-driven or unicast-driven, depending on the
model used to transmit probe traffic. Use of multi-
cast traffic is appealing, as losses and delay within the
multicast tree induces correlated behavior at receivers,
which can streamline inference-making and produce re-
sults with higher confidence. Unfortunately, passive
probing in an environment where multicast traffic is not
present makes such a strategy infeasible.

Table 1 illustrates the above taxonomy with refer-
ences to studies and projects that fall within each of its
different categories. The work we present in this paper
is identified as [X]; it is sender-based and is targeted for
unicast environments. It works under both passive and
active probing assumptions, albeit with different accu-
racy and convergence properties.

Packet-Pair Probing: One of the essential tech-
niques in our constructions is the use of “packet-pair”
techniques, originally used by Keshav [17], and subse-
quently refined by Carter and Crovella [9] and Paxson
[21, 23, 22], to determine bottleneck bandwidth on a net-
work path. In our work, we use a packet pair probe to a
pair of different receivers to introduce loss and delay cor-
relation, much the same way a multicast packet to these
two receivers introduces correlation. A challenge asso-
ciated with this approach, especially in passive probing,
is inter-packet spacing and the time scales over which
we can expect correlations to be present. The strate-
gies we employ follow early work by Bolot [4] and recent
work by Yajnik, Moon, Kurose and Towsley [28] which
study the temporal dependence in unicast and multicast
packet losses, respectively.

Estimation of Network Parameters Using End-
to-End Measurements: The specific problem of iden-
tifying and characterizing bottleneck equivalence classes
is motivated in part by recent work on topological infer-
ence over multicast sessions [6, 7, 10, 24]. By making
purely end-to-end observations of packet loss at end-
points of multicast sessions, Ratnasamy and McCanne
[24] and Céceres et al. [7] have demonstrated how to
make unbiased, maximum likelihood estimation infer-
ences of (a) the multicast tree topology and (b) the
packet loss rates on the edges of the tree, respectively.
They demonstrate that an observer with access to a com-
plete record of arrivals and lost packets for each destina-
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Table 1. A Taxonomy of Efforts to Characteriz e Network Conditions.

tion can make unbiased inferences about the underlying
tree from that record. Their work is made possible by
the fact that only one copy of a packet traverses any
edge of the multicast tree. Thus, if two receivers share
a common edge in the multicast tree, and the packet
is dropped in the queue prior to traversing that shared
edge, both downstream receivers will lose that particu-
lar packet. With sufficiently many measurements, this
correlated behavior makes the inferences above possible.

The work most closely related to ours is that of
Rubenstein, Kurose and Towsley[26]. Their work uses
end-to-end probing to detect shared points of conges-
tion (POCs). By their definition, a point of congestion
is shared when a set of routers are dropping and/or de-
laying packets from both flows. Their technique for iden-
tifying POCs uses Poisson probe traffic to both remote
endpoints and cross-correlation measures computed be-
tween pairs of packets from these flows. Our techniques
differ from theirs by using packet pairs to exploit tempo-
ral dependence, our strategies for estimating parameters
of the bottleneck queue and our ability to make accurate
assessments when multiple congested gateways may ex-
ist along a path. In the experimental work section, we
also demonstrate the improved accuracy and faster con-
vergence of our approach.

3. Bayesian Probing

In this section, we describe the technique we propose for
detecting shared losses. We start by describing the basic
definitions, reviewing the overall objective and provid-
ing the motivation for the techniques that we propose.
Then, we provide the algorithmic and analytical details
of the underlying technique, which we illustrate on a
one-server, two-clients scenario.

3.1 BasicDefinitions and Notation

Consider the set of links used to route unicast traffic be-
tween a server and two different clients. Together these
links form a tree T rooted at the server, with the clients
at the leaves and routers at the internal nodes. The flows
of packets sent from the server to each of the two clients
share some of T’s links and then continue on separate
links en route to the different clients. A link L; is the
link whose downstream node is node i as illustrated in

Figure 1. We refer to the set of links en route to client
A as L4, the set of links en route to client B as Lg and
the set of links that they share as Lg.

Our objective is to define a binary diagnostic test
that would identify whether or not significant packet loss
is occurring on the set of links shared by client flows. To
calibrate the level of loss which warrants a shared losses
diagnosis, we define the following parameter of our BP
approach.

Definition 1 For a diagnostic procedure, the sensitivity
constant c is the maximum loss probability allowed on
the shared portion of the paths to multiple receivers while
producing a “no shared loss” diagnosis.

The value of the sensitivity constant ¢ determines
the tolerable level of shared losses that the BP technique
will allow under a “no shared losses” diagnosis. Thus,
in effect, the value of the sensitivity constant ¢ can be
used to tune the eagerness of our BP technique to reach
a “shared losses” diagnosis. To achieve our objective we
introduce two types of probe sequences:

Definition 2 A 1-packet probe sequence S;(A) is a se-
quence of packets destined to client © such that any two
packets in S;(A) are separated by at least A time units.

Definition 3 A 2-packet probe sequence S; ;(A,€) is a
sequence of packet-pairs where one packet in each packet-
pair is destined to i and the other is destined to j, and
where the intra-pair packet spacing is at most € time
units and the inter-pair spacing is at least A time units.

The intuition behind the 1-packet probe sequence is
to provide a baseline loss rate over each of the two end-
to-end paths while the 2-packet probe sequence is used
to provide a distinguishing mechanism to measure corre-
lated loss over the shared links. The key insight is that
because of their temporal proximity, we expect packets
within a packet pair to have a high probability of experi-
encing a shared fate on the shared links. If the incidence
of shared loss on the shared links is high, this leads to an
increased probability of witnessing coupled losses within
a packet pair. The values of A and ¢ in the above defini-
tions of probe sequences are chosen empirically to make



it likely that the probes experience independent and de-
pendent packet loss events, respectively. While we will
describe appropriate settings of A and € in our experi-
mental section, we will generally require € to be on the
order of a millisecond and A to be on the order of a
second, to achieve high dependence and ensure indepen-
dence, respectively.

Server E
(Sender) ji_

( L1

Shared Segment of
Paths from Server to
Clients

Disjoint Segment of
Paths from Server to
Clients

Figure 1. Notation used to describe the topol-
ogy between a server and two clients

3.2 Diagnosisof Loss Sharing Using BP

We now return to the tree depicted in figure 1 to illus-
trate the basic premise of our proposed unicast probing
technique and its associated analysis. With our packet
probe sequences, there are four experimental outcomes
which we use in our analysis: successful probes in the 1-
probe sequences, successful packet-pair probes in the 2-
probe sequence, and unsuccessful probes in the 2-probe
sequence in which both packets in a pair are lost. The fol-
lowing notation will be useful throughout our analysis.
Let g4 and gp denote the fraction of the 1-packet probes
in S4(A) and Sp(A) respectively which were success-
fully received. Similarly, let g4,p denote the fraction of
the 2-packet probes in S4 (A, €) that were successfully
received by both clients A and B and let by p denote the
fraction of the 2-packet probes that were lost en route
to both clients A and B. Note that ga g + ba,p may be
less than 1 due to pairs of probes in which one probe is
lost en route to one client while the other probe arrives
successfully at the other client.

To establish a relationship between outcomes of
probes and network queues, we use the following ter-
minology and notation. Any individual queue can ac-
comodate zero, one, or more than one fixed-size probe
packets at any time instant. In general, we define p/
be the steady-state probability that the queue at L; can
store exactly k probe packets, and pf+ be the probability
that the queue at L; can store k or more probe packets.
From this definition, pZH is the probability that a single

probe packet sent over L; at an instant chosen at random
will successfully traverse L; and p? is the probability that
such a probe will be lost over L;. With this notation, we
can establish the following relationships between probe
sequences and queue sizes.

Fact 1 The quantities g4 and gp are unbiased estima-
tors for [[;cp,, p;T and [licr, p; T, respectively.

Fact 2 The quantity ga,p is an unbiased estimator for
2+ 1+
[Lics Pi Hie(LAULB)\LS b; -

Fact 1 holds because a single probe successfully ar-
rives at the destination if and only if each queue en route
has availability for at least one probe packet. Likewise,
Fact 2 follows since a packet pair successfully arrives at
the destination if and only if each shared queue has avail-
ability for both packets in the pair and disjoint queues
have availability for at least one probe packet.

Establishing a similar relationship for b4 p is consid-
erably more complex by virtue of the number of ways in
which both packets in a packet pair may be lost. Either
both packets are lost on the shared links; or exactly one
packet is lost on the shared links, while the other is lost
on the disjoint part of the tree; or both are lost indepen-
dently on the disjoint links. Letting g4 be a shorthand
for the probe loss probability over only the disjoint links
to client A, i.e. defining g4 = 1 — Hz’eLA\Ls p}*‘, and
defining ¢gp similarly, we can enumerate these possibili-
ties to establish the fact that:

Fact 3 The quantity by p is an unbiased estimator for

(1 - HieLs sz) + (HiELs sz - HieLs pf*’) (ga+gB)+
[Licr, P qags.

From these three facts, we can obtain an unbiased
estimate for a quantity which occupies a central location
in Fact 3 and which we define as follows:

x = [[ 2 - ] »+ M

i€Lg icLg

X can be interpreted as the probability of a packet pair
encountering a situation on the shared links in which all
shared queues have space for one probe packet, but not
all queues have space for two packets. We next prove
that we can obtain the following (surprisingly simple)
estimate for X:

Lemma 1 The quantity ga +gp +ba,B —ga,p — 1 s
an unbiased estimator for X.

Proof: Using Fact 2, we relate g4 p to X:

— 2+ 1+
Elga,] = [L;cL, Pi Hz’e(LA UzenesPi



_ 1+ 1+ 1+
_(HieLspi _X)HiGLA\Lspi HieLB\Lspi

=Ilicz, Uze P (X o P hicr e p’H)

= ]._.[v;eLAULB sz_ —X(1-qga)(1—gs)

Combining this equation with Facts 1 and 3 and by the
linearity of expectation, we can write:

E[ba,B+9ga+9s —ga,—1]
=Ilicr, i +1licr, Pi" —Tlicr i + X (g4 +a5)+
[Ler, it aaas 1., Uzs pi T +X(1—qa)(1—gB)

= 1 14 14
= X+quBX+H¢eLA pi++HieLB p; _HieLS p; —
1+ 2+
HiGLAULBpi +Hiez,spz' q44B

It now suffices to demonstrate that the quantity gagp X
cancels with the remaining terms. By applying the def-
initions we have:

- 14+ ot
949X = qags (H,-GLS pi" = 1licrgs Pi )
= 1+ 1+
- (1_Hi€LA\LSpi ) (I_HiELB\LSpi )
2

(HieLS p,”) - HieLs p:tqags
— 1+ 1+
_(I_HieLA\Lspi _HiELB\Lspi +

1+ 1+ 24

Hie(LAULB)\LS p; )H'LELS b — HieLs P; 494498
= 1+ 1+ 14+
= HieLs by — H,‘eLAPi - HieLB p;, +

1+ 2+
HieLA Urs by — ]._.[ieLs p; 949B

Therefore the desired cancellation does take place, yield-
ing the result. u

3.3. The X Factor

We now motivate the reason for which obtaining an
unbiased estimate of the value of X is valuable. As we
mentioned in the preceding section, an estimate of X
is an estimate of the probability that one of the queues
on the shared links has room for a single probe packet.
As the following example clearly demonstrates (and as
one might imagine), the magnitude of this value, which
is an analogue of p!, tends to be highly correlated with
the magnitude of packet loss on that link.

Figure 2 (left) shows how the values of p°, p! and p?*
on a single link interact in an M/M/1/K queueing sys-
tem with queue size K = 20 as a function of the traffic
load p. Under light load (p not much larger than 1), the
values of p° and p' are almost identical. Under heavy
load (p much larger than 1), the value of p° becomes
larger than the value of p'. The experiment depicted in
Figure 2 (right) demonstrates similar phenomena in a
bursty traffic model which we describe in detail in Sec-
tion 4. The figure suggests that the value of p! increases
in tandem with the value of p° as the background traffic
rate increases. This trend is a key to our proposed tech-

nique and points to the value of an unbiased estimate
for X.

To summarize, we can efficiently compute a running
estimate of X using the 1-packet and 2-packet probe
sequences sent from the server to the two clients. If
X > c (for some empirically-determined sensitivity con-
stant ¢) we conclude that there are “significant” losses
on the shared part of the path between the server and
the clients. Otherwise we conclude that losses are pri-
marily due to packet losses on the disjoint part of the
path between the server and the clients.

1 1 =
"y
0.8 | 1 08} E
X*
0.6 | 1 06} x
04 1 04}
02 = 02|
0 0
0 0 05

Utiliz.ation Utilization
Figure 2. Values of Py, P, and P>, when K =
20 for different values of p: M/M/1/K Analysis
(left) and ns simulation results with 64 Pareto
ON/OFF UDP flows (right).

3.4. BasicAssumptions

A basic premise of our work is that while we assume the

loss rate on all links in our topology may have substan-
tial short-term variability (as is to be expected with self-
similar background traffic), the mean packet loss rate
on each link is stationary over longer time scales. This
stationarity requirement is needed to allow a diagnos-
tic procedure to converge. Thus, stationarity is required
only over time scales that are comparable to the time it
takes the diagnostic procedure to converge. In the next
section we show that the BP technique possesses supe-
rior convergence, making it quite effective even when
stationarity can only be assumed for short intervals (on
the order of few seconds).

In the analysis presented above, we have made the
following additional assumptions which we enumerate
and discuss here:

1. Losses on the links occur only due to queue overflows.

2. Vi,j : Losses on link L; are independent from losses
on link L;.

3. A reliable feedback mechanism enables the sender
to determine with certainty whether a given probe
packet was lost.

4. The temporal constraints imposed on probe se-
quences (whether 1-packet or 2-packet probe se-
quences) are preserved throughout the journey of the
probes from sender to receivers.



Assumption 1 reflects the current DropTail behav-
ior present in most Internet routers today. We consider
the negative consequences of RED gateways on our tech-
nique in the experimental section. Assumption 2 allows
us to ignore any spatial correlation between link losses,
and thus ignore any additional correlation terms. As-
sumption 3 enables us to assume that the server is able
to accurately identify the outcome of the probing pro-
cess, i.e. which packets of a 1-packet or 2-packet probe
sequences were lost.

Assumption 4 is our most significant assumption,
since it ensures that the individual packets within each
packet-pair of a 2-packet probe sequence Sa (A, ¢€) are
separated by at most € time units on all traversed links.
Moreover, we must be assured that ¢ is sufficiently small
that two packets of a packet-pair are close enough to
each other on all traversed links to enable an accurate
sampling of the state of a queue at the time the 2-packet
probe reaches that queue. In particular, we need to use
pf"' as the probability that the two packets of a packet-
pair have traversed link 7. Ideally, we would desire that
the two packets reach the queue with an inter-arrival
time ¢ = 0. If the packets in a pair become substantially
separated from one another in flight, our estimates g4 g
and b4 g will be biased. We have studied the effects of
€ > 0 on the performance of our BP technique. Our
findings (presented in the next section) confirm that the
bias introduced by small amounts of separation and/or
long paths is not excessive.!

4. Experimental Results

In this section we present results of extensive simula-
tions that (1) compare our Bayesian Probing (BP) tech-
nique to the Markovian Probing (MP) technique pro-
posed and evaluated in [26], and (2) establish the ro-
bustness of the BP technique to various parameters and
conditions.

4.1 TechniquesEvaluated

Bayesian Probing Technique: Recall from our pre-

sentation in section 3, the BP technique requires the
specification of the A and e parameters of the tempo-
ral constraints imposed on 1-packet and 2-packet probe
sequences.

In the experiments we present in this section, probes
were sent at a mean rate R. However, to alleviate syn-
chronization effects, we imposed additive random noise
on the interpacket spacing so that it was uniformly
distributed over the range [% — bms, % + 5ms], thus

A = & — 5ms. In our experiments, we set the value of €

1We have measured the separation between probe packets for
paths consisting of a large number of hops. The results consis-
tently pointed to the validity of our temporal constraint assump-
tion above and, consequently, the robustness of our BP technique.

to 0; that is packets within a packet-pair were sent back-
to-back, with no time separation. Also, to normalize the
losses on the shared links experienced by both receivers,
the 2-packet probes in S4 g(A,€) alternate between the
two possible packet orderings.

Another parameter of our BP technique is the value
of the sensitivity constant (c). Recall that the value of
the sensitivity constant ¢ determines the level of shared
losses that the BP technique will tolerate while indicat-
ing a “no loss sharing” diagnosis. In our experiments,
the value of ¢ was fixed at 0.04. This value was chosen
empirically based on experiments discussed later in this
section.

Markovian Probing Technique: The MP technique
described in [26] relies on the use of two Poisson pro-
cesses for sending probe sequences f; and fo from the
sender to the two receivers. To detect shared losses the
MP technique depends on the calculation of the Auto-
Correlation and the Cross-Correlation functions. The
Auto-Correlation function (M) is the conditional prob-
ability that a packet from f; is lost, given that the previ-
ous packet from f; is lost. The Cross-Correlation func-
tion (Mz12) is the conditional probability that a packet
from f; is lost, given that the preceding packet from fo
was lost. Given M,; and M 2, the MP technique de-
scribed in [26] suggests the following test for identifying
shared losses.

MP1 test: f, and fo are diagnosed to having shared
losses if M2 > M,;; they are diagnosed as having no
shared losses otherwise.

It is important to note that the MP test (above)
could be reformulated by reversing the roles of the
probes sent on the f; and fo paths.

MP2 test: f, and fo are diagnosed to having shared
losses if M 91 > M,s; they are diagnosed as having no
shared losses otherwise.

In our experiments, we noted that the MP1 and
MP2 tests yielded similar diagnosis when losses were
symmetric along the non-shared links (or equivalently
when losses are either all shared or all on the inde-
pendent links—a central assumption of the MP tech-
nique described in [26]). However, the MP1 and MP2
tests yielded quite different diagnosis when this condi-
tion seized to hold true. Since we were interested in
loosening this assumption (by allowing losses on both
the shared and idependent portions of the paths), we
combined the above tests into the following alternative
test.

MP* test: fi1 and fo are diagnosed to having shared
losses if Myo1 > Mys OR M5 > M,y; they are diag-
nosed as having no shared losses otherwise.?

2In private communications with the first author of [26], we
also considered a conjunctive test for the identification of shared
losses as opposed to the disjunctive test we propose here. Our



Our experimental results, which we present later in
this section, show that the MP* test improved the ac-
curacy of the MP technique significantly. Thus in the
remainder of this paper, and unless otherwise noted, we
will use the MP* test as the “default” test for the Marko-
vian Probing (MP) technique.

4.2 Experimental Setup

We used the Network Simulator (ns) [19] to simulate
the topology illustrated in Figure 3. This topology rep-
resents a server and two clients. The shared portion
of the paths between the server and the two clients is
modeled by a single link (L1), whereas the disjoint por-
tions of the paths between the server and the two clients
are modeled by links (L2) and (L3), respectively. Both
techniques were simulated from the server side by im-
plementing a new ns “agent” that sends 200-byte probe
packets to the receivers and waits for an acknowledg-
ment for each probe sent. Probes are annotated with
sequence numbers. The agent uses the absence of a
probe acknowledgment as an indication of the probe’s
loss on the way to its destination. Also, the agent keeps
some statistics about the probe losses and based on these
statistics esimates whether there are shared losses or not
by using either the BP, MP1 or the MP* techniques de-
scribed above.

Cross Traffic

@-» Link Buffer

i+

@ Network @

Figure 3. Topology used in our experiments

Baseline Model: Each one of the three links in Figure
3 is modeled by a single DropTail queue. The link delays
were all set to 40ms and the link buffer sizes were all set
to 20 packets. Each of these links was subjected to back-
ground traffic resulting from a set of Pareto ON/OFF
UDP sources with a constant bit rate of 36Kbps during
the ON times with a packet size of 200 bytes. The av-
erage ON and OFF times were set to 2 seconds and 1
second, respectively. The Pareto shape parameter ()
was set to 1.2. After a “warm-up” period of 10 sec-
onds, the probing processes (and associated diagnostic
processes) are started.

experimental evaluation indicated that a disjunctive test yielded
better results, and is thus adopted in this paper.

To represent the various levels of congestion that any
of these links may exhibit, we have chosen three sets of
parameters that result in “High”, “Mild”, and “Low”
levels of congestion. The baseline parameter settings for
these congestion levels (and the resulting loss rates) are
tabulated in Table 2.

Parameter Congestion Level
Setting High Mild Low
Link Bandwidth 1Mb/sec 1Mb/sec 100Mb/sec
Background Flows 60 56 8
Observed Loss Rate | 7-15% < 7% < 0.1%

Table 2. Settings used (and resulting loss
rates) for the 3 cong estion levels considered

Basic Test Cases: In order to evaluate the diagnostic
abilities of the above techniques, we define four possible
scenarios, featuring different levels of congestion along
the shared and disjoint portions of the paths between
the server and its clients. Table 3 enumerates these four

scenarios.3
Scenario Congestion Sharing Condition Correct
# L1 L2 L3 | Losses B’neck Diagnosis
) H L L Yes Yes Yes
(I1) H M L Yes Yes Yes
(I11) M H L Yes No Yes
(Iv) L M H No No No

Table 3. Scenarios considered in this paper

Scenario (I) represents a situation in which a highly
congested link exists on the shared portion of the path
to the two clients, and no congestion exists on the dis-
joint portion of the paths. Scenario (IV) represents a
situation in which losses are only possible on the dis-
joint portion of the path to the two clients. Scenarios
(I) and (IV) represent the “litmus test” cases that must
be diagnosed correctly by any technique that aims at
identifying shared losses (or lack thereof).

Scenario (II) represents a situation in which a highly
congested link exists on the shared portion of the path
to the two clients, and a lesser congested link exists on
one of the disjoint portion of the paths. Scenario (III)
represents a situation in which a highly congested link
exists on one of the disjoint portions of the paths to the
clients, and a lesser congested link exists on the shared
portion of the path to the two clients.

It is important to note that scenarios (II) and (III)
violate one of the assumptions of the Markovian Probing
technique of Rubenstein, Kurose, and Towsley—namely,
that losses on a given path are the result of exactly one

3Results from additional scenarios we have tested were consis-
tent with the results we present for the four scenarios in Table
3.



congested link on that path. We have included these sce-
narios to highlight the robustness of our Bayesian prob-
ing technique—in particular its ability to converge to a
correct diagnosis when losses on a given path are the re-
sult of multiple congestions along that path. Notice that
the existence of multiple congested gateways on a single
path over an extended period of time is quite possible
(due in part to the documented scaling phenomena of
network traffic) [11, 25].

4.3. Performance Metrics

We consider three main metrics: (1) Accuracy, (2) Set-
tling time, and (3) Convergence Ratio. We define each
of these metrics next. In each of the definitions below,
we assume that the diagnosis process starts at time ¢t = 0
and that 1 < ¢ < N refers to the diagnosis experiment
under consideration.

Definition 4 The accuracy of a diagnostic strategy at
time t is defined as the probability that the diagnostic
strategy will yield a correct diagnosis at time t.

To measure the accuracy of a diagnostic strategy at time
t, we measure the percentage of simulation experiments
in which a correct diagnosis was reached at time t.

Definition 5 For an experiment i, the settling time
Si(t) of a diagnostic strategy is defined as the latest time
t' <t at which a wrong (or inconclusive) diagnosis was
made for that experiment. The mean settling time S(t)
of a diagnostic strategy is defined as the expected value
of the settling time at time t.

The above definiton implies that the (mean) settling
time is a monotonically non-decreasing function of t. To
measure the mean settling time S(t), we averaged the
settling time for all simulation experiments at time ¢.

N
In the remainder of this paper, we use settling time to
imply mean settling time. This settling time as a func-
tion of ¢ can be used to characterize the convergence of
a diagnostic strategy (or lack thereof). We do so next.

Definition 6 For an experiment i, the convergence ra-
tio Ci(t) of a diagnostic strategy is defined as the ratio
between the time ellapsed since settling and t—namely

_t=S) _ S
Tt Tt

Ci(t)

The mean convergence ratio of a diagnostic strategy C(t)
is defined as the expected value of the convergence ratio
at time t.

One can easily show that a random diagnosis strategy
yields a convergence ratio that approaches 0 as ¢ in-
creases. Thus, one can view the convergence ratio as a
measure of “how much better” a diagnostic strategy is
compared to a random diagnosis. The closer the conver-
gence ratio is to zero, the slower the convergence; and,
the closer the convergence ratio is to one, the faster the
convergence.

The value of the convergence ratio for large enough
values of ¢ can be used to characterize the likelihood
of convergence. In particular, if the convergence ratio
approaches a constant r (0 < r < 1) as t approaches
infinity, then it follows that the probability that the di-
agnostic strategy will converge in an infinitely long ex-
periment is 7.

In our presentation below, and unless otherwise spec-
ified, we use the term “convergence ratio” to mean the
convergence ratio at time t = Tj,44, Wwhere Tpq, = 300
seconds is the simulation time of our experiments.

4.4. BaselineResultsfor BP versusMP Techniques

Accuracy: Figure 4 (left) shows the accuracy achieved

over time for the four basic scenarios we considered.
Clearly, our Bayesian Probing (BP) approach yields a
consistently higher accuracy than that achieved by the
Markovian Probing (MP) approach.

For scenarios (I), (II), and (III) in which shared
losses exist, our BP approach converges to 100% accu-
racy within a very short period of time. This is in sharp
contrast to the MP approach, which oscillates consider-
ably around the 75-90% accuracy range under scenario
(I), around the 60-80% accuracy range under scenario
(I1), and around the 70-75% accuracy range under sce-
nario (III).

For scenario (IV) in which there are no shared losses,
our BP approach again converges rather quickly to 100%
accuracy. Initially, the MP approach performs quite
poorly (actually dropping to a 20-30% accuracy as late
as 100 seconds into our experiments). However, over
time, the MP approach does converge to almost 100%
accuracy as well.

Convergence Characteristics: Figures 4 (center) and
4 (right) show the settling time and convergence ratio
for the BP and MP approaches. Figure 4 (center) indi-
cates that the settling time of our BP approach is de-
cidedly lower than that of the MP approach under all
test scenarios. Moreover, in three out of the four test
scenarios—namely (I), (II), and (III)—the settling time
function of the MP approach does not seem to level off,
whereas the settling time function of the BP technique
levels off in all four scenarios. The superior convergence
properties of our BP approach are further confirmed in
Figure 4 (right).



08 ¥

04 [

0.2

P T x
0.6 x S o —

04 ¥

0.2

0.4

0.2

%
%&% s ox z
o f{, L Y

s
06 y’?‘*m

50 100 150 200 250
Time(sec)

2 3 4 5

2 3 4 s
In(Time(sec))

(I11)

In(Time(sec))

BP ——
MP*
MPL -

0 50 100 150 200 250 300
Time(sec)

(ID)

BP ——
MP* x|
MPL -oxe

a-ng‘__.-——"‘";

0 50 100 150 200 250 300
Time(sec)

0 50 100 150 200 250 300
Time(sec)

Figure 4. Accurac y (left), settling time on log-log plot (center), and convergence ratio (right) of BP vs
MP for the basic test scenarios under the baseline model



4.5. Robustnessof BP Technique

In the remainder of this section we summarize results of

experiments we have conducted to evaluate the robust-
ness of our BP technique to a host of parameters that
may impact its performance characteristics. Readers in-
terested in details of these experiments and our findings
are refered to [14].

Effect of the BP Sensitivity Constant: As we noted
earlier, the value of the sensitivity constant (c) used
throughout our experiments was 0.04. We used this
value after comparing the effect of ¢ on the accuracy
and the convergence ratio for the four baseline scenar-
ios. This comparison is shown in figure 5.

As these figures indicate, setting ¢ to 0.04 was a com-
promise between the accuracy and convergence ratios of
scenarios (III) and (IV). Reducing the value of ¢ leads
to low performance for scenario (IV) (i.e. when losses
are independent) since the BP approach tends to identify
more “false positives”. On the other hand, increasing the
value of ¢ leads to lower performance for scenario (III)
(i.e. when shared losses exist but are not dominant for
one of the receivers) since the BP approach’s sensitivity
to shared losses is reduced, resulting in a misdiagnosis.
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Figure 5. Effect of ¢ on accuracy (left) and con-
vergence ratio (right) for the four scenarios.

Effect of Temporal Separation e: As we discussed in
Section 3, an important assumption of our BP technique
is that the separation (in time) between packet pairs in
a 2-packet probe sequence (i.e., €) is sufficiently small so
as to keep the two packets of a packet-pair close enough
to each other on all traversed links. This enables an
accurate sampling of the state of a queue at the time
the 2-packet probe reaches that queue.

Figure 6 shows the accuracy of our BP technique un-
der the four baseline models and for various values of the
BP sensitivity constant ¢. In general, our experiments
show that the BP technique’s accuracy and convergence
are quite robust for values of ¢ less than 1 msec. Notice
that a separation larger than 1 msec is unlikely* even
when packet-pairs traverse long paths.

4If the two packets in a packet-pair are sent back-to-back, then
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Figure 6. Effect of € (in msec on x-axis) on ac-
curacy of the BP technique .

The results in Figure 6 indicate that as the separa-
tion between packet-pairs in 2-packet probe sequences
increases (i.e., as € grows larger), the BP technique’s
ability to diagnose shared losses, i.e. under scenarios
(I)-(III), decreases. Under scenario (IV) The accuracy
and convergence of the BP technique are unaffected by e.
This is expected since 2-packet probe sequences are in-
strumental only for the detection of shared losses (which
are not present under scenario (IV).

An interesting observation from the results shown in
Figure 6 is the trade-off between the sensitivity constant
(c) and the temporal separation between packet-pairs
(€). When € is small (e.g. € < 1 msec), a larger value of ¢
yields better accuracy and convergence for all scenarios.
However, as e grows larger (i.e. as the effectiveness of 2-
packet probe sequences decreases), a decrease in ¢ lead to
better accuracy and convergence for scenarios (I), (II),
and (III)—i.e. when a diagnosis of “shared losses” is
warranted—but lead to a deterioration in both accuracy
and convergence for scenario (IV)—i.e. when a diagnosis
of “independent losses” is warranted.

Thus, if the value of € cannot be guaranteed to re-
main within the [0,1msec] range, then the value of ¢
should be chosen based on which misdiagnosis is safer—
namely, misdiagnosing shared losses as independent, or
misdiagnosing independent losses as shared.

it would be necessary for 12.5MB of cross traffic to interveen be-
tween these two packets on a 100Mbps link to achieve a separation
of 1 msec.



Effect of Traffic Burstiness: In our baseline ex-
periments, traffic burstiness was moderate with the
ON/OFF times of the constant-bit-rate UDP back-
ground flows set to a Pareto distribution with @ = 1.2.
Traffic burstiness may negatively impact the accuracy
and convergence of a diagnostic strategy, since it may
reduce (or increase) loss correlations.

Table 4 (left) shows the accuracy and the conver-
gence ratio of the BP technique for the four baseline
scenarios under various values of o (i.e. under different
levels of background traffic burstiness). These figures
show that the BP technique’s accuracy and convergence
are unaffected by traffic burstiness, except for very small
values of a (namely o = 1.001) under scenario (IV).5

Effect of Probing Rate: Another important parame-
ter of the BP technique is the probing rate R. A higher
probing rate is desirable because it implies a “faster” di-
agnosis (i.e. a shorter settling time). However, a higher
probing rate results in smaller time separation between
probes, and thus threatens to violate the assumption of
probe independence, which is central in our derivation of
the BP diagnostic test. Finally, in the context of active
probes, a higher probing rate implies more probe traffic,
which is not desirable.

Table 4 (right) shows the accuracy and the mean set-
tling time of the BP technique for the four baseline sce-
narios under various probing rates (recall that the prob-
ing rate used in our baseline experiments was 15 probes
per second). These figures show that BP’s accuracy is
quite robust (even for the highest rates we attempted).
The advantage of higher probing is evident in the over-
all trend of lower settling times when probing rates are
increased, especially for positive loss sharing diagnoses.
For example, by quintupling the probing rate from 5 to
25, the mean settling time under scenario (I) is reduced
by a factor of 5 from 12.34 to 2.29 seconds.

Effect of Queuing Discipline: The BP technique re-
lies on an important property of the queuing discipline
used on link buffers. Namely, it relies on the high proba-
bility of back-to-back losses of packet-pairs in a 2-packet
probe when the link buffer is full (i.e. congested). This
property is likely to hold for a DropTail queueing disci-
pline, which is the discipline we have assumed for link
buffer management in our experiments so far.

Figure 7 shows the accuracy and convergence of our
BP technique when a Random Early Detection (RED)
[13] queuing discipline is used. In these experiments, the
parameters of RED that we used were: minthresh=5,
maxthresh=15, and maxp=0.1.

The figure shows a definite deterioriation in perfor-
mance under loss sharing scenarios, i.e. scenarios (I),
(IT), and (III). This is expected since RED tends to re-

5Note that in this experiment, our packet-pair probes were sent
“back-to-back” (i.e. € = 0). The impact of traffic burstiness is
likely to be more pronounced when € > 0.

duce loss correlation and thus is likely to adversely affect
the effectiveness of 2-packet probes (since losses of the
two packets in a packet pair will tend to be less well cor-
related). This results in a tendency of the BP technique
to be biased towards making a “no loss sharing” diagno-
sis. Figure 7 shows that despite RED’s negative impact,
the BP technique was still robust enough to yield accept-
able accuracy and convergence for all scenarios, except
scenario (IIT), for which BP’s performance was almost
undinstinguishable from a random diagnosis.

It is important to note that the MP technique we
evaluated earlier in this section suffers from the same
disadvantage when a RED queuing discipline is deployed
[26], which leaves the problem of robust shared loss iden-
tification in the presence of RED gateways an important
open problem to the best of our knowledge.
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Figure 7. Effect of RED Queueing on the accu-
racy (left) and convergence ratio (right).

5. Conclusion

In this paper, we have presented a robust technique for

determining whether a pair of connections emanating
from the same node experience shared losses. We pre-
sented results of extensive simulations that confirm the
robustness of our methodology and its effectiveness as
compared with the recently proposed memoryless prob-
ing technique of Rubenstein, Kurose, and Towsley [26]
which we termed “Markovian Probing”. Specifically, our
technique converges very quickly to a correct diagnosis
under a wide variety of network conditions.

The work presented in this paper is part of a larger ef-
fort by the Mass Group at Boston University [27], which
aims to harness the interplay between on-line network
diagnosis and control for massively accessed Internet
servers. For such servers—in which thousands of con-
nections (or flows) may be managed concurrently—it is
desirable to diagnose network conditions at a wider va-
riety of resolutions than were considered in this paper.
We are looking into a number of possibilities, including
the identification of long-term “shared bottlenecks” and
“loss topology” between a sender (mass server) and a
possibly large number of receivers (clients).



Accuracy for 150 < ¢ < 300 | Convergence @ ¢ = 300 sec Accuracy for 150 < ¢ < 300 Settling Time @ ¢ = 300 sec
—1 1.10 1.20 1.80 —1 1.10 1.20 1.80 5 10 20 25 5 10 20 25
1 1.00 1.00 1.00 1.00 099 0.99 098 0.98 1.00 1.00 1.00 1.00 12.35 8.45 2.63 2.29
11 1.00 1.00 0.99 1.00 099 098 094 0.98 1.00 1.00 1.00 1.00 6.75 8.02 4.71 2.89
IIT | 1.00 0.99 1.00 1.00 061 0.99 098 094 098 0.99 1.00 1.00 25.46 57.54 8.44 4.52
IV | 0.71 098 1.00 0.97 050 091 095 0.85 099 1.00 1.00 1.00 28.99 37.17 13.59 14.85
BP performance for various values of « BP performance for various values of R
Table 4. Effect of traffic burstiness (left) and probing rate (right) on BP performance
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