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Abstract

The increased diversity of Internet application require-
ments has spurred recent interests in flexible congestion con-
trol mechanisms. Window-based congestion control schemes
useincreaserulesto probe available bandwidth, and decrease
rules to back off when congestion is detected. The control
rules are parameterized so as to ensure that the resulting pro-
tocol is TCP-friendly in terms of the relationship between
throughput and packet loss rate. In this paper, we propose
a novel window-based congestion control algorithm called
SMD (Sguare-Increase/Multiplicative-Decrease). Contrary
to previous memory-less controls, SMD utilizes history in-
formation in its control rules. It uses multiplicative decrease
but the increase in window size is in proportion to the square
of the time elapsed since the detection of the last loss event.
Thus, IMD can efficiently probe available bandwidth. Nev-
ertheless, SSMD is TCP-friendly as well as TCP-compatible
through RED routers. Furthermore, SMD has much better
convergence behavior than TCP-friendly AIMD and binomial
algorithms proposed recently.

1. Introduction

TCP uses additive-increase and multiplicative-decrease
(AIMD). It probes available bandwidth by increasing its con-
gestion window size linearly, and responds to congestion (in-
dicated by packet losses) by decreasing the window size mul-
tiplicatively. Recently proposed congestion control mech-
anisms include generaizations of TCP-like window-based
schemes|1, 8, 19, 22] and equation-based schemes|9, 17, 20].
One common objective of these new schemes is to reduce
variations in transmission rate. Such high variations may
limit network utilization. In addition, they are not desirable
for emerging applications such as real-time streaming appli-
cations on the Internet.
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ANI-0095988, and ANI-9986397. Shudong Jin was aso supported by an
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It is required that new protocols implement congestion
control mechanisms that interact well with TCP [7]. That
is, they should maintain TCP-compatibility, or fairness across
connections using different protocols. To provide such fair-
ness, TCP-friendliness is necessary, which means the (A, p)
relationship A = /3/2/(R,/p) should approximately hold,
where ) is the throughput of aflow, p isits packet loss rate,
and R isthe round-trip time.

In addition, there are other requirements for congestion
control algorithms. Smoothness measures the variation in the
transmission rate of a connection using the protocol. Smooth-
nessisimportant in steady state. High smoothnessisdesirable
for some applications, e.g., Internet real-time applications.
Aggressiveness measures how fast the connection probes ex-
tra bandwidth by opening up its window. In particular, when
there is a sudden increase in available bandwidth, it is desir-
able that the connection acquires it quickly. Responsiveness
measures how fast the connection reacts to increased conges-
tion by decreasing itswindow size. It isdesirable that the con-
nection reducesitstransmission rate to itsfair share promptly.
Both aggressiveness and responsiveness are measures of the
transient behavior of congestion control protocols [21]. Con-
vergence measures how fast competing connections converge
to their fair share of bandwidth. Convergence speed is related
to the aggressiveness and responsiveness indices. More ag-
gressive and responsive protocols usually converge faster.

Severa recently proposed TCP-friendly congestion con-
trol schemes, including general AIMD [8, 21], binomial algo-
rithms [1], TFRC [9], and TEAR [19], can provide smoother
transmission rate than TCP. However, these algorithms may
lack the aggressiveness and responsiveness of TCP. Hence,
when network conditions change drastically, these protocols
can not react to the change promptly. In particular, recent
studies [8, 21] have compared TCP AIMD, genera AIMD,
TFRC, and TEAR, and shown that higher smoothness results
in lower aggressiveness. Therefore, a question is, can TCP-
friendly congestion control algorithms maintain high smooth-
ness in steady state and till have high aggressiveness when
there are drastic changes in network conditions?

Meanwhile, it is necessary to consider the convergence of



congestion control schemes. Chiu and Jain [2] showed that
AIMD control converges to fairness and efficiency. Recently,
it was shown that the additive increase of TCP and genera
AIMD control isinferior [11]. Binomial algorithms[1] using
non-additive increase also possess the convergence property.
Binomial agorithms are similar to AIMD in that they all use
memory-less control. That is, their control rules use only the
current window size. Therefore, a question is, can one im-
prove the convergence behavior by using history information
in window-based congestion control algorithms?

This paper provides answers to these questions. We study
TCP-like window-based congestion control algorithms. Con-
trary to the memory-less AIMD and binomial algorithms[1],
we consider the case where connections utilize history infor-
mation, in addition to the current window size. The only his-
tory we useisthe window size at the time of detecting the last
loss. To this end, we propose a novel algorithm called SIMD
(Square-Increase/Multiplicative-Decrease). SIMD decreases
the window size multiplicatively but increasesit in proportion
to the square of the time elapsed since the detection of the
last loss event. SIMD can have high smoothness in steady
state, and if network conditions change drastically, SIMD can
grow aggressive. On the contrary, other control schemes in-
crease the window size linearly or sub-linearly. We show that
SIMD is TCP-friendly: connections using SIMD have ap-
proximately the same throughput as TCP connections, given
the same packet loss rate and round-trip time. Furthermore,
SIMD has better convergence behavior than that of memory-
less AIMD and binomial algorithms. We use a synchronized
feedback model [2] to illustrate the convergence behavior of
SIMD. In addition, using the ns simulator [5], we show that
SIMD can fully capitalize on the random loss property of
RED [10] to improve convergence speed.

Our SIMD algorithm is the first step toward exploring a
new design space between memory-less window-based con-
gestion control schemes and equation-based schemes which
use more history information. Compared to memory-less
window-based schemes, SIMD improves transient behavior
by using history. Compared to equation-based schemes,
SIMD has several unique properties: the self-clocking nature
of window-based schemes, and simple modificationsto TCP's
implementation. The remainder of this paper is organized as
follows. We propose our algorithm in Section 2. We analyze
its convergence behavior in Section 3. Our simulation results
are described in Section 4. We revisit related work in Sec-
tion 5 and finally conclude the paper.

2. SIMD Congestion Control

A TCP-like window-based congestion control scheme in-
creases the congestion window as a result of the successful
transmission of a window of packets, and decreases the con-
gestion window upon the detection of packet losses. We call
such a sequence of window increments followed by one win-
dow decrement a congestion epoch. The congestion control

scheme defines one control rule for window increase, and an-
other rule for window decrease. For example, AIMD usesthe
following linear control rules:

Increase : Wi+R — Wt + @, a >0,

Decrease :  wiys <+ we — PBwe, 0< B <1,

wherew, isthewindow sizeat timet, R istheround-trip time,
and ¢ is the time to detect packet loss since the last window
update. That is, for AIMD, the window sizeisincreased by a
constant when a window of packets are transmitted success-
fully, and it isdecreased by a constant factor once apacket loss
event is detected. Binomia algorithms [1] generalize AIMD
with non-linear controls. They usethe following control rules:

Increase : witrr < Wi —l—a/wf, a >0,

Decrease :  wiys — wi —Pwl, 0<pB<1.

That is, binomial algorithms generalize additive-increase by
increasing inversely proportional to a power k of the cur-
rent window (for TCPR, £ = 0), and generalize multiplicative-
decrease by decreasing proportional to apower [ of the current
window (for TCR, [ = 1).

We say that AIMD and binomial algorithms are memory-
less since the increase and decrease rules use only the current
window size w; and constants («, 3, k, and [). Neither of
them utilizes history information. On the contrary, we find
thewindow size at the end of the last congestion epoch (before
the decrease) handy and useful. Our scheme maintains such
a state variable wy,q., Which is updated at the end of each
congestion epoch. In addition, let w, denote the window size
after the decrease. Given a decrease rule, wq can be obtained
from w42, and vice versa. For example, for TCP, wy = (1 —
B)Wmaz. Henceforth, for clarity, we use both w4, and wy.
Note, when TCP slow-start ends and congestion avoidance
phase starts, we have the first value of wy, i.e., the current
window size. Then the first value of w,,,, IS obtained. We
define the control rules of SIMD as:

Increase: wiyg + wy + ay/wy —wo, « >0,
Decrease : Wits < wy — Pwy, 0<p<1 (1

Like AIMD, SIMD uses multiplicative decrease. However,
SIMD uses an increase rule very different from those used by
AIMD and binomia agorithms. First, SIMD uses the history
information of a connection since wy is the window size af-
ter the last decrease. (Later, we will aso show that o itself
depends on w,,,4;, ad changes from one congestion epoch
to another.) Second, the increase pattern of the window size
is super-linear. To elaborate on this point, next we show that
SIMD’s increase rule results in a quadratic function of time ¢
since the detection of the last |oss event.

Let w(t) be the continuous approximation of the window
sizeat timet (in RTT's) elapsed since the window started to
increase. By definition, wy = w(0). Using linear interpola-
tion and continuous approximation, from the increase rule in
(1), we have

w(t) — wo.



Thisgivesus
! dw(t) = adt.
v w(t) — wo
Weintegrate both sidesto get 21/w(t) — wo = at + C. Notice
that the constant C' = 0 sincewhen t = 0, w(t) = wg. We
then rewriteit as

w(t) = wo + %2152. 2

Therefore, SIMD can grow aggressive with time. This
property isimportant sinceit allows SIMD to efficiently probe
extra bandwidth when it becomes available. For SIMD, it is
possible to have high smoothness (low variation of window
size) in steady state by using asmall 3, aswell ashigh aggres-
sivenesswhen there are drastic changesin network conditions.
On the contrary, if w(t) isalinear or sub-linear function of ¢,
then the connections are unable to acquire bandwidth quickly.
For example, TCP-friendly AIMD algorithm needs to param-
eterizeitscontrol rulesby defining o asafunction of 5 [8, 22].
In particular, without considering the effect of TCP's timeout
mechanisms, o = 33/(2 — ). Although smoothnessis pos-
sible by using moderate decrease, AIMD becomesinsensitive
to sudden increases in available bandwidth.

For SIMD, aremaining question is, how can we define o
in theincrease rule (1) such that SIMD is TCP-friendly, given
(B and the state variable w,, . (Or wg)? Here we assume the
multiplicative decrease factor 3 is a constant. We define o as
follows:

=3B ©

T (1-28/3)V2Wmaz
Thus, during a congestion epoch, « is inversely proportional
t0 \/Wmaz. Dueto spacelimitation, werefer thereader to [13]
for why this choice of « makes our SIMD algorithm TCP-
friendly assuming arandom loss model. In Section 4, we use
simulations to validate the TCP-friendliness of SIMD for a
wide range of lossrate. From (3), Equation (2) becomes:

98 2
8(1 —28/3)2wmaz

w(t) = wo +

(4)

We observe the following. First, the increase term of the
increase rule in (1) is proportiona to +/(w; — wo)/Wmaz-
Since wy, wop, and w4, are dependent on the window size,
the increase term is time-varying. Therefore, SIMD can be
viewed as a special AIMD whose increase parameter « (in
the control rules of AIMD) is dways varying. The elegance
of SIMD is, by doing this, it can provide high smoothness (us-
ing small 3) in steady state, and still have high aggressiveness
when there is a sudden increase of available bandwidth. Sec-
ond, therate at which w(t) increasesisinversely proportional
{0 Wmae, @ shown in Equation (4). Therefore, if there are
two SIMD flows competing, then the flow with smaller win-
dow sizeismore aggressive. This property can result in better
convergence behavior. AIMD does not have such property.
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Figure 1. Convergence of AIMD and SIMD

3. Convergence to Fairness and Efficiency

In this section, we first show that SIMD converges to fair-
ness and efficiency under a synchronized feedback assump-
tion. Then we show that SIMD convergesfaster than memory-
less AIMD and binomial controls.

3.1. Convergence of SIMD

We adopt the ideal synchronized feedback assumption [2].
To show that multiple users with synchronized feedbacks us-
ing our control scheme converge to fairness, we use the vector
space used by Chiu and Jain [2] to view the system state tran-
sitions as a trgjectory. For ease of presentation, we show a
two-user case. It is straightforward to apply the same tech-
nigue to the multiple-user case to reach the same conclusion.

As shown in Figure 1, any two-user resource allocation
can be represented by a point X (x4, z2), where z; isthe re-
source allocation (normalized by total capacity) for the t%
user, ¢ = 1,2. We define the fairness index as max( %, £2).
If the fairnessindex is closer to unity, the resource allocation
ismorefair. Thelinez; = x, isthe “fairnessling’. Theline
x1 + x2 = 1 isthe “maximum utilization line” or “efficiency
line”. Thegoal of control schemesisto bring the systemto the
intersection of the fairness line and the efficiency line. When
the system is under-utilized (assuming z; < x5 without loss
of generality), AIMD increasesthe resource all ocation of both
users by a constant. Figure 1(a) shows the trgjectory to X'
paralld to the fairness line. This movement improves fairness
(i.e., reduces the fairness index). Then both users use mul-
tiplicative decrease, which does not change fairness. Hence,
as the system evolves, AIMD brings the resource allocation
point toward the fairness line, finally oscillating around the
efficiency line.

For SIMD control, we first observe Equation (4). We can
see that the window size of a connection increases in propor-
tionto 1/x;,5 = 1,2. Thus, as shown in Figure 1(b), the
increase trajectory emanates from X (z, z2) with slope .
Indeed, at any point between the two lines emanating from
the origin with slopes 7 o and 22, the resource allocation X'
is more fair than X as it reduces the value of the fairnessin-



dex. Therefore, the increase phase of SIMD improves fair-
ness. Since like AIMD, SIMD uses multiplicative decrease,
the decrease phase of SIMD does not change fairness. Hence,
SIMD converges to fairness and efficiency.

3.2. Conver gence Speed

We first intuitively show that SIMD converges faster than
AIMD. Then we analytically show the time for different con-
trol schemesto bring the difference between two user alloca-
tions within a certain small bound.

Firgt, to intuitively show that SIMD converges faster than
AIMD, we show that the increase trgjectory of SIMD inter-
sects the efficiency line at a point that is usually more fair
than that of AIMD. Let X (x;, z2) betheinitial under-utilized
alocation, 1 + 2 < 1 and assume z; < z. Using
AIMD, the intersection of the trgectory and the efficiency
lineis (1tZ—22 l-zit22) yYsing SIMD, the intersection is
(1 —z2 + zl”jfzz , Ty —T1 + zlilmz ). By comparing the fair-
ness index of these two intersections, we found that our con-
trol scheme reaches amorefair intersection if 2 +x2 > 1/3.
This condition is shown as area (1) in Figure 2(a). Since the
size of area (1) ismuch larger than area (2), weintuitively say
that SIMD usually converges faster than AIMD.

Then, we analytically compare the convergence time
of SIMD, general AIMD [8, 22], and binomial control
schemes [1]. Binomia algorithms are a family of algorithms
generalizing AIMD. The control rules were shown in Sec-
tion 2. We choose I1AD (Inverse-Increase/Additive-Decrease)
as arepresentative. 1IAD has an increase term inversely pro-
portional to the current window size (k = 1) and a constant
decreaseterm (I = 0). We still assume synchronized feedback
and use Figure 2(b) to illustrate the process of convergence to
fairness. For ease of analysis, we choose the variables to be
the actual window sizes (w;,wz). We aso divide the con-
vergence time into two parts: 77, the time it takes the control
mechanism to bring an arbitrary initial point (W, W5), where
Wy, < We and Wy + Wy < W, close to the efficiency line
wy + we = W, and T5, the time until the difference between
the two user windows stays within a certain small bound, i.e.,
|lw; — wsy| < e. Ty and T, are measured in round-trip times.
We also denote the difference between the two user windows
after 77 as A. Due to space limitation, we only present the
main results here in Table 1. The detailed analysis can be
foundin [13].

We numerically solvethe above equations for different ini-
tial points. Figure 2(c) shows the regions for which SIMD
with 3 = 1/16 converges faster/lower (i.e, Ty + T is
smaller/larger) than TCP-friendly AIMD with 3 = 1/16 for
e = 1land W = 100. In most cases SIMD converges
faster than AIMD, which supports our intuitive claim (cf. Fig-
ure 2(a)). Numerical results also show that IIAD (witha =1
and 8 = 2/3 such that IIAD is TCP-friendly) is much slower
than AIMD and SIMD in all cases.

4. Simulation Results

We use the ns simulator [5] to validate that with RED [10]
gqueue management, our proposed algorithm is TCP-friendly
and TCP-compatible. We also investigate the way two ho-
mogeneous flows converge to their bandwidth fair share and
show that our proposed algorithm outperforms other algo-
rithms, including TCP [12], genera AIMD [8, 22], and
[IAD [1]. Details about the implementation of SIMD in the
ns sSimulator can be found in [13].

Unless explicitly specified, in al of the experiments, RED
was used as the queue management policy at the bottleneck
link. The bottleneck queue configuration and other simulation
parameters are listed in Table 2.

( Description | Value Il
Packet size 1000 bytes
Maximum window 128 packets
TCP version SACK
TCP timer granularity 0.1 seconds

RED queue limit Q
DropTail queue limit
RED parameters

2.5 x B/W delay product
1.5 x B/W delay product
mingp: 0.15Q, maxyp: 0.5Q, wq:0.002
maxp:0.1, wait_on, gentle_ on

Table 2. Network configuration

The bottleneck queue size and RED queue parameters
are tuned as recommended in [3]. The “gentle.” option of
RED queue is turned on as recommended in [6]. We choose
B = 1/16 for SIMD and AIMD (and thus o ~ 1/10 for
AIMD to ensure TCP-friendliness). For IIAD, ¢ = 1 and
B = 2/3. For ease of presentation, in the rest of this section,
we will call theseimplementations by their family name, e.g.,
AIMD for AIMD(1/10,1/16) when there is no confusion. We
use SACK [15] for congestion detection. We also obtained
similar results for other mechanisms (e.g. Reno, newReno).
We assume no delayed acknowledgments.

4.1. TCP-friendliness

We conduct the following experiment to test the TCP-
friendliness of our SIMD algorithm. A single flow under
investigation is traveling through a single fat link (with infi-
nite bandwidth and buffer size). However, the link drops an
incoming packet uniformly with probability p. We vary the
loss rate p and compare the normalized long-term throughput
(with respect to standard TCP measured over 3000 RTT) of
SIMD for different 5 values and plot them in Figure 3. For
comparison, we aso plot AIMD(1/5,1/8) throughpuit.

We notice that al the curves have a dip when the loss rate
is moderate. A close look at the TCP-friendly equation [16]
can reveal one possible explanation of this abnormality:

w, 1
A(p, @, B) ~ min(—22 )
R

Ry 3gy v + Tomin(1, 34/ 252 p)p(1 + 3202)
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[ Algorithm | T (RTT) | A | T3 (RTT) |
TCP W=W1-W2 W2 — Wi W log, /5 £
AIMD VW, W) ) Wa W1 TPV 100 <
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Table 1. Performance measures on convergence to fairness and efficiency
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Figure 3. TCP-friendliness

When loss rate is low, TCP mainly stays in the congestion
avoidance stage, and the AIMD algorithm dominates this
equation. When lossrate is very high, TCP spends most of its
time retransmitting packets, and the exponential back-off al-
gorithm dominates this equation. Since all TCP variants stud-
ied in this paper use the same timeout mechanism as standard
TCP, and they carefully calibrate the values of parametersdur-
ing congestion avoidance to match standard TCP, they can
achieve comparabl e throughput as standard TCP for very high
and low lossrates. However, for the loss regimein between, it
becomes hard, if not impossible, to obtain o and 3 values that
would approximate well both the congestion avoidance and
the exponential back-off components of this equation [22].
Nevertheless, in the worst case with loss rate around 15%,
SIMD(1/16), which is the worst among al the SIMD ago-
rithms considered, can achieve at least 75% throughput as
standard TCP, and performs much closer to standard TCP than
AIMD(1/5,1/8). Given the fact that most parts of the Internet

are experiencing less than 5% loss rate [4], our algorithm is
TCP-friendly under these conditions.

The weakness of AIMD(«, 8) with small 5 under medium
loss conditions is also reported in [8, 22]. The authors try to
compensate for the bandwidth loss by increasing the value of
a. However, when lossrateissmall (e.g. lessthan 3%), AIMD
with large o could achieve significantly higher bandwidth
than standard TCP and become less TCP-friendly. Therefore,
we maintain the theoretical o values throughout our simula-
tions.

4.2. TCP-Compatibility

We use the method described in [8] to test TCP-
compatibility. n SIMD flows and n standard TCP SACK
flows compete for bandwidth over a shared bottleneck link.
There are also 4 background TCP flows transmitting packets
in the opposite direction to introduce random ACK delays.
We consider both RED and DropTail queues. Figure 4 and
Figure 5 show the simulation results for RED queues, with
and without ECN bit set, respectively. In each case, results
are shown for a bottleneck link bandwidth of 15Mbps and
60Mbps. The measured average round-trip delay is around
0.1 second. Each point in the graph represents the throughput
of an individual flow in the last 60 seconds, and the dashed
lines represent the average throughput of SIMD and standard
TCP flows. In the lower graphs, we also plot the packet 10ss
rate for the RED without ECN case, and the rate of ECN early
marking plus dropping due to queue overflow for the RED
with ECN case.

As can be observed from the graphs, SIMD achieves a
dlightly lower average throughput than standard TCP when
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when the loss rate exceeds a certain level. Thisis partly due
tothereason weillustratein Figure 3. Another possible expla-
nation is that when severe congestion happens, SIMD can not
compete well against standard TCP since compared to TCP,
SIMD opens its congestion window more conservatively at
the beginning of each congestion epoch. Therefore, when the
time between two consecutive packet lossesis short, the more
aggressive TCP tends to gain more throughput. However, in
areasonabl e loss regime (loss rate below 10%), SIMD shows
very impressive TCP-compatibility. Note that in the case of
60Mbps link and less than 4 flows, the length of the measure-
ment period (60 seconds) is too short compared to the length
of each congestion epoch (more than 40 seconds), thus the
variance of the results appearsto be large.

We aso found that with DropTail queue management, as
shown in Figure 6, SIMD can still be TCP-friendly and TCP-
compatible. The difference, compared to the RED queue ex-
periment, is that the variance becomes larger and SIMD now
gets less bandwidth than standard TCP compared to the pre-
vious experiment. Note that the assumption of randomized
packet losses made in our analysis does not apply to Drop-
Tail. Under DropTail, packet losses tend to be more corre-
lated (bursty drops). We conjecture that because the round-
trip times of connections are randomized in the simulation,
the chance of having synchronized packet arrivals is small,

Cl flows i

c2 flows s

all accesslinks 10M bps,5ms

Figure 7. Simulation topology for convergence test

and the side effect of a DropTail queue (correlated drops for
each flow) isthus not so significant.

4.3. Convergence to Fairness and Efficiency

In this section, we assume a homogeneous protocol envi-
ronment, i.e., al flows use the same algorithm for congestion
control. We then vary the network configuration to study the
convergence time of different algorithms.

We use the topology shown in Figure 7 to perform this ex-
periment. In the beginning of the simulation, therearec; + 1
connections sharing link (b1, b2), 2 connections sharing link
(62, b3), co + 1 connections between b3 and b4. Link band-
widths and delays are shown in the figure. At time 400, al
background flows terminate and only two flows (s1-r1) and
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(s2-r2) stay to compete for the bottleneck link (62,63). We use
packet size of 500 bytes in these experiments.

4.3.1 ConvergencetoFairness(Wi+W, = W,W; < W)

We create this scenario to study the convergence time to fair-
ness given that the initial point (W, Ws) ison the efficiency
line (w; + we = W). To create this setup, we let ¢; = 15,
ce = 0, x = 6Mbps, y = 6Mbps. So the bottleneck link for
flow (s2,r2) remains link (b2,63), but for flow (s1,rl), the bot-
tleneck changes from link (b3,b4) to (b2, b3) at time 400. We
can also compute that: W = 110, W7 ~ 7, and W5 ~ 100.
Figure 8 plotsthetransient behavior of the congestion window
of different protocols.

We observe that standard TCP has the highest convergence
speed, and IIAD generates the smoothest but least responsive
traffic. 1t isworth noticing that in this scenario, where signifi-
cant bandwidth change happens, our proposed algorithm con-
verges much faster than AIMD to the fair share of the band-
width.

Table 3 gives the convergence time to fairness (13). Here
we use e = 10 packets (cf. Section 3.2). The theoretical value
is aso given in the table for comparison. The following ob-
servations can be made from the table.

First, the simulation results agree with the theoretical anal-
ysis in the ranking of various protocols except that all mea-
sured convergence times are smaller than the corresponding
theoretical values. Thisisexpected since our analysisis based
on synchronized feedback assumption, and routers that do not
differentiate among flows when dropping packets. In contrast,
in the simulation, we use RED, so flows with larger window
sizeswould see more packet drops. In other words, RED helps
to enhance the convergence speed to fairness.

Second, SIMD benefits from RED much more than other
schemes. The T value from simulations is much smaller than
the value obtained from analysis (shown in boldface). This
is because RED alows SIMD flows with smaller windows
to experience fewer packet losses, which gives them a better
chance to become more aggressive. On the contrary, AIMD

does not fully capitalize on the random loss property of RED
since its aggressiveness does not change. As aresult, SIMD
converges to fairness much faster.

432 Convergenceto Efficiency (W; < Ws < %)

To create such scenario, welet ¢; = 11, ¢s = 3, z = 6Mbps,
y = 10Mbps. So initialy the bottleneck link for flow (s1,r1)
is (b1,02), and for flow (s2,r2) the bottleneck is (b3,b4). But
at time 400, both of them switch to link (62, b3). Roughly,
we have W ~ 110, W7 ~ 10, and W, ~ 30. We can then
study 77, the convergence time to efficiency of different con-
trol schemes. Figure 9 plots the transient behavior of the con-
gestion window of different protocols.

The advantage of our SIMD algorithm is more pronounced
in this scenario. TCP is till the fastest responding protocol,
but still at the expense of high variability. In addition, general
AIMD suffersfrom the problem of convergence efficiency, i.e,
al flows have the same window increments, so before packet
loss happens, they increase their congestion windows at the
same rate and thus do not efficiently convergeto the fair share.
On the contrary, our SIMD algorithm allows the two compet-
ing flows to smoothly and quickly transit to the fair steady
state, since the flow with smaller window grows more aggres-
sive than the one with larger window. |IAD takes a much
longer time to converge due to its inherent weak aggressive-
ness (sub-linear increase).

We also give convergencetimeto efficiency (77) in Table 3.
Analytical results closely match the simulation resullts.

5. Related Work

The earliest congestion controls include Jacobson's
TCP agorithm [12] and Ramakrishnan and Jain's DEChit
scheme [18]. Under a synchronized feedback assumption,
Chiuand Jain[2] analyze AIMD control. To provide smoother
transmission rate than that given by TCP, several TCP-like
window-based congestion control mechanisms have been pro-
posed, including the general AIMD [8, 22] and TEAR [19].
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Figure 8. Two flows converge to fair share of bandwidth
Algorithm Experiment 1 Experiment 2
W1 Wy To (RTT) Wi Wa T (RTT) A (pktS)

simu | anal simu | ana | simu | anal

TCP 6.1 | 996 | 68.0 | 88.7 88 | 138 | 55 437 | 58 6.0

AIMD 79 | 992 | 776 | 1217 || 12.7 | 31.0 | 349 | 342 | 186 | 183

I1AD 7.7 | 998 | 4232 | 6684 | 11.8 | 31.2 | 1284 | 1242 | 8.1 7.6

SIMD 66 | 963 | 218 | 852 || 10.2 | 332 | 90 851 | 136 | 12.3

Table 3. Quantitative measures on convergence time

These mechanisms use a moderate window decrease parame-
ter to reduce rate variability, meanwhile use a matching win-
dow increase parameter to satisfy TCP-friendliness. Thereare
tradeoffs between smoothness and reaction to changes in net-
work conditions[8, 21].

Non-linear controls were considered less robust and not
suitable for practical purposes [2]. On the contrary, Bansal
and Balakrishnan [1] proposed binomial agorithmsthat inter-
act well with TCP AIMD. Binomial controls are memory-less
in that they use only the current window size in their control
rules. SIMD isradically different from memory-less binomial
agorithms. To our knowledge, SIMD is the first window-
based TCP-friendly congestion control agorithm using his-
tory information in its control rules. By doing so, SIMD im-
proves its transient behavior and convergence speed without
sacrificing smoothness in steady state.

Ancther approach to provide smoother transmission rate
is equation-based congestion controls [9, 17, 20], first pro-
posed in [14]. In these schemes, end-systems measure the
packet loss rate and round-trip time, and use the TCP-friendly
equation [16] to compute the transmission rate. Two com-
parisons[8, 21] of equation-based and window-based conges-
tion controls have shown that equation-based schemes and
window-based AIMD share similar transient behaviors but
equation-based schemes provide higher smoothness. How-

ever, the aggressiveness of equation-based schemesis limited
by the nature of rate-based control, which lacks a self-clocked
mechanism for overload protection as in window-based con-
trol. Notably, equation-based schemes use more history in-
formation (up to eight congestion epochs [9]). Therefore,
SIMD is a step toward exploring the design space between
window-based memory-less control schemes and equation-
based schemes that make use of longer history.

6. Conclusion

We proposed a novel window-based congestion con-
trol algorithm called SIMD (Square-Increase/Multiplicative-
Decrease). Contrary to previous memory-less controls, SIMD
utilizes history information in its control rules. It uses multi-
plicative decrease but the window size increases in propor-
tion to the square of the time elapsed since the detection
of the last loss event. Thus, SIMD can maintain smooth-
ness in steady state, while efficiently probing available band-
width when there are drastic changes in network conditions.
We have shown that SIMD is TCP-friendly as well as TCP-
compatible under RED. We have also shown that SIMD has
faster convergence than TCP-friendly memory-less AIMD
and binomial algorithms. Our simulations using the ns simu-
lator have demonstrated the superiority of SIMD.
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Figure 9. Two flows converge to fair share of bandwidth

SIMD s the first example of window-based congestion
control algorithms that uses history information in its con-
trol rules. It explores a new design space between memory-
less window-based congestion control schemes and equation-
based schemes that use history spanning many congestion

epochs.

Indeed, this new space defines a new class of

TCP-friendly window-based congestion control algorithms,
of which SIMD is an instance [13]. Future work includes
comparisons between equation-based schemes and SIMD.

References

(1]
(]

(3]

(4]
(5]
(6]
(7]

(8]

(9]

(10]

D. Bansal and H. Balakrishnan. Binomial congestion control
agorithms. In Proceedings of IEEE INFOCOM, April 2001.
D.-M. Chiu and R. Jain. Analysis of the increase and decrease
agorithms for congestion avoidance in computer networks.
Computer Networks and ISDN Systems, 17:1-14, 1989.

M. Christiansen, K. Jeffay, D. Ott, and F. Smith. Tuning RED
for Web Traffic. In Proc. ACM SGCOMM 2000, Stockholm,
Sweden, Aug.-Sep. 2000.

Cooperative Association for Internet Data Analysis. The
CAIDA Website. http://www.caida.org.

E. Amir et al. UCB/LBNL/VINT Network Simulator - ns (ver-
sion 2). Available at http://http://www.isi.edu/nsnam/ng/.

S. Floyd. Recommendation on using the “gentle_” variant of
RED. http://www.aciri.org/floyd/red/gentle.html, March 2000.
S. Floyd and K. Fall. Promoting the use of end-to-end con-
gestion control in the Internet. |EEE/ACM Transactions on
Networking, 7(4):458-472, August 1999.

S. Floyd, M. Handley, and J. Padhye. A compar-
ison of eguation-based and AIMD congestion control.
http://www.aciri.org/floyd/papers.html, May 2000.

S. Floyd, M. Handley, J. Padhye, and J. Widmer. Equation-
based congestion control for unicast applications. In Proceed-
ings of ACM SSGCOMM, August 2000.

S. Floyd and V. Jacobson. Random early detection gateways
for congestion avoidance. IEEE/ACM Transactions on Net-
working, 1(4):393-417, August 1993.

(11]

(12]

(13]

(14]

(19]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

S. Gorinsky and H. Vin. Additive increase appears inferior.
Technical Report TR2000-18, Department of CS, Univ. of
Texas at Austin, May 2000.

V. Jacobson. Congestion avoidance and control. In Proceed-
ings of ACM SSGCOMM, August 1988.

S. Jn, L. Guo, |. Matta, and A. Bestavros. A gpec-
trum of TCP-friendly window-based congestion control al-
gorithms.  Technical Report BU-CS-2001-015, Computer
Science Department, Boston University, July 2001. Avail-
able at http://www.cs.bu.edu/techreports/2001-015-spectrum-
tep-friendly.ps.Z.

J. Mahdavi and S. Floyd. TCP-friendly unicast rate-based flow
control. Note sent to end2end-interest mailing list, 1997.

M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP Se-
lective Acknowledgement Options. Internet RFC 2018, April
1996.

J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling
TCP throughput: A simple model and its empirical validation.
In Proceedings of ACM SGCOMM, 1998.

J. Padhye, J. Kurose, D. Towsley, and R. Koodli. A model
based TCP-friendly rate control protocol. In Proceedings of
NOSSDAV, June 1999.

K. Ramakrishnan and R. Jain. Congestion avoidance in com-
puter networkswith aconnectionless network layer: Part IV: A
selective binary feedback scheme for general topologies. Tech-
nical report, DEC, August 1987.

I. Rhee, V. Ozdemir, and Y. Yi. TEAR: TCP Emulation At
Receivers — flow control for multimedia streaming. Technical
report, Department of Computer Science, North Carolina State
University, April 2000.

W.-T. Tan and A. Zakhor. Real-time Internet video using er-
ror resilient scalable compression and TCP-friendly transport
protocol. |EEE Trans. Multimedia, 1(2):172—-186, June 1999.
Y. R. Yang, M. S. Kim, and S. S. Lam. Transient behavior of
TCP-friendly congestion control protocols. In Proceedings of
|EEE INFOCOM, April 2001.

Y.R.Yangand S. S. Lam. General AIMD congestion control.
In Proceedings of ICNP, November 2000.



