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Abstract

The increased diversity of Internet application require-
ments has spurred recent interests in flexible congestion con-
trol mechanisms. Window-based congestion control schemes
use increase rules to probe available bandwidth, and decrease
rules to back off when congestion is detected. The control
rules are parameterized so as to ensure that the resulting pro-
tocol is TCP-friendly in terms of the relationship between
throughput and packet loss rate. In this paper, we propose
a novel window-based congestion control algorithm called
SIMD (Square-Increase/Multiplicative-Decrease). Contrary
to previous memory-less controls, SIMD utilizes history in-
formation in its control rules. It uses multiplicative decrease
but the increase in window size is in proportion to the square
of the time elapsed since the detection of the last loss event.
Thus, SIMD can efficiently probe available bandwidth. Nev-
ertheless, SIMD is TCP-friendly as well as TCP-compatible
through RED routers. Furthermore, SIMD has much better
convergence behavior than TCP-friendly AIMD and binomial
algorithms proposed recently.

1. Introduction

TCP uses additive-increase and multiplicative-decrease
(AIMD). It probes available bandwidth by increasing its con-
gestion window size linearly, and responds to congestion (in-
dicated by packet losses) by decreasing the window size mul-
tiplicatively. Recently proposed congestion control mech-
anisms include generalizations of TCP-like window-based
schemes [1, 8, 19, 22] and equation-based schemes [9, 17, 20].
One common objective of these new schemes is to reduce
variations in transmission rate. Such high variations may
limit network utilization. In addition, they are not desirable
for emerging applications such as real-time streaming appli-
cations on the Internet.
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It is required that new protocols implement congestion
control mechanisms that interact well with TCP [7]. That
is, they should maintain TCP-compatibility, or fairness across
connections using different protocols. To provide such fair-
ness, TCP-friendliness is necessary, which means the (�; p)
relationship � =

p
3=2=(R

p
p) should approximately hold,

where � is the throughput of a flow, p is its packet loss rate,
and R is the round-trip time.

In addition, there are other requirements for congestion
control algorithms. Smoothness measures the variation in the
transmission rate of a connection using the protocol. Smooth-
ness is important in steady state. High smoothness is desirable
for some applications, e.g., Internet real-time applications.
Aggressiveness measures how fast the connection probes ex-
tra bandwidth by opening up its window. In particular, when
there is a sudden increase in available bandwidth, it is desir-
able that the connection acquires it quickly. Responsiveness
measures how fast the connection reacts to increased conges-
tion by decreasing its window size. It is desirable that the con-
nection reduces its transmission rate to its fair share promptly.
Both aggressiveness and responsiveness are measures of the
transient behavior of congestion control protocols [21]. Con-
vergence measures how fast competing connections converge
to their fair share of bandwidth. Convergence speed is related
to the aggressiveness and responsiveness indices. More ag-
gressive and responsive protocols usually converge faster.

Several recently proposed TCP-friendly congestion con-
trol schemes, including general AIMD [8, 21], binomial algo-
rithms [1], TFRC [9], and TEAR [19], can provide smoother
transmission rate than TCP. However, these algorithms may
lack the aggressiveness and responsiveness of TCP. Hence,
when network conditions change drastically, these protocols
can not react to the change promptly. In particular, recent
studies [8, 21] have compared TCP AIMD, general AIMD,
TFRC, and TEAR, and shown that higher smoothness results
in lower aggressiveness. Therefore, a question is, can TCP-
friendly congestion control algorithms maintain high smooth-
ness in steady state and still have high aggressiveness when
there are drastic changes in network conditions?

Meanwhile, it is necessary to consider the convergence of



congestion control schemes. Chiu and Jain [2] showed that
AIMD control converges to fairness and efficiency. Recently,
it was shown that the additive increase of TCP and general
AIMD control is inferior [11]. Binomial algorithms [1] using
non-additive increase also possess the convergence property.
Binomial algorithms are similar to AIMD in that they all use
memory-less control. That is, their control rules use only the
current window size. Therefore, a question is, can one im-
prove the convergence behavior by using history information
in window-based congestion control algorithms?

This paper provides answers to these questions. We study
TCP-like window-based congestion control algorithms. Con-
trary to the memory-less AIMD and binomial algorithms [1],
we consider the case where connections utilize history infor-
mation, in addition to the current window size. The only his-
tory we use is the window size at the time of detecting the last
loss. To this end, we propose a novel algorithm called SIMD
(Square-Increase/Multiplicative-Decrease). SIMD decreases
the window size multiplicatively but increases it in proportion
to the square of the time elapsed since the detection of the
last loss event. SIMD can have high smoothness in steady
state, and if network conditions change drastically, SIMD can
grow aggressive. On the contrary, other control schemes in-
crease the window size linearly or sub-linearly. We show that
SIMD is TCP-friendly: connections using SIMD have ap-
proximately the same throughput as TCP connections, given
the same packet loss rate and round-trip time. Furthermore,
SIMD has better convergence behavior than that of memory-
less AIMD and binomial algorithms. We use a synchronized
feedback model [2] to illustrate the convergence behavior of
SIMD. In addition, using the ns simulator [5], we show that
SIMD can fully capitalize on the random loss property of
RED [10] to improve convergence speed.

Our SIMD algorithm is the first step toward exploring a
new design space between memory-less window-based con-
gestion control schemes and equation-based schemes which
use more history information. Compared to memory-less
window-based schemes, SIMD improves transient behavior
by using history. Compared to equation-based schemes,
SIMD has several unique properties: the self-clocking nature
of window-based schemes, and simple modifications to TCP’s
implementation. The remainder of this paper is organized as
follows. We propose our algorithm in Section 2. We analyze
its convergence behavior in Section 3. Our simulation results
are described in Section 4. We revisit related work in Sec-
tion 5 and finally conclude the paper.

2. SIMD Congestion Control

A TCP-like window-based congestion control scheme in-
creases the congestion window as a result of the successful
transmission of a window of packets, and decreases the con-
gestion window upon the detection of packet losses. We call
such a sequence of window increments followed by one win-
dow decrement a congestion epoch. The congestion control

scheme defines one control rule for window increase, and an-
other rule for window decrease. For example, AIMD uses the
following linear control rules:

Increase : wt+R  wt + �; � > 0;

Decrease : wt+Æ  wt � �wt; 0 < � < 1;

wherewt is the window size at time t, R is the round-trip time,
and Æ is the time to detect packet loss since the last window
update. That is, for AIMD, the window size is increased by a
constant when a window of packets are transmitted success-
fully, and it is decreased by a constant factor once a packet loss
event is detected. Binomial algorithms [1] generalize AIMD
with non-linear controls. They use the following control rules:

Increase : wt+R  wt + �=wk
t ; � > 0;

Decrease : wt+Æ  wt � �wl
t; 0 < � < 1:

That is, binomial algorithms generalize additive-increase by
increasing inversely proportional to a power k of the cur-
rent window (for TCP, k = 0), and generalize multiplicative-
decrease by decreasing proportional to a power l of the current
window (for TCP, l = 1).

We say that AIMD and binomial algorithms are memory-
less since the increase and decrease rules use only the current
window size wt and constants (�, �, k, and l). Neither of
them utilizes history information. On the contrary, we find
the window size at the end of the last congestion epoch (before
the decrease) handy and useful. Our scheme maintains such
a state variable wmax, which is updated at the end of each
congestion epoch. In addition, let w0 denote the window size
after the decrease. Given a decrease rule, w0 can be obtained
from wmax, and vice versa. For example, for TCP, w0 = (1�
�)wmax. Henceforth, for clarity, we use both wmax and w0.
Note, when TCP slow-start ends and congestion avoidance
phase starts, we have the first value of w0, i.e., the current
window size. Then the first value of wmax is obtained. We
define the control rules of SIMD as:

Increase : wt+R  wt + �
p
wt � w0; � > 0;

Decrease : wt+Æ  wt � �wt; 0 < � < 1: (1)

Like AIMD, SIMD uses multiplicative decrease. However,
SIMD uses an increase rule very different from those used by
AIMD and binomial algorithms. First, SIMD uses the history
information of a connection since w0 is the window size af-
ter the last decrease. (Later, we will also show that � itself
depends on wmax, and changes from one congestion epoch
to another.) Second, the increase pattern of the window size
is super-linear. To elaborate on this point, next we show that
SIMD’s increase rule results in a quadratic function of time t
since the detection of the last loss event.

Let w(t) be the continuous approximation of the window
size at time t (in RTT’s) elapsed since the window started to
increase. By definition, w0 = w(0). Using linear interpola-
tion and continuous approximation, from the increase rule in
(1), we have

dw(t)

dt
= �
p
w(t)� w0:



This gives us
1p

w(t)� w0

dw(t) = �dt:

We integrate both sides to get 2
p
w(t)� w0 = �t+ C. Notice

that the constant C = 0 since when t = 0, w(t) = w0. We
then rewrite it as

w(t) = w0 +
�2

4
t2: (2)

Therefore, SIMD can grow aggressive with time. This
property is important since it allows SIMD to efficiently probe
extra bandwidth when it becomes available. For SIMD, it is
possible to have high smoothness (low variation of window
size) in steady state by using a small �, as well as high aggres-
siveness when there are drastic changes in network conditions.
On the contrary, if w(t) is a linear or sub-linear function of t,
then the connections are unable to acquire bandwidth quickly.
For example, TCP-friendly AIMD algorithm needs to param-
eterize its control rules by defining � as a function of � [8, 22].
In particular, without considering the effect of TCP’s timeout
mechanisms, � = 3�=(2 � �). Although smoothness is pos-
sible by using moderate decrease, AIMD becomes insensitive
to sudden increases in available bandwidth.

For SIMD, a remaining question is, how can we define �
in the increase rule (1) such that SIMD is TCP-friendly, given
� and the state variable wmax (or w0)? Here we assume the
multiplicative decrease factor � is a constant. We define � as
follows:

� =
3
p
�

(1� 2�=3)
p
2wmax

: (3)

Thus, during a congestion epoch, � is inversely proportional
to
p
wmax. Due to space limitation, we refer the reader to [13]

for why this choice of � makes our SIMD algorithm TCP-
friendly assuming a random loss model. In Section 4, we use
simulations to validate the TCP-friendliness of SIMD for a
wide range of loss rate. From (3), Equation (2) becomes:

w(t) = w0 +
9�

8(1� 2�=3)2wmax
t2: (4)

We observe the following. First, the increase term of the
increase rule in (1) is proportional to

p
(wt � w0)=wmax.

Since wt, w0, and wmax are dependent on the window size,
the increase term is time-varying. Therefore, SIMD can be
viewed as a special AIMD whose increase parameter � (in
the control rules of AIMD) is always varying. The elegance
of SIMD is, by doing this, it can provide high smoothness (us-
ing small �) in steady state, and still have high aggressiveness
when there is a sudden increase of available bandwidth. Sec-
ond, the rate at which w(t) increases is inversely proportional
to wmax, as shown in Equation (4). Therefore, if there are
two SIMD flows competing, then the flow with smaller win-
dow size is more aggressive. This property can result in better
convergence behavior. AIMD does not have such property.
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Figure 1. Convergence of AIMD and SIMD

3. Convergence to Fairness and Efficiency

In this section, we first show that SIMD converges to fair-
ness and efficiency under a synchronized feedback assump-
tion. Then we show that SIMD converges faster than memory-
less AIMD and binomial controls.

3.1. Convergence of SIMD

We adopt the ideal synchronized feedback assumption [2].
To show that multiple users with synchronized feedbacks us-
ing our control scheme converge to fairness, we use the vector
space used by Chiu and Jain [2] to view the system state tran-
sitions as a trajectory. For ease of presentation, we show a
two-user case. It is straightforward to apply the same tech-
nique to the multiple-user case to reach the same conclusion.

As shown in Figure 1, any two-user resource allocation
can be represented by a point X(x1; x2), where xi is the re-
source allocation (normalized by total capacity) for the ith

user, i = 1; 2. We define the fairness index as max( x1
x2
; x2
x1
).

If the fairness index is closer to unity, the resource allocation
is more fair. The line x1 = x2 is the “fairness line”. The line
x1 + x2 = 1 is the “maximum utilization line” or “efficiency
line”. The goal of control schemes is to bring the system to the
intersection of the fairness line and the efficiency line. When
the system is under-utilized (assuming x1 � x2 without loss
of generality), AIMD increases the resource allocation of both
users by a constant. Figure 1(a) shows the trajectory to X 0

parallel to the fairness line. This movement improves fairness
(i.e., reduces the fairness index). Then both users use mul-
tiplicative decrease, which does not change fairness. Hence,
as the system evolves, AIMD brings the resource allocation
point toward the fairness line, finally oscillating around the
efficiency line.

For SIMD control, we first observe Equation (4). We can
see that the window size of a connection increases in propor-
tion to 1=xi; i = 1; 2. Thus, as shown in Figure 1(b), the
increase trajectory emanates from X(x1; x2) with slope x1

x2
.

Indeed, at any point between the two lines emanating from
the origin with slopes x1

x2
and x2

x1
, the resource allocation X 0

is more fair than X as it reduces the value of the fairness in-



dex. Therefore, the increase phase of SIMD improves fair-
ness. Since like AIMD, SIMD uses multiplicative decrease,
the decrease phase of SIMD does not change fairness. Hence,
SIMD converges to fairness and efficiency.

3.2. Convergence Speed

We first intuitively show that SIMD converges faster than
AIMD. Then we analytically show the time for different con-
trol schemes to bring the difference between two user alloca-
tions within a certain small bound.

First, to intuitively show that SIMD converges faster than
AIMD, we show that the increase trajectory of SIMD inter-
sects the efficiency line at a point that is usually more fair
than that of AIMD. Let X(x1; x2) be the initial under-utilized
allocation, x1 + x2 < 1 and assume x1 < x2. Using
AIMD, the intersection of the trajectory and the efficiency
line is ( 1+x1�x2

2
; 1�x1+x2

2
). Using SIMD, the intersection is

(x1� x2 +
x2

x1+x2
; x2� x1 +

x1

x1+x2
). By comparing the fair-

ness index of these two intersections, we found that our con-
trol scheme reaches a more fair intersection if x1+x2 > 1=3.
This condition is shown as area (1) in Figure 2(a). Since the
size of area (1) is much larger than area (2), we intuitively say
that SIMD usually converges faster than AIMD.

Then, we analytically compare the convergence time
of SIMD, general AIMD [8, 22], and binomial control
schemes [1]. Binomial algorithms are a family of algorithms
generalizing AIMD. The control rules were shown in Sec-
tion 2. We choose IIAD (Inverse-Increase/Additive-Decrease)
as a representative. IIAD has an increase term inversely pro-
portional to the current window size (k = 1) and a constant
decrease term (l = 0). We still assume synchronized feedback
and use Figure 2(b) to illustrate the process of convergence to
fairness. For ease of analysis, we choose the variables to be
the actual window sizes (w1,w2). We also divide the con-
vergence time into two parts: T1, the time it takes the control
mechanism to bring an arbitrary initial point (W1, W2), where
W1 � W2 and W1 +W2 < W , close to the efficiency line
w1 + w2 = W , and T2, the time until the difference between
the two user windows stays within a certain small bound, i.e.,
jw1 � w2j < �. T1 and T2 are measured in round-trip times.
We also denote the difference between the two user windows
after T1 as �. Due to space limitation, we only present the
main results here in Table 1. The detailed analysis can be
found in [13].

We numerically solve the above equations for different ini-
tial points. Figure 2(c) shows the regions for which SIMD
with � = 1=16 converges faster/slower (i.e., T1 + T2 is
smaller/larger) than TCP-friendly AIMD with � = 1=16 for
� = 1 and W = 100. In most cases SIMD converges
faster than AIMD, which supports our intuitive claim (cf. Fig-
ure 2(a)). Numerical results also show that IIAD (with � = 1
and � = 2=3 such that IIAD is TCP-friendly) is much slower
than AIMD and SIMD in all cases.

4. Simulation Results

We use the ns simulator [5] to validate that with RED [10]
queue management, our proposed algorithm is TCP-friendly
and TCP-compatible. We also investigate the way two ho-
mogeneous flows converge to their bandwidth fair share and
show that our proposed algorithm outperforms other algo-
rithms, including TCP [12], general AIMD [8, 22], and
IIAD [1]. Details about the implementation of SIMD in the
ns simulator can be found in [13].

Unless explicitly specified, in all of the experiments, RED
was used as the queue management policy at the bottleneck
link. The bottleneck queue configuration and other simulation
parameters are listed in Table 2.

Description Value

Packet size 1000 bytes
Maximum window 128 packets

TCP version SACK
TCP timer granularity 0.1 seconds
RED queue limit Q 2.5 � B/W delay product

DropTail queue limit 1.5 � B/W delay product
RED parameters minth: 0.15Q, maxth: 0.5Q, wq :0.002

maxp:0.1, wait on, gentle on

Table 2. Network configuration

The bottleneck queue size and RED queue parameters
are tuned as recommended in [3]. The “gentle ” option of
RED queue is turned on as recommended in [6]. We choose
� = 1=16 for SIMD and AIMD (and thus � � 1=10 for
AIMD to ensure TCP-friendliness). For IIAD, � = 1 and
� = 2=3. For ease of presentation, in the rest of this section,
we will call these implementations by their family name, e.g.,
AIMD for AIMD(1/10,1/16) when there is no confusion. We
use SACK [15] for congestion detection. We also obtained
similar results for other mechanisms (e.g. Reno, newReno).
We assume no delayed acknowledgments.

4.1. TCP-friendliness

We conduct the following experiment to test the TCP-
friendliness of our SIMD algorithm. A single flow under
investigation is traveling through a single fat link (with infi-
nite bandwidth and buffer size). However, the link drops an
incoming packet uniformly with probability p. We vary the
loss rate p and compare the normalized long-term throughput
(with respect to standard TCP measured over 3000 RTT) of
SIMD for different � values and plot them in Figure 3. For
comparison, we also plot AIMD(1/5,1/8) throughput.

We notice that all the curves have a dip when the loss rate
is moderate. A close look at the TCP-friendly equation [16]
can reveal one possible explanation of this abnormality:

�(p; �; �) � min(
Wmax

R
;

1

R

p
2�

�(2��)
p + T0 min(1; 3

p
�(2��)

2�
p)p(1 + 32p2)

)
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Figure 2. Comparison of convergence speed
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Table 1. Performance measures on convergence to fairness and efficiency
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Figure 3. TCP-friendliness

When loss rate is low, TCP mainly stays in the congestion
avoidance stage, and the AIMD algorithm dominates this
equation. When loss rate is very high, TCP spends most of its
time retransmitting packets, and the exponential back-off al-
gorithm dominates this equation. Since all TCP variants stud-
ied in this paper use the same timeout mechanism as standard
TCP, and they carefully calibrate the values of parameters dur-
ing congestion avoidance to match standard TCP, they can
achieve comparable throughput as standard TCP for very high
and low loss rates. However, for the loss regime in between, it
becomes hard, if not impossible, to obtain � and � values that
would approximate well both the congestion avoidance and
the exponential back-off components of this equation [22].

Nevertheless, in the worst case with loss rate around 15%,
SIMD(1/16), which is the worst among all the SIMD algo-
rithms considered, can achieve at least 75% throughput as
standard TCP, and performs much closer to standard TCP than
AIMD(1/5,1/8). Given the fact that most parts of the Internet

are experiencing less than 5% loss rate [4], our algorithm is
TCP-friendly under these conditions.

The weakness of AIMD(�, �) with small � under medium
loss conditions is also reported in [8, 22]. The authors try to
compensate for the bandwidth loss by increasing the value of
�. However, when loss rate is small (e.g. less than 3%), AIMD
with large � could achieve significantly higher bandwidth
than standard TCP and become less TCP-friendly. Therefore,
we maintain the theoretical � values throughout our simula-
tions.

4.2. TCP-Compatibility

We use the method described in [8] to test TCP-
compatibility. n SIMD flows and n standard TCP SACK
flows compete for bandwidth over a shared bottleneck link.
There are also 4 background TCP flows transmitting packets
in the opposite direction to introduce random ACK delays.
We consider both RED and DropTail queues. Figure 4 and
Figure 5 show the simulation results for RED queues, with
and without ECN bit set, respectively. In each case, results
are shown for a bottleneck link bandwidth of 15Mbps and
60Mbps. The measured average round-trip delay is around
0.1 second. Each point in the graph represents the throughput
of an individual flow in the last 60 seconds, and the dashed
lines represent the average throughput of SIMD and standard
TCP flows. In the lower graphs, we also plot the packet loss
rate for the RED without ECN case, and the rate of ECN early
marking plus dropping due to queue overflow for the RED
with ECN case.

As can be observed from the graphs, SIMD achieves a
slightly lower average throughput than standard TCP when
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Figure 4. TCP competing with SIMD(1/16), RED with ECN
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Figure 5. TCP competing with SIMD(1/16), RED without ECN

when the loss rate exceeds a certain level. This is partly due
to the reason we illustrate in Figure 3. Another possible expla-
nation is that when severe congestion happens, SIMD can not
compete well against standard TCP since compared to TCP,
SIMD opens its congestion window more conservatively at
the beginning of each congestion epoch. Therefore, when the
time between two consecutive packet losses is short, the more
aggressive TCP tends to gain more throughput. However, in
a reasonable loss regime (loss rate below 10%), SIMD shows
very impressive TCP-compatibility. Note that in the case of
60Mbps link and less than 4 flows, the length of the measure-
ment period (60 seconds) is too short compared to the length
of each congestion epoch (more than 40 seconds), thus the
variance of the results appears to be large.

We also found that with DropTail queue management, as
shown in Figure 6, SIMD can still be TCP-friendly and TCP-
compatible. The difference, compared to the RED queue ex-
periment, is that the variance becomes larger and SIMD now
gets less bandwidth than standard TCP compared to the pre-
vious experiment. Note that the assumption of randomized
packet losses made in our analysis does not apply to Drop-
Tail. Under DropTail, packet losses tend to be more corre-
lated (bursty drops). We conjecture that because the round-
trip times of connections are randomized in the simulation,
the chance of having synchronized packet arrivals is small,

b1 b2 b3 b4

s1 s2 r1 r2

c1 flows c2 flows

10Mbps,10ms x Mbps,10ms y Mbps,10ms

all access links 10Mbps,5ms

Figure 7. Simulation topology for convergence test

and the side effect of a DropTail queue (correlated drops for
each flow) is thus not so significant.

4.3. Convergence to Fairness and Efficiency

In this section, we assume a homogeneous protocol envi-
ronment, i.e., all flows use the same algorithm for congestion
control. We then vary the network configuration to study the
convergence time of different algorithms.

We use the topology shown in Figure 7 to perform this ex-
periment. In the beginning of the simulation, there are c1 + 1
connections sharing link (b1, b2), 2 connections sharing link
(b2, b3), c2 + 1 connections between b3 and b4. Link band-
widths and delays are shown in the figure. At time 400, all
background flows terminate and only two flows (s1-r1) and
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Figure 6. TCP competing with SIMD(1/16), with DropTail

(s2-r2) stay to compete for the bottleneck link (b2,b3). We use
packet size of 500 bytes in these experiments.

4.3.1 Convergence to Fairness (W1+W2 = W ,W1 < W2)

We create this scenario to study the convergence time to fair-
ness given that the initial point (W1; W2) is on the efficiency
line (w1 + w2 = W ). To create this setup, we let c1 = 15,
c2 = 0, x = 6Mbps, y = 6Mbps. So the bottleneck link for
flow (s2,r2) remains link (b2,b3), but for flow (s1,r1), the bot-
tleneck changes from link (b3,b4) to (b2, b3) at time 400. We
can also compute that: W � 110, W1 � 7, and W2 � 100.
Figure 8 plots the transient behavior of the congestion window
of different protocols.

We observe that standard TCP has the highest convergence
speed, and IIAD generates the smoothest but least responsive
traffic. It is worth noticing that in this scenario, where signifi-
cant bandwidth change happens, our proposed algorithm con-
verges much faster than AIMD to the fair share of the band-
width.

Table 3 gives the convergence time to fairness (T2). Here
we use � = 10 packets (cf. Section 3.2). The theoretical value
is also given in the table for comparison. The following ob-
servations can be made from the table.

First, the simulation results agree with the theoretical anal-
ysis in the ranking of various protocols except that all mea-
sured convergence times are smaller than the corresponding
theoretical values. This is expected since our analysis is based
on synchronized feedback assumption, and routers that do not
differentiate among flows when dropping packets. In contrast,
in the simulation, we use RED, so flows with larger window
sizes would see more packet drops. In other words, RED helps
to enhance the convergence speed to fairness.

Second, SIMD benefits from RED much more than other
schemes. The T2 value from simulations is much smaller than
the value obtained from analysis (shown in boldface). This
is because RED allows SIMD flows with smaller windows
to experience fewer packet losses, which gives them a better
chance to become more aggressive. On the contrary, AIMD

does not fully capitalize on the random loss property of RED
since its aggressiveness does not change. As a result, SIMD
converges to fairness much faster.

4.3.2 Convergence to Efficiency (W1 < W2 <
W

2
)

To create such scenario, we let c1 = 11, c2 = 3, x = 6Mbps,
y = 10Mbps. So initially the bottleneck link for flow (s1,r1)
is (b1,b2), and for flow (s2,r2) the bottleneck is (b3,b4). But
at time 400, both of them switch to link (b2, b3). Roughly,
we have W � 110, W1 � 10, and W2 � 30. We can then
study T1, the convergence time to efficiency of different con-
trol schemes. Figure 9 plots the transient behavior of the con-
gestion window of different protocols.

The advantage of our SIMD algorithm is more pronounced
in this scenario. TCP is still the fastest responding protocol,
but still at the expense of high variability. In addition, general
AIMD suffers from the problem of convergence efficiency, i.e,
all flows have the same window increments, so before packet
loss happens, they increase their congestion windows at the
same rate and thus do not efficiently converge to the fair share.
On the contrary, our SIMD algorithm allows the two compet-
ing flows to smoothly and quickly transit to the fair steady
state, since the flow with smaller window grows more aggres-
sive than the one with larger window. IIAD takes a much
longer time to converge due to its inherent weak aggressive-
ness (sub-linear increase).

We also give convergence time to efficiency (T1) in Table 3.
Analytical results closely match the simulation results.

5. Related Work

The earliest congestion controls include Jacobson’s
TCP algorithm [12] and Ramakrishnan and Jain’s DECbit
scheme [18]. Under a synchronized feedback assumption,
Chiu and Jain [2] analyze AIMD control. To provide smoother
transmission rate than that given by TCP, several TCP-like
window-based congestion control mechanisms have been pro-
posed, including the general AIMD [8, 22] and TEAR [19].
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Figure 8. Two flows converge to fair share of bandwidth

Algorithm Experiment 1 Experiment 2
W1 W2 T2 (RTT) W1 W2 T1 (RTT) � (pkts)

simu anal simu anal simu anal

TCP 6.1 99.6 68.0 88.7 8.8 13.8 55 43.7 5.8 6.0
AIMD 7.9 99.2 776 1217 12.7 31.0 349 342 18.6 18.3
IIAD 7.7 99.8 4232 6684 11.8 31.2 1284 1242 8.1 7.6
SIMD 6.6 96.3 218 852 10.2 33.2 90 85.1 13.6 12.3

Table 3. Quantitative measures on convergence time

These mechanisms use a moderate window decrease parame-
ter to reduce rate variability, meanwhile use a matching win-
dow increase parameter to satisfy TCP-friendliness. There are
tradeoffs between smoothness and reaction to changes in net-
work conditions [8, 21].

Non-linear controls were considered less robust and not
suitable for practical purposes [2]. On the contrary, Bansal
and Balakrishnan [1] proposed binomial algorithms that inter-
act well with TCP AIMD. Binomial controls are memory-less
in that they use only the current window size in their control
rules. SIMD is radically different from memory-less binomial
algorithms. To our knowledge, SIMD is the first window-
based TCP-friendly congestion control algorithm using his-
tory information in its control rules. By doing so, SIMD im-
proves its transient behavior and convergence speed without
sacrificing smoothness in steady state.

Another approach to provide smoother transmission rate
is equation-based congestion controls [9, 17, 20], first pro-
posed in [14]. In these schemes, end-systems measure the
packet loss rate and round-trip time, and use the TCP-friendly
equation [16] to compute the transmission rate. Two com-
parisons [8, 21] of equation-based and window-based conges-
tion controls have shown that equation-based schemes and
window-based AIMD share similar transient behaviors but
equation-based schemes provide higher smoothness. How-

ever, the aggressiveness of equation-based schemes is limited
by the nature of rate-based control, which lacks a self-clocked
mechanism for overload protection as in window-based con-
trol. Notably, equation-based schemes use more history in-
formation (up to eight congestion epochs [9]). Therefore,
SIMD is a step toward exploring the design space between
window-based memory-less control schemes and equation-
based schemes that make use of longer history.

6. Conclusion

We proposed a novel window-based congestion con-
trol algorithm called SIMD (Square-Increase/Multiplicative-
Decrease). Contrary to previous memory-less controls, SIMD
utilizes history information in its control rules. It uses multi-
plicative decrease but the window size increases in propor-
tion to the square of the time elapsed since the detection
of the last loss event. Thus, SIMD can maintain smooth-
ness in steady state, while efficiently probing available band-
width when there are drastic changes in network conditions.
We have shown that SIMD is TCP-friendly as well as TCP-
compatible under RED. We have also shown that SIMD has
faster convergence than TCP-friendly memory-less AIMD
and binomial algorithms. Our simulations using the ns simu-
lator have demonstrated the superiority of SIMD.
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Figure 9. Two flows converge to fair share of bandwidth

SIMD is the first example of window-based congestion
control algorithms that uses history information in its con-
trol rules. It explores a new design space between memory-
less window-based congestion control schemes and equation-
based schemes that use history spanning many congestion
epochs. Indeed, this new space defines a new class of
TCP-friendly window-based congestion control algorithms,
of which SIMD is an instance [13]. Future work includes
comparisons between equation-based schemes and SIMD.
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